999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Interference-Cancellation Scheme for Multilayer Cellular Systems

2015-10-11 01:37:49WeiLiYueZhangandLiKeHuang
ZTE Communications 2015年1期

Wei Li,Yue Zhang,and Li-Ke Huang

(1.University of Bedfordshire,Luton,LU1 3JU,UK;2.Aeroflex UK,Stevenage,SG1 2AN,UK)

Interference-Cancellation Scheme for Multilayer Cellular Systems

Wei Li1,Yue Zhang1,and Li-Ke Huang2

(1.University of Bedfordshire,Luton,LU1 3JU,UK;2.Aeroflex UK,Stevenage,SG1 2AN,UK)

A 5G network must be heterogeneous and support the co-existence of multilayer cells,multiple standards,and multiple application systems.This greatly improves link performance and increases link capacity.A network with co-existing macro and pico cells can alleviate traffic congestion caused by multicast or unicast subscribers,help satisfy huge traffic demands,and further extend converge.In order to practically implement advanced 5G technology,a number of technical problems have to be solved,one of which is inter-cell interference.A method called Almost Blank Subframe(ABS)has been proposed to mitigate interference;however,the

ignal in ABS still causes interference.This paper describes how interference can be cancelled by using the information in the ABS.First,the interference-signal model,which takes into account channel effect,time and frequency error,is presented.Then,an interference-cancellation scheme based on this model is studied.The timing and carrier frequency offset of the interference signal is compensated.Afterwards,the reference signal of the interfering cell is generated locally and the channel response is estimated using channel statistics.Then,the interference signal is reconstructed according to previous estimation of channel,timing,and carrier frequency offset.The interference is mitigated by subtracting the estimated interference signal.Computer simulation shows that this interference-cancellation algorithm significantly improves performance under different channel conditions.

5G;cell edge interference;almost-blank subframe;eICIC

1 Introduction

With the rapid development of 5G wireless networks,heterogeneous links,which support the co-existence of multilayer cells,multiple standards,and multiple applications,are playing an important role in increasing capacity and coverage and satisfying huge traffic demand[1].This paper discusses technical issues,in particular,interference cancellation,in a heterogeneous network with macro and pico cell.In the topology of a network with macro and pico cells,the high-power 1~40 W macro cell provides basic coverage and the low power 250 mW pico cell is the complementary cell.The pico cell extends network coverage and offloads data traffic of the macro-cell.This reduces cost and increases frequency efficiency.However,the user equipment(UE)served by the pico cell also receives RF signals from neighboring high-power macro cells.This interference is even more severe when users in the pico cell stay within the coverage area of macro cells with range-extension enabled[2].

Enhanced inter-cell interference coordination(eICIC)addresses this issue[2].eICIC involves two techniques.First,the signal strength is biased to the pico cell,which reduces the interference power.Second,the macro cell remains silent for a certain period,called Almost-Blank Subframe(ABS)[2].In the ABS,the physical downlink shared channel(PDSCH)is emptied.Therefore,UE does not receive PDSCH during the ABS,and interference can be alleviated.However,users may still receive the cell-specific reference signal(CRS),paging channel(PCH),physical broadcast channel(PBCH),and synchronization channels(PSS/SSS),all of which degrade performance. Further eICIC(FeICIC)has been proposed to eliminate CRS interference.

Some research has been done on CRS interference cancellation(IC).The authors of[3]and[4]investigate direct IC and log -likelihood ratio(LLR)puncturing methods.The simulation results show that direct IC results in better performance.The authors of[5]propose a receiver algorithm that combines IC with a direct-decision channel estimation(CE)algorithm for colliding CRS.The authors of[6]propose a space-alternating gener-alized expectation-maximization(SAGE)with a maximum aposteriori(MAP)method for estimating the interfering channel. This method involves reduced computation complexity compared with the linear minimum mean square error(LMMSE)method.However,timing error and frequency offsets can severely degrade performance.

In this paper,we theoretically analyze and run simulations on the CRS interference-cancellation algorithm in a non-colliding scenario where channel statistics are taken into consideration.First,we analyze and model the interference signal and then discuss the interference-cancellation algorithm based on this model.The algorithm makes use of the primary synchronization signal(PSS)and secondary synchronization signal(SSS)to obtain the timing offset(TO)and carrier frequency offset(CFO).Then,the channel response is estimated using channel statistics.Then,the interference signal is reconstructed taking into account the channel effect,TO and CFO.Interference is alleviated by subtracting the interference signal from the received signal.

The rest of this paper is organized as follows.In section 2,the interference is analyzed and modeled.In section 3,we discuss IC algorithms.In section 4,results of the computer simulation are presented.In section 5,we sum up.

2 Interference Analysis and Model

Fig.1 shows typical non-colliding inter-cell interference between macro and pico cells.The wireless data service is delivered to the subscriber via pico cell,and the downlink signal from the macro cell interferes with the subscriber at the edge of the pico cell.To alleviate the inter-cell interference,the ABS is transmitted by the macro cell.During the ABS,only certain control signals,such as CRS,are transmitted.

However,the CRS still causes interference for the subscriber.Fig.2 shows the received signal of one resource block(RB)with one interference cell.The CRS from a neighboring macro cell overlaps the resource elements(REs)from a serving cell(SC).The SC RE can be divided into data RE and CRS RE.Because of the TO and CFO between the interfering cell and subscriber,the received interfering signal suffers TO and CFO(Fig.2).

▲Figure 1.Inter-cell interference between macro and pico cells.

▲Figure 2.Received signal in time and frequency grid.

Four modulation schemes are being considered for 5G:generalized frequency-division multiplexing(GFDM),filter bank multicarrier(FBMC),universal filtered multicarrier(UFMC),and biorthogonal frequency-division multiplexing(BFDM). However,these four schemes are all generalizations of OFDM,so we address the original OFDM modulation in the following way(for simplicity's sake).

In the downlink side of OFDM modulation,the frequencydomain signal of theithsymbol is transferred to time domain signalxi(n)via N-point Inverse Fast Fourier Transform(IFFT):

wheredi,kandpi,kare the data and pilot,respectively.

Then the signal is transmitted over a multipath propagation channel that takes into account additive white Gaussian noise(AWGN).At the receiver side,the received signal is given by where hlandτlare the gain and delay of the lth path,respectively;andω(n)is the AWGN.Because of the TO and CFO,the corrupted receiver signal in the case of inter-cell interference is

According to(5),the relative timing offsetdbetween interfering and serving cells causes phase shifton the kth subcarrier.The termsΦnin(5)arises from the CFO termfΔ,which results in intercarrier interference(ICI).Therefore,the CFO and TO need to be compensated.In addition,this model shows the case of single-input single-output(SISO)antenna only.The case of multiple-input multiple-output(MIMO)antenna can be easily derived from(5).However,the number of REs increases because the number of interference CRSs increases with number of antenna ports,which results in more severe interference[8].These problems will be addressed in section 3.

3 IC Algorithm

The proposed inter-cell IC algorithm is shown in Fig.3. This algorithm includes estimation of CFO and TO,estimation of the interfering channel,modeling of the interfering cell,and reconstruction and reduction of the interfering signal.With CFO and TO estimation,the relative frequency offset and timing offset between the interfering cell and serving cell is estimated using the PSS or SSS generated by modeling the interfering cell.Next,the interfering channel is estimated according to the compensated signal.The interfering signal is then reconstructed according to the previous estimation and subtracted from the received signal.

▲Figure 3.IC receiver architecture.

3.1 CFO and TO Estimation

The objective of this module is to retrieve OFDM symbol timing and estimate the CFO of the interfering cell.Many timing-and frequency-synchronization algorithms have been developed.Most of these exploit the periodic nature of the timedomain signal by using cyclic prefix(CP)[9]-[11]or pilot data[12]-[13].However,there are no data REs in an ABS,which severely reduces the power of the CP.The low SNR of the CP makes both timing and frequency synchronization difficult. Apart from the CP and pilot,there are still the PSS and SSS,which are dedicated to timing and frequency synchronization in the downlink.The PSS and SSS are located at the last and second-last symbol in the time slot 0 and 10.The PSSpss(n)and SSSsss(n)are given by

and

whereμis 25,29 or 34 and corresponds to the physical layer identity;andm0andm1are derived from the physical layer cell identity group,c0(n),c1(n),z1(m0) andz1(m1)are defined in[8].The timing and frequency offset can be estimated using the cross-correlation of PSS/SSS[14]:

where

The generation of PSS/SSS is based on the assumption of an ideal cell search.The cell-search algorithm in the case of intercell interference is beyond the scope of this paper.After the timing and frequency synchronization of the interfering signal,the interfering-channel response can be estimated.

3.2 Interfering-Channel Estimation

Before interference cancellation,it is essential to estimate the interfering-channel response.The channel estimation can be based on least squares(LS)or minimum mean-square error(MMSE)[15],[16].The MMSE algorithm gives 10-15 dB gainin signal-to-noise ratio(SNR)for the same mean-square error of CE over LS estimation[15].However,the MMSE is more complex than the LS algorithm.After timing and frequency offset compensation,(5)can be rewritten as

From(10),the interfering CRS sequence p(1)can be expressed as

wherec(n)is generated by Gold Sequence with a length of 31,the state of which is initialized according to the cell ID,slot number,and antenna port.Assuming that the user conducts ideal cell research,the interfering CRScan be generated locally.Applying LS CE,the interfering channel can be estimated with

According to(11),the data RE of serving cellb-ecomes interference with relatively high power.Thus,the estimation in(11)is inaccurate.Numerical studies in[17]show that the distribution of the interference signal is close to Gaussian for a larger RB and non-Gaussian for a smaller.However,the mean of the distribution converges to 0.Therefore,the expectation of(11)can be derived:

Equation(12)provides a good estimation of mean value of the interfering channel.This value can be estimated by using a moving-average window in the time dimension(Fig.4).If the moving-average window of length M is within the coherence time of the channel,could be approximated by. The procedure of the interfering-channel estimation is show in Fig.4.

▲Figure 4.Interfering-channel estimation.

The IC algorithm should set the correct antenna number and bandwidth of the interfering cell for interfering-cell CE and interference modelling block.Usually this information is not available at the UE unless the UE decides to hand over to that cell.Therefore,the antenna number and bandwidth of the interfering cell need to be estimated at the UE.

A straightforward method for interfering-cell CE is to enable the IC control block to always set the maximum possible bandwidth and number of antennas,i.e.,20 MHz and 4 antennas,so that the interfering-cell CE and interference modelling block estimates the channel accordingly.If the actual bandwidth is less than 20 MHz,the power of the pilots outside the signal band will be zero.In the mathematical form,the estimation of the channel that is out of the signal bandwidth is

Equation(13)indicates that the estimation of the neighbouring cell channel could filter out the interference and noise by moving average.Therefore,the power derived from the channel estimation is reliable way of detecting the signal bandwidth.A similar approach could be taken for detecting the number of antennas as well.

3.3 Interfering-Signal Reconstruction and Reduction

After estimating CFO,TO,and the channel response,the estimated interference signal can be reconstructed on the basis of the local time-domain CRS.The relative timing offsetdis potentially larger than the duration of CP,which causes ISI within the OFDM window of a desired signal.Thus,reconstructing a frequency-domain interference signal symbol by symbol could result in inaccurate IC.This algorithm reconstructs the interference signal in the time domain and subtracts it from the received signal in time domain:

4 Simulation Results

In this section,we evaluate the performance of the IC algorithm using Monte Carlo simulation.We simulate a typical twocell interference scenario(Fig.1).The serving cell is set to work in MBSFN mode with 10 MHz bandwidth and different modulation and coding schemes to deliver the service.The interfering cell transmits a normal ABS with a bandwidth of 5 MHz.During the ABS,the CRS overlaps the data RE of desired signal,which causes inter-cell interference.The desired and interfering signal both pass through the time-varying channel with a delay spread smaller than the duration of CP.In the simulation,the WINNER II C2(EVA)[18]channel model is used with different Doppler frequency determine the effective-ness of IC under different channel conditions.The arrival time of desired and interfering signal is adjusted to determine the effect of relative timing offset.In addition,different CFOs are applied to the interfering signal to evaluate the effect of CFO.To generate the correct PSS,SSS,and CRS for IC,the user is assumed to conduct an ideal cell search.

Figs.5a to d show BLER versus SNR for different IC scenarios.MCS 8 and MCS 16 are used.The signal is transmitted via EVA channel with 5 Hz Doppler frequency and with different SNRs.The antenna multiplex mode is set to SIMO and MIMO. The block error rate(BLER)is a performance criteria and is calculated on the basis of 10,000 block transmissions.The BLER of transmission without interference is used as the reference.Fig.5 also shows the performance with and without IC(red and grey curves,respectively).The inter-cell interference degrades performance during the SNR range of interest.When the IC algorithm is used,BLER approaches that of transmission without interference.

?Figure 5. BLER performance vs. SNR in different IC scenarios:a)SIMO,MCS 8,b)SIMO,MCS 16,c)MIMO,MCS 8,d)MIMO,MCS 16.

?Figure 6. BLER of different Doppler frequency scenarios:a)5 Hz,b)70 Hz,c)150 Hz,d)200 Hz.

Fig.6 shows the BLER in different Doppler frequency scenarios.SIMO MCS 18 modulation is used in this simulation,and the Doppler frequency varies from 5 Hz to 200 Hz.The BLER in the case of no interference is the reference(blue curve).The BLER in the case of interference and IC are shown by the grey and red curves,respectively.In Figs.6a-d,IC significantly improves the BLER for different SNR and Doppler frequencies.This proves the robustness of the IC algorithm.

Fig.7 shows the effect of CFO on BLER when the proposed IC algorithm and combined IC(comIC)algorithm in[5]are used.The performance of the algorithm in[5]gradually degrades as CFO increases.On the contrary,there is no significant degradation in performance using the proposed algorithm. This proves the effectiveness of frequency synchronization when the CFO is large.

▲Figure 7.BLER performance versus frequency offset.

▲Figure 8.BLER performance versus timing offset.

Fig.8 shows the effect of TO on BLER,when MCS 22 modulation is used.The channel is set at EVA 5Hz,and SNR is set at 16 dB.The performance of proposed IC algorithm is shown by the red curve,and the performance of the comIC algorithm in[5]is shown by the grey curve.The red curve shows that proposed IC algorithm greatly improves BLER when there is a short delay or a very long delay(the inference pilot almost overlaps the following symbol).When the delay is larger than half an OFDM symbol,the BLER for comIC increases,which means that timing synchronization is required.The red curve shows that IC with timing synchronization achieves results in robust performance within the TO range of interest.

5 Conclusions

This paper discusses cancellation of inter-cell interference caused by the CRS at the edge of a cell in a multilayer cellular network.This paper describes a signal model that takes into account the interfering signal from a neighboring cell,channel effect,and timing and frequency offset.Using this model,we estimate the TO,CFO,and interfering channel.The interfering signal is then reconstructed locally.Finally,the interference is alleviated by subtracting the reconstructed interference signal. The computer simulation shows this IC algorithm significantly improves performance in different channel conditions.In future work,we will generalize the proposed scheme to non-OFDM cells,such as sparse codebook multiple-access(SCMA)cells and non-orthogonal multiple-access(NOMA)cells,which will also be used in 5G networks.

[1]H.Baligh,M.Hong,W.-C.Liao,et al.,“Cross layer provision of future cellular networks,”IEEE Signal Processing Magazine,vol.31,no.6,pp.56-68,Nov. 2014.

[2]S.Deb,P.Monogioudis,J.Miernik,and J.P.Seymour,“Algorithms for enhanced inter-cell interference coordination(eICIC)in LTE HetNets,”IEEE/ ACM Transaction on Networking,vol.22,no.1,pp.137-150,Feb.2014.doi: 10.1109/TNET.2013.2246820.

[3]Qualcomm Inc,“Enabling communication in harsh interference scenarios,”R4-102350,3GPP-RAN WG4 AH#10-03,Bratislava,Jul.2010.

[4]Qualcomm Inc,“Link level simulations for FeICIC with 9dB cell range expansion,”R4-123313,3GPP-RAN WG4#63,Prague,May 2012.

[5]M.Huang and W.Xu,“Macro-femto inter-cell interference mitigation for 3GPP LTE-A downlink,”in IEEE Wireless Communications and Networking Conference Workshops,Paris,France,Apr.2012,pp.75-80.doi:10.1109/ WCNCW.2012.6215544.

[6]B.E.Priyanto,S.Kant,F.Rusek,et al.,“Robust UE receiver with interference cancellation in LTE advanced heterogeneous network,”in IEEE 78th Vehicular Technology Conference,Las Vegas,USA,Sept.2013,pp.1-7.doi:10.1109/VTCFall.2013.6692396.

[7]H.Nguyen-Le,T.Le-Ngoc,and C.C.Ko,“RLS-basedjoint estimation and tracking of channel response,sampling,and carrier frequency offsets for OFDM,”IEEE Transaction on Broadcasting,vol.55,no.1,pp.84-94,Mar.2009.doi: 10.1109/TBC.2008.2012361.

[8]Evolved Universal Terrestrial Radio Access(E-UTRA);Physical Channels and Modulation,3GPP TS 36.211,Feb.2013.

[9]J.-J.van de Beek,M.Sandell,and P.O.B?rjesson,“ML estimation of time and frequency offset in OFDM systems,”IEEE Transactions on Signal Processing,vol.45,no.7,pp.1800-1805,Jul.1997.doi:10.1109/78.599949.

[10]M.Speth,D.Daecke,and H.Meyr,“Minimum overhead burst synchronization for OFDM based broadband transmission,”in IEEE Global Telecommunica-tions Conference,Sydney,Australia,Nov.1998,pp.2777-2782.doi:10.1109/ GLOCOM.1998.776494.

[11]C.C.Ko,R.Mo,and M.Shi,“A new data rotation based CP synchronization scheme for OFDM systems,”IEEE Transaction on Broadcasting,vol.51,no.3,pp.315-321,Sept.2005.doi:10.1109/TBC.2005.851135.

[12]J.-S.Baek and J.-S.Seo,“Effective symbol timing recovery based on pilot-aided channel estimation for MISO transmission mode of DVB-T2 system,”IEEE Transaction on Broadcasting,vol.56,no.2,pp.193-200,Jun.2010.doi: 10.1109/TBC.2010.2049054.

[13]X.Wang,T.T.Tjhung,Y.Wu,and B.Caron,“SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization,”IEEE Transaction on Broadcasting,vol.49,no.2,pp.170-177,Jun.2003.doi:10.1109/TGRS.2003.810271.

[14]Y.-H.Tsai and T.-H.Sang,“A new timing synchronization and cell search procedure resistant to carrier frequency offsets for 3GPP-LTE downlink,”in First IEEE International Conference on Communications in China,Beijing,China,Aug.2012,pp.334-338.doi:10.1109/ICCChina.2012.6356903.

[15]J.-J.van de Beek,O.Edfors,M.Sandell,et al.,“On channel estimation in OFDM systems,”in IEEE 45th Vehicular Technology Conference,Chicago,USA,Jul.1995,pp.815-819.doi:10.1109/VETEC.1995.504981.

[16]V.Srivastava,C.Ho,P.Fung,and Sumei Sun,“Robust MMSE channel estimation in OFDM systems with practical timing synchronization,”in IEEE Wireless Communications and Networking Conference,Atlanta,USA,Mar.2004,pp.711-716.doi:10.1109/WCNC.2004.1311273.

[17]C.Feng,H.Cui,M.Ma,and B.Jiao,“On statistical properties of co-channel interference in OFDM systems,”IEEE Communication Letters,vol.17,no.12,pp.2328-2331,Oct.2013.doi:10.1109/LCOMM.2013.101813.131297.

[18]Evolved Universal Terrestrial Radio Access(E-UTRA),User Equipment(UE)Radio Transmission and Reception,3GPP TS 36.101,Jul.2013.

Manuscript received:2014-09-18

Biographiesphies

Wei Li(wei.li@beds.ac.uk)received his BEng degree from the University of Electronic Science and Technology of China in 2010.He is currently working towards his PhD degree at the University of Bedfordshire,UK,and working with Aeroflex UK on a project looking at the baseband signal process problem in LTE networks. His research interests include signal processing for mobile communications,cognitive radio,OFDM channel estimation,and cooperative communications via relays.

Yue Zhang(yue.zhang@beds.ac.uk)is currently senior lecturer in the Department of Computer Science and Technology,University of Bedfordshire.He is also on industry secondment from the Royal Academy of Engineering working with Aeroflex UK on a high-throughput wireless measurement platform project.He obtained his BEng and MEng degrees from Beijing University of Post and Telecommunications in 2001 and 2004.He received his PhD degree from Brunel University,UK,in 2008.He has worked as a research engineer for the EU IST FP6 project called PLUTO.He then worked as a signal processing design engineer at Anritsu.He was responsible for RF/IF,digital,and DSP design for various wireless communication systems.His research interests include signal processing,wireless communications systems,MIMO-OFDM systems,radio propagation model,and multimedia and wireless networks.He is a member of IEEE and IET.

Li-Ke Huang(li-ke.huang@aeroflex.com)is a technical and research manager at Aeroflex UK.He develops testing and measurement technologies for wireless systems.He specializes in transceiver algorithms and architecture designs for all major wireless communication standards.He is responsible for products and technologies R&D.His research interests include communication system designs and signal processing algorithms and architectures.He received his BSc degree in electronic engineering at Shenzhen University,China,in 1998.He received his PhD degree in communication and signal processing from Imperial College London in 2003.

Call for Papers ZTE Communications Special Issue on Recent Advances in Smart Grid

The smart grid is the next generation electric grid that enables efficient,intelligent,and economical power generation,transmission,and distribution.It has attracted significant attentions and become a global trend due to the immense potential benefits including enhanced reliability and resilience,higher operational efficiency,more efficient energy consumption,and better power quality.

This special issue expects to address smart grid issues related to data sensing,data communications and data networking,including high-level ideology/methodology,concrete smart grid inspired data communications and networking technologies,smart grid system architecture,QoS,energy-efficiency,and fault tolerance in smart grid systems,management of smart grid systems,and real-world deployment experiences.

The goal of this SI is to highlight and systematically address the challenges arising from smart grid with particular focus on communications and network aspects.The SI will present original research articles that cover the following subjects(but are not limited to):

·Smart grid inspired data sensing technologies,modelling,algorithms and systems including energy-efficient sensors and actuators for smart grid

·Smart grid inspired data communication and networking technologies,modelling,algorithms

·Smart metering and advanced measurement infrastructure

·Demand response management(DRM)

·Energy-efficient smart grid systems

·Quality of Service assurance in smart grid systems

·Security and privacy in smart grid systems

·Reliability,robustness,fault-tolerance,and self-healing

·Smart grid system management and adaptation

·Application-layer service engineering for smart grid

·Testing and evaluation tools

·Prototype systems and real-world deployment experiences

Manuscript Submission

Please email your submission in pdf format to kunyang@essex.ac. uk,yingfei@hawaii.edu and niuzhs@tsinghua.edu.cn.The email subject shall contain“ZTE-SI-SG”.

Important Date

Manuscript Submission Due:25thApril 2015

Acceptance Notification:15thMay 2015

Final Manuscript Due:5thJune 2015

Publication:September 2015

Guest Editors

Kun Yang,School of Computer Science&Electronic Engineering,University of Essex,United Kingdom,Email: kunyang@essex.ac.uk

Yingfei Dong,Dept.of Electrical and Computer Engineering,University of Hawaii,USA,Email:yingfei@hawaii.edu

Zhisheng Niu,Department of Electronic Engineering,Tsinghua University,China,Email:niuzhs@tsinghua.edu.cn

主站蜘蛛池模板: 免费一看一级毛片| 亚洲天堂啪啪| 亚洲AV人人澡人人双人| 亚洲国产日韩视频观看| 欧美啪啪网| 久久精品这里只有国产中文精品| 欧美国产日韩另类| 欧美中文字幕在线视频| 色爽网免费视频| 久久久噜噜噜久久中文字幕色伊伊| 亚洲最新网址| 亚洲男人天堂久久| 国产成年无码AⅤ片在线| 国产精品成人免费视频99| 亚洲全网成人资源在线观看| 欧美区日韩区| 中文字幕精品一区二区三区视频| 99这里只有精品免费视频| 久久精品丝袜| 国产一级特黄aa级特黄裸毛片| 国产香蕉国产精品偷在线观看| 55夜色66夜色国产精品视频| 国产天天射| 色婷婷成人| 久精品色妇丰满人妻| 欧美成人免费一区在线播放| 亚洲永久免费网站| 日韩在线2020专区| 色国产视频| 午夜视频在线观看区二区| 欧美国产视频| 成人福利在线观看| 四虎永久在线视频| 四虎综合网| 亚洲欧洲天堂色AV| 色香蕉影院| 无码中文字幕加勒比高清| 国产办公室秘书无码精品| 亚洲妓女综合网995久久| 亚洲一区二区无码视频| 超清无码熟妇人妻AV在线绿巨人| 超碰色了色| 国产精品私拍在线爆乳| 漂亮人妻被中出中文字幕久久 | 伊人色在线视频| 狠狠色香婷婷久久亚洲精品| 毛片基地美国正在播放亚洲| 亚洲国产欧美国产综合久久| 久久综合AV免费观看| 日韩A∨精品日韩精品无码| 亚洲第一视频区| 免费一级大毛片a一观看不卡| 伦伦影院精品一区| 日韩欧美中文| 女人18毛片水真多国产| 青草视频在线观看国产| 91网址在线播放| 一本色道久久88| 伊人婷婷色香五月综合缴缴情| 一级黄色网站在线免费看| 在线观看热码亚洲av每日更新| 色成人综合| 国产99精品视频| 伊人成人在线| 欧美精品导航| a网站在线观看| 91视频区| 人妻无码一区二区视频| 国内精品自在自线视频香蕉| 婷婷午夜天| 国产一区在线视频观看| 国产91高清视频| 国产精品jizz在线观看软件| 中文字幕亚洲乱码熟女1区2区| 亚洲欧美自拍一区| 国产精品成人一区二区不卡| 精品久久久久久久久久久| 欧美 亚洲 日韩 国产| 2020国产精品视频| 波多野结衣一区二区三区四区 | 综合久久五月天| 久久夜夜视频|