999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

非線性φ-Laplace系統的半正問題

2015-12-29 06:13:48白定勇盛其杰
廣州大學學報(自然科學版) 2015年1期
關鍵詞:數學系統

白定勇,盛其杰

(廣州大學數學與信息科學學院,廣東廣州 510006)

0 Introduction

Throughout this paper,we assume that φ,φ1,φ2are all odd and increasing homeomorphisms from R onto R.Consider the positive solutions of the following nonlinear φ-Laplacian system

where λi(i=1,2)is positive parameter.

The function φ(u')satisfies two important cases φ(u')=u'and φ(u')=|u'|p-2u'(p>1).For the case φ(u')=|u'|p-2u'(p>1),φ-Laplacian problem reduces to one-dimensionalp-Laplacian problem.Therefore,system(1)is also known as generalizedp-Laplacian problem.Recently,the positive solutions of φ-Laplacian problems have attracted widespread attention.In Ref.[1],WANG studied then-dimensional system

where u=(u1,…,un),Φ(u')=(φ(u'1),…,φ(u'n)),h(t)=diag[h1(t),…,hn(t)],and f(u)=(f1(u1,…,un),…,fn(u1,…,un)).With the help of fixed point theorems in a cone,results on the nonexistence and on the existence of one or two positive solutions for λ belonging to some open intervals are established.Then HENDERSON et al[2]also proved the existence of at least one positive solution of System(2)when Φ(u)=(q(t)φ(p(t)u1),…,q(t)φ(p(t)un)).Furthermore,the first author of this paper and CHEN[3]considered(2)withn=1 by using Leggett-Williams fixed point theorem and obtained the explicit open interval of parameter λ such that System(2)has at least three positive solutions.For more results on positive solutions of φ-Laplacian boundary value problems,see,for example,Ref.[4 -8]and the references therein.The above mentioned papers all need the positivity of the nonlinear terms.For the semipositone case,the existence of positive solutions of φ-Laplacian problems was studied only by HAI et al.[9],in which the following single form was considered:

By a fixed point theorem in cones,the existence of at least one positive solution of System(3)was proved for λ > 0 sufficiently small underfsatisfying φ-superlnear condition(i.e.,

Motivated by the above works,we consider the semipositone problem of System(1)by fixed point method.Our main interest is the explicit open regions of(λ1,λ2)such that the System(1)has at least one positive solution.

Semipositone problems arise in many different areas of applied mathematics and physics,see e.g.Ref.[10-12],and were formally introduced by CASTRO et al in Ref.[13].The method of studying semipositive problems,in addition to fixed point method,more is the bifurcation theory,shooting method and time mapping analysis method.The research about this aspect[13-17]and the references therein.For the case of φi(u)=u(i=1,2),the first author of this paper considered the existence of positive solutions of System(1)[18],moreover,with XU[19]considered the system with delays by fixed point method.Therefore,this paper is a continuation of the researches in Ref.[18-19]and generalizes the corresponding results for a single form in Ref.[9].Our result is new even forp-Laplacian boundary value problems.

Now we state our main result.Assume that

(A1)φi-1(i=1,2)is concave on R+;

(A2)For eachc>0,there exists,such that φi-1(cu)≥),u∈R+andi=1,2;

(A3)fi:[0,1]×R+×R+→R is continuous,and there existsMi>0 such thatfi(t,u,v)≥-Mi,(t,u,v)∈[0,1]× R+× R+,i=1,2;

(A4)There existr1>0,r2>0 such that

(i)f1(t,u,v)≥0,(t,u,v)∈[0,1]×[0,r1]×R+;

(ii)f(t,u,v)≥0,(t,u,v)∈[0,1]× R+×

2[0,r2];

(A5a)=∞,uniformly fort∈[0,1]and the first limit being uniform forv≥0 and the second foru≥0;

(A5b)=∞,uniformly fort∈[0,1]and the first limit being uniform foru≥0 and the second forv≥0.

Theorem 1 Let(A1)~(A4)and either(A5a)or(A5b)hold.Then for each 0<r<min{r1,r2}System(1)has at least one positive solution for

whereχi(r)=sup0≤t≤1,0≤x,y≤rfi(t,x,y)+Mi(i=1,2).

In the discussion of semipositone systems by fixed point method,condition(A4)is used to guarantee the positive solution of auxiliary system is greater than the one of linear problem concerned.This condition was initiated by BAI[18]and BAI,et al[19].It was used also in Ref.[20]to discuss the positive solutions of a semipositone system.In these three pa-pers,r1andr2are taken specifically asr1=r2=1.

We say that(u(t),v(t))is a positive solution of System(1)if(u,v)∈C1[0,1]×C1[0,1],(φ(u'),φ(v'))∈C1[0,1]×C1[0,1]withu(t)>0,v(t)> 0 fort∈[0,1]and(u,v)satisfies(1).

The remaining part of this paper is organized as follows.In Section 1,we provide some preliminary results and cite the fixed point theorem used in the proof Theorem 1.Then,in Section 2,we show the proof of Theorem 1.Finally,we give an example to illustrate our main result.

1 Some preliminaries and lemmas

We introduce some preliminary results for the later use.

Lemma 1 Leth∈C[a,b]andh(t)>0,t∈[a,b].Assumeu,vsatisfy

Thenu(t)>v(t),t∈(a,b).

Proof By way of contradiction,we assume that there existst0∈(a,b),such that(u-v)(t0)=(u-v)(t)≤0.By integrating fromttot0,we have φ(u'(t))-φ(v'(t))>0,t∈(a,t0),which implies(u-v)'(t)>0,t∈(a,t0)by the monotony of φ and hence(u-v)(t0)>0 by the boundary condition(u-v)(a)=0,which is a contradiction.

Lemma 2[9]Fori=1,2,letwsolves the

ifollowing problem

Thenwi(t)>0,and|w'i(t)|≤φ-1i(λiMi),t∈(0,1).

Lemma 3[9](i)Foru≥-κ,v≥0,κ≥0,

The following fixed point theorem is crucial in our proof.

Lemma 4[21]Let(E,‖·‖)be aBanachspace and letKbe a cone inEsuch that‖·‖ is monotone with respect to the coneK.LetT:K→Kbe a completely continuous operator.Assume there exist positive constantsr,Randk∈K,h∈Kwith 0 <r<R,‖k‖ <r,‖h‖ >R,such that

(i)For each θ∈(0,1),all solutionsu∈Kofu=θTu+(1-θ)ksatisfy ‖u‖≠r,

(ii)For each θ∈(0,1),all solutionsu∈Kofu=Tu+θhsatisfy‖u‖≠R.

ThenThas at least one fixed pointu∈Kwithr≤‖u‖ ≤R.

Lemma 5 (u,v)is a positive solution of system(1)if and only if(x,y)=(u+w1,v+w2)is a positive solution of the following system

andx(t) >w1(t),y(t) >w2(t),t∈(0,1).Here,

Obviously,problem(4)is equivalent to

whereCxandCyis such thatx(1)=0 andy(1)=0,respectively.It can be verified that

Now,letX=C[0,1] with norm ‖x‖ =|x(t)|.LetE=X×X,then(E,‖(·,·)‖)is aBanachspace with norm ‖(x,y)‖ =max{‖x‖,‖y‖},(x,y)∈E.LetP={x∈X:x(t)≥0,t∈[0,1]},a cone inX,thenK=P×Pis a cone inE.For(u,v),(x,y)∈K,(u,v)≤(x,y)meansu≤xandv≤y.Then the norm‖(·,·)‖ onEis monotone with respect toK.It can be verified thatT:K→Eis completely continuous andT(K)?K.

2 Proof of Theorem 1

Here,we only consider the case that(A1)~(A4)and(A5a)hold.The case that(A1)~(A4)and(A5b)hold can be dealt with in a same manner.Define

We divide the proof into two steps.

Step I We shall apply Lemma 4 to show thatThas a fixed point(x,y)∈K,i.e.,the System(4)has a positive solution.

First,we show that for each θ∈(0,1)all solutions(x,y)∈Kof(x,y)= θT(x,y)satisfy ‖(x,y)‖≠r.Indeed,if there exists θ0∈(0,1)such that a solution(x,y)of(x,y)= θ0T(x,y)satisfies‖(x,y)‖ =r,then we have by(5)and Lemma 3(i)that fort∈[0,1],

Similarly,y(t),t∈[0,1].Thus,we haver=‖(x,y)‖,a contradiction.

Next,we verify that there exist constantsR>randh1,h2>R,such that all solutions(x,y)∈Kof(x,y)=T(x,y)+ θ(h1,h2)(θ∈(0,1))satisfy‖(x,y)‖≠R.Such(x,y)satisfies

Without loss of generality,we suppose‖(x,y)‖ =‖x‖ =x(t0)>r.In the following we distinguish two cases(i)and(ii)to show it.Case(i).Letsolve

Then

By Lemma 1,x(t)>(t),t∈(0,t0).Note that

whereCis such that(0)=θh1.Hence

We claim that

It follows by Lemma 3(i)that

which implies

Thus,by System(9),we have‖x‖>θh1+‖x‖,a contradiction.Now,takeBy Lemma 3(i),(7)and(10),fort∈[t1,t0],we have

which yields that

By the first equality of System(8),we have

which implies τ.Then,fort∈[0,t0],

Therefore,

By(A5a),for‖x‖ large enough,we have

Thus,by assumption(A2),

then

whereCis such that(1)=θh1.Thus

We claim that 0≤C≤φ1).In fact,if>,then

By Lemma 2,we have

It follows

Therefore,‖x‖>θh1+‖x‖,contradiction.Now,taket2Then fort∈[t0,t2],we have

Note that

Similar to the discussion in Case(i),we know that there existsR2>r,independent of θ andh=(h1,h2),such that‖x‖ <R2.

In summary,in each case,there existsR>r,independent of θ andh=(h1,h2),such that all solutions(x,y)∈Kof(x,y)=T(x,y)+ θ(h1,h2)(0<θ <1)satisfy‖(x,y)‖ <R.Therefore,by Lemma 4,Thas a fixed point(x,y)∈K,which implies that System(4)has at least one positive solution(x,y)withr≤‖(x,y)‖≤R.

Step II We shall show thatx(t)>w1,y(t)>w2,t∈(0,1).

Letr≤‖(x,y)‖ =‖x‖ =x(t0)≤R,where 0 <t0<1.First,we show thatx(t)>w1,t∈(0,1).From the first equality of System(4)we obtain that for 0<t<t0,

Then,by Lemma 3(i),we have

which implies

Therefore,by Lemma 3(ii),we have

Note that the functionQw1,y-w2)dτ )dsis concave on [0,t0].Therefore

Similarlay,one can checkx(t)>w1(t)ont∈(t0,1).

Next,we distinguish two cases:(1)‖y‖≥rand(2)‖y‖ <rto provey(t)>w2(t),t∈(0,1).

Case(1)If‖y‖≥r,it can be checked by similar arguments as before.

Case(2)If‖y‖<r,let‖y‖ =y(t0),0<t0< 1 .Since(x,y)is a solution of(4),we have

By the definition off2and assumption(A4)(ii),we have

Thus

which implies thaty(t)-w2(t)is concave on[0,1].Therefore,y(t)≥w2(t),t∈[0,1].

Ifr≤‖(x,y)‖ = ‖y‖≤R,one can check similarly thatx(t)>w1(t),y(t)>w2(t),t∈(0,1).Therefore,by Lemma 5,(u,v)=(x-w1,y-w2)is a positive solution of the System(1).This completes the proof.

3 Examples

Letai>0,bi>0 andai<bi(i=1,2).Consider the following boundary value problem

Here, φ1(x)=,f1(u,v)=(u-

a1)(u-b1)+v2andf2(u,v)=(v-a2)(v-b2)+u2.It is easy to check that(A1)~(A4)and(A5a)hold.For eachc>0,we have.Obviously,Mi=For any given 0<r<min{a1,a2},χi(r)=aibi+r2(i=1,2).Therefore,Theorem 1 implies that System(11)has at least one positive solution for(λ1,λ2)

[1] WANG H.On the number of positive solutions of nonlinear systems[J].J Math Anal Appl,2003,281:287-306.

[2] HENDERSO J,WANG H.Nonlinear eigenvalue problems for quasilinear systems[J].Comput Math Appl,2005,49:1941-1949.

[3] BAI D,CHEN Y.Three positive solutions for a generalized Laplacian boundary value problem with a parameter[J].Appl Math Comput,2013,219:4782-4788.

[4] HENDERSON J,WANG H.An eigenvalue problem for quasilinear systems[J].Rocky Mount J Math,2007,37(1):215-228.

[5] BAI D,XU Y.Positive solutions and eigenvalue regions of two-delay singular systems with a twin parameter[J].Nonlin A-nal,2007,66:2547-2564.

[6] ARRáZOLA E,UBILLA P.Positive solutions for the 1-dimensional generalizedp-Laplacian involving a real parameter[J].Proyecciones,1998,17:189-200.

[7] LEE E K,LEE Y H.A multiplicity result for generalized Laplacian systems with multiparameters[J].Nonlin Anal,2009,71:e366-e376.

[8] LIAN W C,WONG F H.Existence of positive solutions for higher-order generalizedp-Laplacian BVPs[J].Appl Math Lett,2000,13:35-43.

[9] HAI D D,SCHMITT K,SHIVAJI R.Positive solutions of quasilinear boundary value problems[J].J Math Anal Appl,1998,217:672-686.

[10] GIRO P,TEHRANI H.Positive solutions to logistic type equations with harvesting[J].J Differ Equ,2009,247(2):574-595.

[11] ORUGANTI S,SHI J,SHIVAJI R.Diffusive logistic equation with constant effort harvesting,I:Steady states[J].Trans Amer Math Soc,2002,354(9):3601-3619.

[12] ORUGANTI S,SHI J,SHIVAJI R.Logistic equation with thep-Laplacian and constant yield harvesting[J].Abstr Appl A-nal,2004,2004(9):723-727.

[13] CASTRO A,SHIVAJI R.Nonnegative solutions for a class of nonpositone problems[J].Proc Roy Soc Edinburgh,1988,108(3/4):291-302.

[14] GADAM S,IAIA J A.Exact multiplicity of positive solutions in semipositone problems with concave-convex type nonlinearities[J].Elect J Qual Theory Differ Equ,2001,4:1-9.

[15] LI H,SUN J.Positive solutions of superlinear semipositone nonlinear boundary value problems[J].Comput Math Appl,2011,61:2806-2815.

[16] DRAME A K,COSTA D G.On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions[J].Appl Math Lett,2012,25:2411-2416.

[17] HUNG K C.Exact multiplicity of positive solutions of a semipositone problem with concave-convex nonlinearity[J].J Differ Equ,2013,255:3811-3831.

[18] BAI D.Existence of positive solutions of nonlinear second-order differential systems[J].Acta Math Sci,2003,23(1):38-44.

[19] BAI D,XU Y.Positive solutions of second-order two-delay differential systems with twin-parameter[J].Nonlin Anal,2005,63:601-617.

[20] SU H,LIU L,WU Y.Positive solutions for a nonlinear second-order semipositone boundary value system[J].Nonlin Anal,2009,71:3240-3248.

[21] GUSTAFSON G B,SCHMITT K.Nonzero solutions of boundary value problems for second order ordinary and delay differential equations[J].J Differ Equ,1972,12:129-147.

猜你喜歡
數學系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統
我們愛數學
半沸制皂系統(下)
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
數學也瘋狂
主站蜘蛛池模板: 国产欧美在线视频免费| 内射人妻无码色AV天堂| 国产精品久久自在自2021| 91成人在线免费观看| 国产成人亚洲无码淙合青草| 国产主播在线一区| 97国产精品视频人人做人人爱| 无码网站免费观看| 777午夜精品电影免费看| 亚洲欧洲一区二区三区| 欧美日韩国产精品va| 久久先锋资源| 九九线精品视频在线观看| 欧美性天天| 亚洲日本www| 成年免费在线观看| 欧亚日韩Av| 欧美国产菊爆免费观看| 片在线无码观看| 无码高清专区| 国产福利一区视频| 欧美福利在线| 国产精品亚洲精品爽爽| 黄色网页在线播放| 国产一区二区福利| 国产xxxxx免费视频| 噜噜噜久久| 亚洲高清在线播放| 91原创视频在线| 亚洲天堂网2014| 99久久婷婷国产综合精| 亚洲欧洲日本在线| 丁香婷婷在线视频| 激情成人综合网| 久久精品免费看一| 青草免费在线观看| 在线网站18禁| 在线国产欧美| a免费毛片在线播放| 国产福利一区在线| 亚洲欧美日韩中文字幕在线| AV老司机AV天堂| 99这里只有精品6| 日韩福利在线视频| 亚洲成人手机在线| 久久黄色视频影| 国产第四页| www.av男人.com| 亚洲第一成年网| 久久亚洲日本不卡一区二区| 精品无码日韩国产不卡av| 国产精品香蕉在线| 亚洲天堂视频在线观看免费| 国产亚洲精品资源在线26u| 亚洲综合精品第一页| 亚国产欧美在线人成| 精品1区2区3区| 最新加勒比隔壁人妻| 国产福利影院在线观看| 精品黑人一区二区三区| 日本五区在线不卡精品| 国产精品福利导航| 99re热精品视频中文字幕不卡| 99在线视频免费| 91亚洲影院| 91人妻在线视频| 全部免费毛片免费播放| 欧美日韩国产成人在线观看| 精品久久人人爽人人玩人人妻| 视频一区亚洲| 97人人做人人爽香蕉精品| 色综合久久无码网| 欧美日韩国产一级| 国产激爽爽爽大片在线观看| a免费毛片在线播放| 亚洲午夜久久久精品电影院| 在线免费亚洲无码视频| 亚洲综合色区在线播放2019| 91久久精品日日躁夜夜躁欧美| 香蕉久久国产超碰青草| 欧美在线精品怡红院| 精品一区二区三区视频免费观看|