費強 封益飛 孫躍明
?
?綜述?
間質(zhì)化與結(jié)直腸癌相關性的研究進展
費強 封益飛 孫躍明
【摘要】上皮間質(zhì)化(epithelial-mesenchymal transition,EMT),指上皮細胞在某些特定因素下獲得間質(zhì)細胞表型的過程。在惡性腫瘤的發(fā)生和進展過程中EMT發(fā)揮重要作用。結(jié)直腸癌細胞的侵襲運動和腫瘤遠處轉(zhuǎn)移與EMT密切相關,EMT可能成為未來抑制結(jié)直腸癌轉(zhuǎn)移的一個新的靶點,為腫瘤治療開辟一個新方向。
【關鍵詞】結(jié)直腸腫瘤; 研究; 進展
上皮間質(zhì)化(epithelial mesenchymal transition,EMT)指上皮細胞在某些特定因素下獲得間質(zhì)細胞表型的過程,在惡性腫瘤的發(fā)生和進展過程中EMT發(fā)揮重要作用。結(jié)直腸癌是常見的消化系統(tǒng)惡性腫瘤,起源于大腸粘膜上皮。結(jié)直腸癌細胞的侵襲運動和腫瘤遠處轉(zhuǎn)移與EMT密切相關。現(xiàn)就EMT和結(jié)直腸癌相關性的研究進展予以闡述。
EMT是指上皮細胞在一定條件下獲得間質(zhì)細胞表型的過程,主要表現(xiàn)為細胞上皮特性減少,間質(zhì)特性增加,細胞骨架重塑和細胞基質(zhì)粘附消失。Greenburg觀察到晶狀體上皮細胞在三維凝膠中形成偽足并向間質(zhì)樣細胞形態(tài)轉(zhuǎn)變,首次提出EMT的概念[1]。脊椎動物胚胎研究中發(fā)現(xiàn),心臟瓣膜形成過程中EMT發(fā)揮重要作用[2]。EMT也發(fā)生在組織損傷的修復過程中通過產(chǎn)生成纖維細胞來修復創(chuàng)傷或者炎癥造成的傷害。EMT參與腫瘤的發(fā)生、發(fā)展,上皮細胞來源的腫瘤細胞EMT后,獲得運動和侵襲的能力,并且具有干細胞的很多特性[3]。值得一提的是惡性腫瘤轉(zhuǎn)移過程中腫瘤芽殖概念的提出,腫瘤芽殖是指位于浸潤前緣的孤立單個癌細胞或少于5個癌細胞的癌細胞簇,形成腫瘤芽殖是腫瘤浸潤轉(zhuǎn)移過程的第一步,這類細胞具有極強的侵襲能力,與EMT有關,且具有腫瘤干細胞特性[4]。
EMT特征包括細胞形態(tài)改變和分子標志物改變:細胞形態(tài)由鵝卵石樣改變?yōu)榧忓N體樣,細胞極性消失,骨架改變;上皮化分子標志物E-鈣黏蛋白等表達水平下降,間質(zhì)化分子標志物波形蛋白等表達水平上升。
結(jié)直腸癌作為世界范圍內(nèi)最常見的惡性腫瘤之一,在癌癥相關死亡人數(shù)統(tǒng)計排名中占第四位,并且其發(fā)病率有逐年升高的趨勢[5]。肝臟作為結(jié)直腸癌最先和最易侵及的器官,大約25%的患者在初診時即發(fā)現(xiàn)結(jié)直腸癌肝轉(zhuǎn)移[6]。發(fā)達國家結(jié)直腸癌的5年生存率接近65%。美國的一項調(diào)查研究顯示,結(jié)直腸癌出現(xiàn)遠處轉(zhuǎn)移,患者生存率驟降為11.7%[7]。
(一)E-鈣黏蛋白(E-cadherin)和波形蛋白(Vimentin)
E-鈣黏蛋白是一種鈣依賴性跨膜糖蛋白,在大多數(shù)上皮組織中均存在表達。E-鈣黏蛋白在胞外通過免疫球蛋白結(jié)構域相互連接,在胞內(nèi)通過α、β連接蛋白與肌動蛋白骨架相連接,使細胞與細胞之間形成緊密連接[8]。E-鈣黏蛋白同時也是維持上皮細胞特性的重要分子,丟失E-鈣黏蛋白的細胞呈現(xiàn)間質(zhì)細胞的特性。EMT過程中E-鈣黏蛋白表達水平下降,導致細胞粘附能力降低,易于移行,從而促進腫瘤轉(zhuǎn)移[9]。E-鈣黏蛋白表達降低是腫瘤細胞發(fā)生EMT最重要的特征性表現(xiàn)之一。結(jié)直腸癌組織中E-鈣黏蛋白表達降低意味著可能存在淋巴轉(zhuǎn)移、腫瘤分化程度較差和患者預后不佳[10-11]。
波形蛋白也是細胞骨架蛋白之一,特異性分布于間質(zhì)細胞中,上皮細胞基本不表達,波形蛋白表達增加使上皮源性細胞具有成纖維細胞特征[12]。波形蛋白在腫瘤中表達上調(diào)不僅與腫瘤分級有關,而且可以促進腫瘤的轉(zhuǎn)移[13]。
(二)轉(zhuǎn)錄因子
最初的研究表明,EMT過程主要由三類轉(zhuǎn)錄因子進行調(diào)控,第一類轉(zhuǎn)錄因子為Snail鋅指蛋白,包括Snail1 和Snail2(SLUG),第二類轉(zhuǎn)錄因子為鋅指E盒結(jié)合蛋白,包括ZEB1和ZEB2(SIP1),最后一類為bHLH (basic Helix-loop-helix,堿性螺旋-環(huán)-螺旋)轉(zhuǎn)錄因子,包括TWIST1、TWIST2和E12/E47。最新研究結(jié)果顯示更多的轉(zhuǎn)錄因子參與EMT和結(jié)直腸癌進展,包括:轉(zhuǎn)錄因子Brachyury、AP4、FOXC2、E2-2、SOX2、OCT4、胚胎干細胞關鍵蛋白Nanog、PROX1、同源盒蛋白SIX1、PRRX1、HMGA1、Fra-1和ZNF281/ZBP99等[14]。
(三)信號通路
TGF-β/Smad信號通路是誘發(fā)惡性腫瘤細胞發(fā)生EMT的重要信號通路之一,TGF-β引起細胞膜表面TβRⅠ和TβRⅡ二聚體化,進而導致Smad蛋白磷酸化[15-16]。磷酸化的Smad2和Smad3與Smad4結(jié)合形成異源三聚體進入細胞核[17],作為轉(zhuǎn)錄調(diào)控因子參與腫瘤細胞EMT調(diào)節(jié)。
WNT/β-catenin信號通路也是結(jié)直腸癌進展和EMT調(diào)節(jié)的重要因素[18]。WNT信號通路抑制糖原合成激酶3β(GSK3β)介導的磷酸化作用以及抑制胞質(zhì)中的β-連環(huán)蛋白(β-catenin)降解,β-catenin進入細胞核內(nèi)與轉(zhuǎn)錄因子(lymphoid enhancer factor/T cell factor)共同作用,激活EMT相關靶基因,降低E鈣黏蛋白的表達[19-20]。Dickkopf-1(DKK1),一種WNT信號通路的抑制劑,可以通過抑制EMT來抑制結(jié)直腸癌進展[21]。
RAS/ERK1/2在結(jié)直腸癌EMT 過程中發(fā)揮作用。SLUG受到RAS信號通路的調(diào)控,對于伴RAS突變的結(jié)直腸癌,SLUG可以作為治療靶點[22]。RKIP(RAF-1激酶抑制蛋白)的下調(diào)與E-鈣黏蛋白的下降有關。
PI3K/AKT信號通路參與EMT過程。體外和體內(nèi)試驗均證實了PI3K/AKT信號通路通過轉(zhuǎn)錄因子SNAIL1和SLUG調(diào)節(jié)EMT[23],WNT信號通路和PI3K/AKT信號通路之間的交互作可以影響β-catenin和Snail和穩(wěn)定和聚集[24]。
miRNA是在真核生物中發(fā)現(xiàn)的一類內(nèi)源性的具有調(diào)控功能的非編碼RNA,對細胞EMT同樣具有調(diào)控作用。研究表明miRNA-145可以調(diào)節(jié)TGF-β通路,抑制EMT過程,進而抑制腫瘤的侵襲和轉(zhuǎn)移[25]。miRNA200家族可以通過作用于E鈣黏蛋白ZEB1和ZEB2,促發(fā)EMT過程[26]。結(jié)直腸癌中,miRNA-34a表達水平下降與c-met、SNAI1 和β-catenin上調(diào)有關[27]。
腫瘤微環(huán)境是指腫瘤產(chǎn)生和生存的環(huán)境,由多種細胞(包括炎癥和免疫細胞、腫瘤相關成纖維細胞)、胞外基質(zhì)和信號分子以及酸性、低氧等理化環(huán)境組成。研究表明,腫瘤微環(huán)境可以誘導腫瘤細胞發(fā)生EMT。
腫瘤相關成纖維細胞(cancer-associated fibroblasts,CAFs)是指從患者的腫瘤組織中分離得到的活化的成纖維細胞。共培養(yǎng)實驗結(jié)果顯示CAFs可以促進結(jié)直腸癌細胞的遷移[28]。CAFs在腫瘤微環(huán)境中可能通過IL-6/STAT3/Snail通路誘導上皮細胞的EMT轉(zhuǎn)化[29]。
細胞外基質(zhì)(extracellular matrixc,ECM)是分布在細胞表面或細胞之間的大分子,主要是多糖和蛋白,構成復雜的網(wǎng)架結(jié)構。發(fā)生了EMT的細胞能夠分泌基質(zhì)金屬蛋白酶(MMP),造成ECM物理和化學結(jié)構的改變,ECM的變化反過來可以誘導和加強EMT[30-31],增加腫瘤細胞浸潤能力。
炎性因子在腫瘤微環(huán)境中具有重要作用。TNF-α是巨噬細胞分泌的一種炎性因子,TNF-α可以通過激活Akt或者抑制Snail與糖原合成酶3β的結(jié)合來上調(diào)Snail的表達,從而誘導EMT[32]。IL-8與EMT有關并且可以與Snail共同激活結(jié)腸癌干細胞[33]。
研究表明,包括干細胞生長因子(HGF)、表皮生長因子(EGF)和成纖維細胞生長因子在內(nèi)的胞外信號分子,通過自分泌或旁分泌的方式,激活和維持EMT[34]。在這個過程中主要是PI3K/Akt/mTOR和Ras通路發(fā)揮信號傳遞作用。
缺氧誘導因子HIF-1在缺氧條件下穩(wěn)定表達。HIF-1α可以引起EMT和腫瘤干細胞的自我更新,并且促進腫瘤轉(zhuǎn)移,下調(diào)HIF-1α可以抑制甚至逆轉(zhuǎn)EMT過程[35-36]。缺氧誘導結(jié)直腸癌細胞發(fā)生EMT,通過上調(diào)整聯(lián)蛋白α2和α5、膠原蛋白及纖維連接蛋白的表達,癌細胞進入周圍組織的脈管系統(tǒng)[37]。
研究表明,對奧沙利鉑、吉西他濱、紫杉醇等化療藥物耐藥的惡性腫瘤細胞可以發(fā)生EMT[38-39],分子機制的進一步研究證實Snail可以提高結(jié)直腸癌癌細胞對5-FU的耐藥性[40],骨化三醇可以提高結(jié)直腸癌對放療的敏感性,但SLUG卻可以減弱這個作用[41]。EMT導致的腫瘤耐藥性可能與腫瘤干細胞有關。腫瘤干細胞同樣具有耐藥性和抗放療性,而發(fā)生EMT的腫瘤細胞具有自我更新和分化的干細胞特性[42]。EMT與結(jié)直腸癌細胞耐藥性之間的關系需要進一步研究。
EMT在結(jié)直腸癌進展過程發(fā)揮重要作用,抑制或逆轉(zhuǎn)EMT過程可以考慮作為結(jié)直腸癌治療的一種方法。蛋白結(jié)合多糖(PSK)可以調(diào)節(jié)TGF-β1和TGFβ2的生物活性[43],抑制EMT過程。隨機臨床實驗表明PSK在結(jié)直腸癌的輔助治療中發(fā)揮有效做用[44]。ShRNA沉默Snail蛋白可以逆轉(zhuǎn)EMT過程,抑制腫瘤生長[45]。
綜上,結(jié)直腸癌的發(fā)生、進展和轉(zhuǎn)移過程中,EMT是關鍵因素之一。隨著分子生物學的研究發(fā)展,對EMT的機制將有更深入的了解。EMT可能成為未來抑制結(jié)直腸癌轉(zhuǎn)移的一個新的靶點,為腫瘤治療開辟一個新方向。
參 考 文 獻
[ 1 ] Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol, 1982, 95(1): 333-339.
[ 2 ] Mjaatvedt C H, Markwald RR. Induction of an epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol, 1989,136(1): 118-128.
[ 3 ] Li L, Li W. Epithelial-mesenchymal transition in human cancer:comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther, 2015, 150: 33-46.
[ 4 ] Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
[ 5 ] Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010, 127(12):2893-2917.
[ 6 ] Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol, 2009, 20(11): 1842-1847.
[ 7 ] Brenner H, Kloor M, Pox C P. Colorectal cancer. Lancet, 2014,383(9927): 1490-1502.
[ 8 ] Tepass U, Truong K, Godt D, et al. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol, 2000, 1(2): 91-100.
[ 9 ] Shargh S A, Sakizli M, Khalaj V, et al. Downregulation of E-cadherin expression in breast cancer by promoter hypermethylation and its relation with progression and prognosis of tumor. Med Oncol, 2014,31(11): 250.
[ 10 ] Pena C, Garcia J M, Silva J, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet, 2005, 14(22): 3361-3370.
[ 11 ] He X, Chen Z, Jia M, et al. Downregulated E-cadherin expression indicates worse prognosis in Asian patients with colorectal cancer:evidence from meta-analysis. PLoS One, 2013, 8(7): e70858.
[ 12 ] 韓婧, 潘燕, 李學軍. 波形蛋白的結(jié)構、功能和與腫瘤的關系.醫(yī)學分子生物學雜志, 2011, 08(3): 265-268.
[ 13 ] Singh S, Sadacharan S, Su S, et al. Overexpression of vimentin:role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res, 2003, 63(9): 2306-2311.
[ 14 ] Cao H, Xu E, Liu H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract,2015, 211(8): 557-569.
[ 15 ] Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000, 1(3): 169-178.
[ 16 ] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700.
[ 17 ] Brown K A, Pietenpol J A, Moses H L. A tale of two proteins:differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem, 2007, 101(1): 9-33.
[ 18 ] Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis, 2008, 25(6): 657-663.
[ 19 ] Arend R C, Londono-Joshi A I, Straughn J J, et al. The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol, 2013, 131(3):772-779.
[ 20 ] Cho S W, Kim Y A, Sun H J, et al. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of beta-catenin/E-cadherin signaling. J Clin Endocrinol Metab, 2014, 99(9): E1641-E1649.
[ 21 ] Qi L, Sun B, Liu Z, et al. Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression. Cancer Sci, 2012, 103(4): 828-835.
[ 22 ] Wang Y, Ngo V N, Marani M, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene, 2010, 29(33): 4658-4670.
[ 23 ] Suman S, Kurisetty V, Das T P, et al. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog, 2014, 53(Suppl 1):E151-E160.
[ 24 ] Katoh M, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther, 2006, 5(9): 1059-1064.
[ 25 ] 全天一, 李偉明, 朱秋玲, 等. miR-145下調(diào)與結(jié)直腸癌上皮間葉轉(zhuǎn)化的分子機制探討. 中國現(xiàn)代普通外科進展, 2013, 16(8):589-593.
[ 26 ] Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008, 22(7):894-907.
[ 27 ] Siemens H, Neumann J, Jac kstadt R, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res, 2013, 19(3): 710-720.
[ 28 ] Herrera M, Islam A B, Herrera A, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res,2013, 19(21): 5914-5926.
[ 29 ] 任春霞, 趙敏, 徐娜, 等. 癌相關成纖維細胞通過IL-6誘導的 ?上皮-間質(zhì)? 轉(zhuǎn)換促進宮頸癌細胞的遷移和侵襲. 中國癌癥雜志, 2014(4): 252-257.
[ 30 ] Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004, 90(6): 1265-1273.
[ 31 ] Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 2001,23(10): 912-923.
[ 32 ] Wang H, Wang H S, Zhou B H, et al. Epithelial-mesenchymal transition(EMT) induced by TNF-alpha requires AKT/GSK-3 beta-mediated stabilization of snail in colorectal cancer. PLoS One, 2013, 8(2):e56664.
[ 33 ] Hwang W L, Yang M H, Tsai M L, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology, 2011,141(1): 279-291.
[ 34 ] Tam W L, Weinberg R A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med, 2013, 19(11): 1438-1449.
[ 35 ] Moen I, Oyan A M, Kalland K H, et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One, 2009, 4(7): e6381.
[ 36 ] Zeisberg M, Neilson E G. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009, 119(6): 1429-1437.
[ 37 ] Hongo K, Tsuno N H, Kawai K, et al. Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J Surg Res, 2013, 182(1): 75-84.
[ 38 ] Yang A D, Fan F, Camp E R, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res, 2006, 12(14 Pt 1): 4147-4153.
[ 39 ] Kajiyama H, Shibata K, Terauchi M, et al. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol, 2007, 31(2): 277-283.
[ 40 ] Hoshino H, Miyoshi N, Nagai K, et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem Biophys Res Commun, 2009, 390(3):1061-1065.
[ 41 ] Findlay V J, Moretz R E, Wang C, et al. Slug expression inhibits calcitriol-mediated sensitivity to radiation in colorectal cancer. Mol Carcinog, 2014, 53(Suppl 1): E130-E139.
[ 42 ] Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005, 5(9): 744-749.
[ 43 ] Matsunaga K, Hosokawa A, Oohara M, et al. Direct action of a protein-bound polysaccharide, PSK, on transforming growth factor-beta. Immunopharmacology, 1998, 40(3): 219-230.
[ 44 ] Sakamoto J, Morita S, Oba K, et al. Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother,2006, 55(4): 404-411.
[ 45 ] Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene, 2007,26(13): 1862-1874.
(本文編輯:楊明)
費強, 封益飛, 孫躍明. 間質(zhì)化與結(jié)直腸癌相關性的研究進展[J/CD].中華結(jié)直腸疾病電子雜志, 2016, 5(1): 64-67.
Research progression of the relativity between epithelial-mesenchymal transition and colorectal cancer
Fei Qiang, Feng Yifei, Sun Yueming. Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
Corresponding author: Sun Yueming, Email: jssym@vip.sina.com
【Abstract】Epithelial mesenchymal transition (EMT), refers to the epithelial cells obtained interstitial cell phenotype under some specific factors, EMT play an important role in the process of malignant tumor occurrence and progress. The invasion and distant metastasis of colorectal cancer cell is closely related to the EMT, EMT may become a new target for inhibiting metastasis of colorectal cancer, and be a new field for tumor treatment.
【Key words】Colorectal neoplasms; Research; Progress
DOI:10.3877/cma.j.issn.2095-3224.2016.01.13
基金項目:教育部基金項目(2012YQ030261)
作者單位:210000,南京醫(yī)科大學第一附屬醫(yī)院結(jié)直腸外科
通信作者:孫躍明,Email:jssym@vip.sina.com
收稿日期:(2015-12-18)