吳紹培
一、背景
由于互聯網的開放性和通用性,網上的所有信息對所有人都是公開的,所以網絡上的信息安全問題也日益突出。近年來,因特網上的安全事故屢有發生。連入因特網的用戶面臨諸多的安全風險:拒絕服務、信息泄密、信息篡改、資源盜用、聲譽損害等等。這些安全風險的存在阻礙了計算機網絡的應用與發展。在網絡化、信息化的進程不可逆轉的形勢下,建立安全可靠的網絡信息系統是一種必然選擇。
數據加密技術是對信息進行重新編碼,從而達到隱藏信息內容,非法用戶無法獲得信息真實內容的一種技術手段。網絡中的數據加密則是通過對網絡中傳輸的信息進行數據加密,滿足網絡安全中數據加密、數據完整性等要求,而基于數據加密技術的數字簽名技術則可滿足審計追蹤等安全要求。可見,數據加密技術是實現網絡安全的關鍵技術。
二、數據加密相關信息
2.1數據加密的方法
加密技術通常分為兩大類:對稱式和非對稱式
對稱式加密,被廣泛采用,它的特點是文件加密和解密使用相同的密鑰,即加密密鑰也可以用作解密密鑰,這種方法在密碼學中叫做對稱加密算法,對稱加密算法使用起來簡單快捷,密鑰較短,且破譯困難。對稱加密的優點是具有很高的保密強度,可以達到經受較高級破譯力量的分析和攻擊,但它的密鑰必須通過安全可靠的途徑傳遞,密鑰管理成為影響系統安全的關鍵性因素,使它難以滿足系統的開放性要求。對稱密碼加密算法中最著名的是DES(Data Encryption Standard)加密算法,它是由IBM公司開發的數據加密算法,它的核心是乘積變換。如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那么只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種算法叫非對稱加密算法。非對稱密碼的主要優點是可以適應開放性的使用環境,密鑰管理問題相對簡單,可以方便、安全地實現數字簽名和驗證, 但加密和解密花費時間長、速度慢。非對稱加密算法中最著名的是由美國MIT的Rivset、Shemir、Adleman于1977年實現的RSA算法。
2.2 數據加密的標準
最早、最著名的保密密鑰或對稱密鑰加密算法DES(Data Encryption Standard)是由IBM公司在70年代發展起來的,并經政府的加密標準篩選后,于1976年11月被美國政府采用,DES隨后被美國國家標準局和美國國家標準協會(American National Standard Institute,ANSI)承認。 DES使用56位密鑰對64位的數據塊進行加密,并對64位的數據塊進行16輪編碼。與每輪編碼時,一個48位的”每輪”密鑰值由56位的完整密鑰得出來。DES用軟件進行解碼需用很長時間,而用硬件解碼速度非常快。幸運的是,當時大多數黑客并沒有足夠的設備制造出這種硬件設備。在1977年,人們估計要耗資兩千萬美元才能建成一個專門計算機用于DES的解密,而且需要12個小時的破解才能得到結果。當時DES被認為是一種十分強大的加密方法。另一種非常著名的加密算法就是RSA了,RSA算法是基于大數不可能被質因數分解假設的公鑰體系。簡單地說就是找兩個很大的質數。一個對外公開的為“公鑰”(Prblic key) ,另一個不告訴任何人,稱為“私鑰”(Private key)。這兩個密鑰是互補的,也就是說用公鑰加密的密文可以用私鑰解密,反過來也一樣。
三、數據加密傳輸系統
3.1 系統的整體結構
系統的整體結構分為以下幾個模塊,首先是發送端的明文經過數據加密系統加密后,文件傳輸系統將加密后的密文傳送給接收端,接收端接收到密文以后,用已知的密鑰進行解密,得到明文。
3.2 模塊設計
3.2.1 加解密模塊
(1)DES加解密模塊。DES加解密模塊的設計,分為兩個部分:DES加密文件部分和DES加密演示部分。DES加密文件部分可以實現對文件的瀏覽,選中文件后對文件進行加密,加密后的文件存放在新的文檔;DES加密演示部分輸入數據后可以直接加密。(2)RSA加解密模塊。RSA加解密系統,主界面有三個模塊,分別為加密、解密和退出;加密模塊對明文和密鑰的輸入又設置了直接輸入和從文件讀取;解密模塊可以直接實現對文件的解密。
3.2.2 文件傳輸模塊
(1)文件瀏覽:用戶手動點擊瀏覽按鈕,根據用戶的需要,按照目錄選擇要傳輸的文件,選中文件。(2)文件傳輸:當用戶點擊發送文件時,文件就可通過軟件傳給客戶端。點擊客戶端按鈕,軟件會彈出客戶端的窗體,它包含輸入框(輸入對方IP地址)和按鈕(接收和退出),通過輸入IP地址,就可實現一臺電腦上的文件傳輸。
四、數據加密在商務中的應用
在電子商務發展過程中,采用數字簽名技術能保證發送方對所發信息的不可抵賴性。在法律上,數字簽名與傳統簽名同樣具有有效性。數字簽名技術在電子商務中所起的作用相當于親筆簽名或印章在傳統商務中所起的作用。
數據簽名技術的工作原理: 1.把要傳輸的信息用雜湊函數(Hash Function)轉換成一個固定長度的輸出,這個輸出稱為信息摘要(Message Digest,簡稱MD)。雜湊函數是一個單向的不可逆的函數,它的作用是能對一個輸入產生一個固定長度的輸出。 2.發送者用自己的私鑰(SK)對信息摘要進行加密運算,從而形成數字簽名。 3.把數字簽名和原始信息(明文)一同通過Internet發送給接收方。 4.接收方用發送方的公鑰(PK)對數字簽名進行解密,從而得到信息摘要。 5.接收方用相同的雜湊函數對接收到的原始信息進行變換,得到信息摘要,與⑷中得到的信息摘要進行比較,若相同,則表明在傳輸過程中傳輸信息沒有被篡改。同時也能保證信息的不可抵賴性。若發送方否認發送過此信息,則接收方可將其收到的數字簽名和原始信息傳送至第三方,而第三方用發送方的公鑰很容易證實發送方是否向接收方發送過此信息。
然而,僅采用上述技術在Internet上傳輸敏感信息是不安全的,主要有兩方面的原因。 1.沒有考慮原始信息即明文本身的安全; 2.任何知道發送方公鑰的人都可以獲取敏感信息,而發送方的公鑰是公開的。 解決1可以采用對稱密鑰加密技術或非對稱密鑰加密技術,同時考慮到整個加密過程的速度,一般采用對稱密鑰加密技術。而解決2需要介紹數字加密算法的又一應用即數字信封。
五、 結論
上述內容主要介紹了數據傳輸過程中的加密處理,數據加密是一個主動的防御策略,從根本上保證數據的安全性。和其他電子商務安全技術相結合,可以一同構筑安全可靠的電子商務環境,使得網上通訊,數據傳輸更加安全、可信。
參 考 文 獻
[1]黃河明.數據加密技術及其在網絡安全傳輸中的應用.碩士論文,2008年
[2]孟揚.網絡信息加密技術分析[J].信息網絡安全,2009年4期
[3]戴華秀,鄭強.淺談數據加密技術在網絡安全中的應用[J].華章,2011年7期
[4] 林琳,羅安.基于網絡安全的數據加密技術的研究[J].現代電子技術,2004年11期
[5]密碼編碼學與網絡安全:原理與實踐(第5版) William Sallings(作者) 王張宜 楊敏等譯 電子工業出版社