馬立新,鄭曉棟,尹晶晶
(上海理工大學(xué) 光電信息與計算機工程學(xué)院,上海 200093)
基于粗糙特征量的短期電力負(fù)荷預(yù)測
馬立新,鄭曉棟,尹晶晶
(上海理工大學(xué) 光電信息與計算機工程學(xué)院,上海200093)
摘要針對負(fù)荷特征一直是實際電力負(fù)荷預(yù)測中的重大問題。提出了基于粗糙特征量的約簡算法。通過對天氣及負(fù)荷歷史數(shù)據(jù)進(jìn)行挖掘,找到負(fù)荷的關(guān)鍵特征,并與徑向基網(wǎng)絡(luò)結(jié)合建立了負(fù)荷預(yù)測模型。算例結(jié)果表明,與按經(jīng)驗選取輸入的傳統(tǒng)網(wǎng)絡(luò)相比,預(yù)測準(zhǔn)確度有了明顯的提高,更適用于電力負(fù)荷預(yù)測。
關(guān)鍵詞電力系統(tǒng);徑向基;粗糙特征量;負(fù)荷預(yù)測
Short-term Load Forecasting Based on Rough Characteristic-component Algorithm
MA Lixin,ZHENG Xiaodong,YIN Jingjing
(School of Optical-Electrical and Computer Engineering,University of Shanghai for
Science and Technology,Shanghai 200093,China)
AbstractThe key characteristic of mining influence the load is always an important problem in power load forecasting.A reduction algorithm through rough characteristic-component algorithm is introduced.The key characteristics of the date of weather and history load data are discussed,and then a model combined with radical basis function neural network is established.Forecasting results of calculation examples show that the forecasting accuracy is obviously improved and more suitable for short-term load forecasting compared with traditional radical basis function neural network model that chooses input parameters in the light of experience.
Keywordspower system;RBF;rough characteristic-component;load forecasting
負(fù)荷預(yù)測是電力系統(tǒng)規(guī)劃、用電、調(diào)度等部門的基礎(chǔ),但是有許多因素會影響預(yù)測的準(zhǔn)確度,如歷史負(fù)荷數(shù)據(jù)、天氣情況、日類型等。
由于人工神經(jīng)網(wǎng)絡(luò)算法[1]能獲得較高的預(yù)測準(zhǔn)確度,近年來成為了負(fù)荷預(yù)測的主要方法。本文將使用徑向基神經(jīng)網(wǎng)絡(luò)(RBF)對短期負(fù)荷進(jìn)行預(yù)測。RBF網(wǎng)絡(luò)的結(jié)構(gòu)簡單、訓(xùn)練簡潔、并在學(xué)習(xí)收斂速度上有更強的優(yōu)勢。但RBF最主要的問題是不能提取數(shù)值的特征,一切學(xué)習(xí)都是算術(shù)運算,其結(jié)果是信息丟失,預(yù)測準(zhǔn)確度下降。考慮到粗糙集(Rough Set)是數(shù)據(jù)挖掘方法之一,因其能夠直接從已知的數(shù)據(jù)中建立起決策規(guī)則,故成為了一種有效挖掘數(shù)據(jù)特征的方法。但基于原始粗糙集的約簡算法有較大的局限性,文獻(xiàn)[2~3]采用了基于屬性重要性的啟發(fā)式約簡算法,改善了約簡性能,但是計算比較復(fù)雜,而且基于原始粗糙集算法法雖然具有約簡屬性,提取數(shù)值的特征,但也有可能無法得到核屬性。……