孫景倫,周 萍,孫躍東
(1.上海理工大學 機械工程學院,上海 200093;2.上海理工大學 機械工業汽車底盤機械零部件強度與可靠性評價重點實驗室,上海 200093)
純電動汽車動力傳動系參數匹配及仿真
孫景倫1,2,周萍1,2,孫躍東1,2
(1.上海理工大學 機械工程學院,上海200093;2.上海理工大學 機械工業汽車底盤機械零部件強度與可靠性評價重點實驗室,上海200093)
摘要為實現純電動汽車傳動系傳動比與驅動電機的合理匹配,提出了一種基于MOGA-Ⅱ遺傳算法的多目標優化方法。根據配備兩擋變速器的某純電動汽車的整車參數和設計要求,對其動力傳動系統主要部件驅動電機及動力電池進行了匹配和選型。基于GT-drive軟件搭建整車仿真模型進行仿真分析并驗證了匹配的合理性。利用多目標優化軟件modeFRONTIER進行了傳動系傳動比優化。優化結果表明,純電動汽車的一次充電續駛里程及原地起步加速時間分別提高了5.5%和2.9%。
關鍵詞純電動汽車;動力傳動系;參數匹配;仿真優化
Parameters Matching and Simulation for Power Train of Pure Electric Vehicle
SUN Jinglun1,2,ZHOU Ping1,2,SUN Yuedong1,2
(1.School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;
2.Key Laboratory of Mechanical Industry for Automobile Chassis Mechanical Parts Strength and Reliability Evaluation,
University of Shanghai for Science and Technology,Shanghai 200093,China)
AbstractA dual-objective optimization method based on MOGA-Ⅱ genetic algorithm is proposed for the ratio of power train to be matched reasonably to the drive motor of pure electric vehicle.Drive motor and power battery of power train are matched for a two-speed pure electric vehicle based on the vehicle parameters and design requirements.The GT-drive vehicle simulation models are built to analyze and validate the rationality of the matching.The transmission ratios are optimized by multi-objective optimization software modeFRONTIER.The results show that the driving range of a single charge and initial acceleration time is increased by 5.5% and 2.9% respectively by optimization.
Keywordspure electric vehicle;power train;parameters matching;simulation optimization
純電動汽車(Pure Electric Vehicle,PEV)正逐步成為未來汽車的主要發展方向[1]。隨著純電動汽車的驅動電機、動力電池等關鍵技術的進步,其驅動系統的合理匹配及傳動系統的傳動比優化,依然是提高整車動力性及經濟性的重要手段[2]。本文以處于開發初期的某純電動汽車為例,對動力傳動系的主要部件進行參數匹配,建立整車仿真模型進行仿真分析驗證,并對傳動系統的傳動比進行優化,以提高整車性能。
1整車參數及性能要求
目前,純電動汽車正沿著高速純電動汽車及低速純電動汽車兩條主線發展[3],本文是基于某高速純電動汽車進行研究與開發的。……