尹偉石,李琰,徐飛
(1.長(zhǎng)春理工大學(xué)理學(xué)院,長(zhǎng)春 130022;2.東北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,長(zhǎng)春 130024)
利用分?jǐn)?shù)階(G′G)展式法構(gòu)造分?jǐn)?shù)階KdV-Burger方程方程的精確行波解
尹偉石1,李琰1,徐飛2
(1.長(zhǎng)春理工大學(xué)理學(xué)院,長(zhǎng)春 130022;2.東北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,長(zhǎng)春 130024)
(G′G)展式法是一種行之有效的求解分?jǐn)?shù)階偏微分方程的方法.利用行波變化與齊次平衡技巧可以對(duì)該方法進(jìn)行拓展,拓展后的方法能夠處理更一般的分?jǐn)?shù)階偏微分方程.最后將拓展后的方法應(yīng)用到基于黎曼-劉維爾積分意義下的時(shí)間空間分?jǐn)?shù)階KdV-Burger方程中,通過符號(hào)計(jì)算可以得到方程的精確行波解。與其他方法相比,拓展的(G′G)展式法不需要進(jìn)行變換和數(shù)值逼近,計(jì)算更加的簡(jiǎn)潔。
分?jǐn)?shù)階(G′G)展式法;分?jǐn)?shù)階KdV-Burger方程;精確行波解
近年來,分?jǐn)?shù)階偏微分方程(FPDEs)頻繁地出現(xiàn)于物理、生物、工程、信號(hào)處理、系統(tǒng)識(shí)別、控制理論、金融和分子動(dòng)力學(xué)等領(lǐng)域,已經(jīng)成為偏微分方程領(lǐng)域關(guān)注的焦點(diǎn)問題。許多文章對(duì)FPDEs進(jìn)行了研究,如在文獻(xiàn)[1]中,Jafari等利用分?jǐn)?shù)子方程方法構(gòu)造分?jǐn)?shù)階Duffing模型和非線性Sharma-Tasso-Olver的精確行波解;Baleanu等利用不動(dòng)點(diǎn)定理的方法研究了非線性分?jǐn)?shù)階微分方程邊值問題解的存在性和唯一性[2];Nyamoradi等給出分?jǐn)?shù)階多點(diǎn)邊值問題的解的存在性[3]。
在分?jǐn)?shù)階微分方程的研究中,構(gòu)造分?jǐn)?shù)微分方程的精確解和數(shù)值解是一個(gè)重要的問題。目前,針對(duì)這一問題已經(jīng)得到許多有效的求解方法,其中包括變分迭代法[4-6]、同倫攝動(dòng)法[7]、微分變換法[8]、有限差分法[9]、有限元方法[10]等。本文在改進(jìn)過的黎曼-劉維爾積分意義下,根據(jù)(G′G)展開法[11]構(gòu)造一個(gè)新的分?jǐn)?shù)階子方程。該方法主要利用如下的分?jǐn)?shù)階常微分方程(ODE):

黎曼-劉維爾積分意義下函數(shù)的α階導(dǎo)的定義:

在上述導(dǎo)數(shù)意義下,函數(shù)具有如下性質(zhì):



利用二階常微分方程求解方法,可以得到式(5)的通解:

其中,C1,C2為任意非零常數(shù)且滿足上述式子。利用上述性質(zhì)中(2)和(4),則有,從而可得:

考慮如下依賴于獨(dú)立變量t,x1,x2,…,xn的分?jǐn)?shù)階偏微分方程,


(1)假設(shè)

根據(jù)(4),可將(8)式被轉(zhuǎn)化成為關(guān)于自變量ξ的FODEs:


其中,G=G(ξ)且滿足(1)式,aj,i,i=0,1,…,mi, j=1,2,…,k,為多項(xiàng)式的系數(shù),且最高次項(xiàng)aj,m≠0。這里的最高次數(shù)正整數(shù)m可以通過(10)式中出現(xiàn)的非線性項(xiàng)與最高階導(dǎo)數(shù)項(xiàng)相互保持齊次平衡來確定。

考慮如下的時(shí)間-空間分?jǐn)?shù)階KdV-Burger方程

在(12)里,為了求解上述方程的精確解,在(11)中采用的是求解Riccati方程的方法,由于一般的Riccati方程式不可解的,那么只能利用特殊形式的Riccati方程的解。為避免出現(xiàn)Riccati方程不可解的問題,利用本文中的方法進(jìn)行求解上述時(shí)間-空間分?jǐn)?shù)階KdV-Burger方程精確形式行波解。
根據(jù)(2)-(4)式中分?jǐn)?shù)階導(dǎo)數(shù)性質(zhì),方程(12)式可轉(zhuǎn)化為:


且G=G(ξ)滿足(1)式,平衡(13)式非線性項(xiàng)和最高階導(dǎo)數(shù)項(xiàng),即UDαξU和D3ξαU,即m+m+1=m+3,從而可以得到最高次數(shù)m=2.故

對(duì)(15)式求各階導(dǎo)數(shù),并利于(1)則可得到


012一組代數(shù)方程.

化簡(jiǎn)后將a2代入上式求得:


將a2,a1代入上式可以得到:

將上式代入(15),再通過(7)就可以得到原來問題的精確解:
當(dāng)λ2-4μ>0時(shí),

當(dāng)λ2-4μ<0時(shí),

當(dāng)λ2-4μ=0時(shí),

其中,C1,C2為任意非零常數(shù)且滿足上述式子有意義。綜上可以得到(16)、(17)、(18)均為原分?jǐn)?shù)階偏微分方程的精確形式的行波解。
[1]Jafari H,Tajadodi H,Baleanu D,et al.Fractional sub-equation method for the fractional generalized reactionDuffingmodelandnonlinearfractional Sharma-Tasso-Olver equation[J].Central European Journal of Physics,2013,11(10):1482-1486.
[2]Baleanu D,Rezapour S,Mohammadi H.Some existenceresultsonnonlinearfractionaldifferential equations[J].PhilosophicalTransactionsofThe Royal Society A-Mathematical Physical and Engineering Sciences,2013(371):1-7.
[3]Nyamoradi N,Baleanu D,Agarwal R P.On a Multipoint Boundary Value Problem for a Fractional Order Differential Inclusion on an Infinite Interval[J]. Advances in Mathematical Physics,2013(2):194-201.
[4]HE Ji-huan.A New Approach to Nonlinear Partial Differential Equations[J].Communications in Nonlinear Science&Numerical Simulation,1997,2(4):230-235.
[5]Wu Guo-cheng,Lee E W M.Fractional variational iteration method and its application[J].Physics Letters A,2010,374(25):2506-2509.
[6]Jafari H,Tajadodi H.He’s variational iteration method for solving fractional Riccati differential equation[J].InternationalJournalofDifferentialEquations,2010:1-8.
[7]Jafari H,Momani Sh.Solving fractional diffusion and wave equations by modified homotopy perturbation method[J].Physics Letters A,2007,370(5-6):388-396.
[8]Odibat Z,Momani S.Fractional Green function for lineartime-fractionalequationsoffractionalorder[J].Journal of Applied Mathematics and Computing,2007,24(1):167-178.
[9]Cui Ming-rong.Compact finite difference method for the fractional diffusion equation[J].Journal of Computational Physics,2009,228(20):7792-7804.
[10]Huang Quanzhong,Huang Guanhua,Zhan Hongbin. A finite element solution for the fractional advection-dispersion equation[J].Advances in Water Resoucesr,2008,31(12):1578-1589.
[11]Wang,ML,Li,XZ,Zhang,JL:The expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Phys. Lett.A,2008(372):417-423.
[12]Bekir A,Güner ?.The-expansion method using modifiedRiemann-Liouvillederivativeforsome space-time fractional differential equations[J].Ain Shams Engineering Journal,2014,5(3):959-965.
Construction of Exact Traveling Solutions of Fractional KdV-Burger Equation Using the Fractional(G′G)Method
YIN Weishi1,LI Yan1,XU Fei2
(1.School of Science,Changchun University of Science and Technology,Changchun 130022;2.Mathematics and Statistics,Northeast Normal University,Changchun 130024)
(G′G)expansionmethod is an effective method for solving fractional partial differentialequations.The method can be extended by using the traveling wave variation andthe homogeneous balance technique,and the extended method can be used to dealwith the more general fractional partial differential equations.Finally,theextended method is applied to the time space fractional KdV-Burger equationbased on the Liu Weier Riemann integral,and the exact traveling wave solutionsof the equations can be obtained by the symbolic computation.Compared withother methods,(G′G)expansionmethod don’t need to doing transform and numerical approximation,so thecalculation is more simple.
fractional(G′G)method;fractional KdV-Burger equation;exact traveling wave solutions.
O241.82
A
1672-9870(2016)05-0125-04
2016-03-31
國家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201510200028)
尹偉石(1980-),博士,講師,E-mail:yinweishi@foxmail.com