999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A NEW PROOF OF THE DELTA INEQUALITY?

2015-11-21 07:12:20YiQI漆毅FeiSONG宋飛

Yi QI(漆毅)Fei SONG(宋飛)

School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

A NEW PROOF OF THE DELTA INEQUALITY?

Yi QI(漆毅)Fei SONG(宋飛)

School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

E-mail:yiqi@buaa.edu.cn;songfei19860810@163.com

The purpose of this paper is to give a relatively elementary and direct proof of the Delta Inequality,which plays a very important role in the study of the extremal problem of quasiconformal mappings.

Delta Inequality;Teichm¨uller space;quasiconformal mappings

2010 MR Subject Classification 30F60;32G15

1 Introduction

Let X be a Riemann surface whose universal covering surface is conformally equivalent to the unit disc D={z:|z|<1}on the complex plane C.By Bel(X)we denote the Banach space of Beltrami differentialsμ=μ(z)dz/dz on X with L∞-norms.

Let M(X)be the open unit ball in Bel(X).For everyμ∈M(X),there is a quasiconformal mapping fμof X onto fμ(X),such that its Beltrami coefficient isμ.

Two elementsμand ν in M(X)are said to be Teichm¨uller equivalent,denoted byμ~ν,if there is a conformal mapping ? of fμ(X)onto fν(X)such that(fν)-1???fμis homotopic to the identity of X(Mod?X).

The Teichm¨uller space T(X)is defined as the quotient space M(X)/~,or equivalently,T(X)is the space of Teichm¨uller equivalence classes[μ]ofμ∈M(X).

As usual,Q(X)stands for the Banach space of integrable holomorphic quadratic differentials φ=φ(z)dz2on X with L1-norms

In the study of the extremal problem of quasiconformal mappings,the delta inequality plays a very important role([5],[1]and[6],or see[3]also).

Theorem A (Delta inequality)[3]Ifμand ν∈M(X)are in the same Teichm¨uller equivalent class with‖ν‖∞≤‖μ‖∞,then

for all φ∈Q(X)with‖φ‖=1,where M is a constant depends only on‖μ‖∞andμ1and ν1are the Beltrami coefficients of(fμ)-1and(fν)-1,respectively.

The above form of delta inequality was first appeared in[1],which was used to solve the famous uniqueness problem of quasiconformal mappings.Recently,a generalized delta inequality is given in[4]as an application of the generalized main inequality of Reich-Strebel,which implies the delta inequality(1.1)in case of‖μ‖∞=‖ν‖∞.

The goal of this paper is to give a new and simple proof of the delta inequality(1.1)in general case directly from the main inequality of Reich-Strebel[7-9],which is inspired by[4].

Theorem B(the main inequality)[3]Suppose bothμand ν are two elements of M(X)andμ~ν.Then for any φ∈Q(X)with‖φ‖=1,we have

where ν1is the Beltrami coefficient of(fν)-1and

For the main inequality of Reich-Strebel we also refer[2]and[3].

The paper is organized as follows.We give a lemma in§2 first and then we prove the Delta inequality in§3.

2 A Lemma

To prove Theorem A,we need the following lemma.

Lemma 2.1 has been appeared in[4]with constant 16 as the numerator in the right.For the sake of completeness and emphasizing the simplicity of our proof of the delta inequality,we give another proof of Lemma 2.1 here,which is more simple than the proof in[4].

Proof A simple computation shows

which implies(2.1)directly.

3 Proof of the Delta Inequality

Since

it is clear that the delta inequality(1.1)is equivalent to the following inequality

Since‖ν‖∞≤‖μ‖∞,we have

So,in oder to get the delta inequality(1.1),we only need to prove

where C is a constant depending only on‖μ‖∞.

生:第一幅圖旋轉(zhuǎn)后得到圖形是一個底面半徑為6cm、高為12cm的圓柱挖去了一個底面半徑6cm、高4cm的圓錐。

Proof Sinceμ~ν,by Theorem B,the main inequality(1.2)holds.

A simple computation shows

where Kμ=(1+‖μ‖∞)/(1-‖μ‖∞).

Similarly,

where Kν=(1+‖ν‖∞)/(1-‖ν‖∞).

Then it follows from(1.2),(3.4)and(3.5)that

where

and

Noting the fact that both Lμand Λνare non-negative,it follows from(3.6)that

Putting(3.7)and(3.8)into(3.9),we have

and consequently,

Thus,

As‖ν‖∞≤‖μ‖∞,so it is easy to check that the algebraic sum of the first 3 tems in the right hand of(3.11)is nonpositive.Thus,by(3.11),we get

Since

so we have Z

By the definition of ?μ,it is clear that

So

By Lemma 2.1,we have

As‖ν‖∞≤‖μ‖∞,

Therefore,(3.3)can be deduced from(3.13)-(3.16)and(3.12).This completes the proof of the delta inequality.

[1]Boˇzin V,Lakic N,Markovi′c V,et al.Unique extremality.Journal d'Analyse Math′ematique,1998,75(1): 299-338

[2]Gardiner F P.Teichm¨uller Theory and Quadratic Differentials.New York:John Wiley&Sons,1987

[3]Gardiner F P,Lakic N.Quasiconformal Teichm¨uller Theory.Amer Math Soc,2000

[4]Li Z,Qi Y.Fundamental inequalities of Reich-Strebel and triangles in a Teichm¨uller space.Contem Math,2012,575:283-297

[5]Reich E.On criteria for unique extremality of Teichm¨uller mappings.Ann Acad Sci Fenn Series A I Math,1981,(6):289-301

[6]Reich E.The unique extremality counterexample.Journal d'Analyse Math′ematique,1998,75(1):339-347

[7]Reich E,Strebel K.On quasiconformal mappings which keep the boundary points fixed.Trans Amer Math Soc,1969:211-222

[8]Reich E,Strebel K.Extremal plane quasiconformal mappings with given boundary values.Bull Amer Math Soc,1973,79(2):488-490

[9]Strebel K.On quasiconformal mappings of open Riemann surfaces.Commentarii Mathematici Helvetici,1978,53(1):301-321

?Received November 18,2013.The research is partially supported by the National Natural Science Foundation of China(10971008 and 11371045).

主站蜘蛛池模板: 欧美.成人.综合在线| 久久精品国产999大香线焦| 欧美a在线视频| 999精品在线视频| 亚洲伊人天堂| 日韩性网站| 国内精品久久久久久久久久影视 | 福利一区在线| 久久久久人妻精品一区三寸蜜桃| 91网红精品在线观看| 免费毛片a| 四虎成人免费毛片| 国产成人91精品免费网址在线| 九色国产在线| 国内精品九九久久久精品| 久一在线视频| av尤物免费在线观看| 天天爽免费视频| 亚洲丝袜中文字幕| 欧美五月婷婷| 园内精品自拍视频在线播放| 国产粉嫩粉嫩的18在线播放91 | 日韩免费毛片| 91久久夜色精品国产网站| 色呦呦手机在线精品| 亚洲高清中文字幕| 国内精自视频品线一二区| 欧美人人干| 久久久久久高潮白浆| 精品撒尿视频一区二区三区| 国产香蕉97碰碰视频VA碰碰看| 国产视频a| 秘书高跟黑色丝袜国产91在线| 国产91精选在线观看| 国产日本欧美亚洲精品视| 青草午夜精品视频在线观看| 91免费国产在线观看尤物| 欧美成人影院亚洲综合图| 中文字幕在线不卡视频| 青青青国产视频手机| 欧美特级AAAAAA视频免费观看| 亚洲精品成人福利在线电影| 一级爆乳无码av| 日韩二区三区无| 国产无遮挡裸体免费视频| 精品国产乱码久久久久久一区二区| jizz国产在线| 在线va视频| 国产精品自在自线免费观看| 免费jizz在线播放| 国产真实乱子伦视频播放| 欧美第一页在线| 国产精品永久不卡免费视频| 91综合色区亚洲熟妇p| 老司国产精品视频91| 欧美一级大片在线观看| 国产成人午夜福利免费无码r| 女人18毛片水真多国产| 国产av色站网站| 成人伊人色一区二区三区| 精品国产91爱| 国产一级毛片在线| 思思热在线视频精品| 亚洲国产黄色| 久久久无码人妻精品无码| 九九这里只有精品视频| 国产美女一级毛片| 久久这里只有精品23| 久久精品欧美一区二区| 国产精品亚洲一区二区在线观看| 国产毛片高清一级国语| 最新日本中文字幕| 国产成人无码综合亚洲日韩不卡| 国产女人在线观看| 精品夜恋影院亚洲欧洲| 国产婬乱a一级毛片多女| 国产最新无码专区在线| 欧美一区精品| 狠狠色丁香婷婷| 国产手机在线ΑⅤ片无码观看| 任我操在线视频| 99久久婷婷国产综合精|