曾 凱,劉新紅,張振華,嚴(yán)少華※(.江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南京 2004; 2.浙江農(nóng)林大學(xué)信息工程學(xué)院,臨安 3300)
?
基于拉力傳感監(jiān)測的富營養(yǎng)化水體釋放氣體速率的測定方法
曾凱1,2,劉新紅1,張振華1,嚴(yán)少華1※
(1.江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南京 210014;2.浙江農(nóng)林大學(xué)信息工程學(xué)院,臨安 311300)
摘要:該文提出了一種采用拉力傳感設(shè)備監(jiān)測富營養(yǎng)化水體釋放氣體速率的測定方法,通過拉力傳感設(shè)備全天候?qū)崟r標(biāo)定富營養(yǎng)水體釋放氣體質(zhì)量數(shù)據(jù),并采用服務(wù)器通過無線傳感網(wǎng)絡(luò)采集氣體質(zhì)量數(shù)據(jù)并標(biāo)定每條氣體質(zhì)量數(shù)據(jù)的時間坐標(biāo)。試驗結(jié)果表明,該測定方法能夠檢測出高溫光照充足環(huán)境下水體近光層氣體釋放速率范圍為57~539 g/(m2·h),低溫?zé)o光照環(huán)境下氣體釋放范圍為49~280 g/(m2·h),從而測定了富營養(yǎng)水體近光層釋放氣體量隨時間的變化特性和氣體釋放速率與環(huán)境光照及溫度的相關(guān)性。同時,分時段氣體釋放速率為富營養(yǎng)化水體N2O、N2通量的測定提供了準(zhǔn)確有效的數(shù)據(jù)基礎(chǔ)。
關(guān)鍵詞:傳感器;氣體;水體;富營養(yǎng);釋放速率;拉力傳感
曾凱,劉新紅,張振華,嚴(yán)少華. 基于拉力傳感監(jiān)測的富營養(yǎng)化水體釋放氣體速率的測定方法[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):216-219.doi:10.11975/j.issn.1002-6819.2016.03.031http://www.tcsae.org
Zeng Kai, Liu Xinhong, Zhang Zhenhua, Yan Shaohua. Method of calibrating ebullition rate based on tension sensor in eutrophic waters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 216-219. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.031http://www.tcsae.org
大量的人為活動造成了水體氮污染和水體富營養(yǎng)化,水體脫氮修復(fù)過程會釋放大量的氣體[1-3],其中主要包括水體內(nèi)部微生物硝化反硝化活動所釋放的N2O和N2混合氣體[4-5]。深入研究富營養(yǎng)化水體釋放氣體時間變化規(guī)律和釋放速率特性對于富營養(yǎng)化水體有效消除氮氣污染、控制溫室氣體釋放具有重要的意義[6]。富營養(yǎng)化水體脫氮修復(fù)釋放N2的研究手段、收集過程及測定過程等研究取決于富營養(yǎng)化水體脫氮過程氣體釋放的研究,準(zhǔn)確有效的氣體收集、測定和釋放速率分析檢測方法能夠避免測定氣體受到空氣中N2的污染[6],是準(zhǔn)確測定富營養(yǎng)水體釋放N2通量的重要分析和數(shù)據(jù)基礎(chǔ)。目前對水體釋放氣體定量測定所采用的漂浮箱收集法[7]為分時段氣體采樣估算方法,但該方法無法準(zhǔn)確檢測出水體釋放氣體情況[8]。目前水體釋放N2O、N2通量的檢測方法還包括有同位素標(biāo)記法[7]、乙炔抑制法[9]、同位素配對技術(shù)[10],這些方法檢測計算N2O、N2通量值主要基于水體釋放氣體速率的估計數(shù)值,而精度相對較高的膜進(jìn)樣質(zhì)譜(membrane inlet mass spectrometer,MIMS)技術(shù)[11-12]主要通過采集相關(guān)的底泥和水樣進(jìn)行實驗室測定以估計擴(kuò)散性氣體的釋放速率,而無法反映真實的環(huán)境釋放氣體隨時間的變化的實際狀況。近年來,相關(guān)的針對水體釋放氣體收集設(shè)備的研究使氣體收集測定更加準(zhǔn)確和方便[13-14],其中一些氣體收集方法主要集中在水體釋放氣泡的捕捉[15-16],通過氣泡捕捉去測定水體N2通量數(shù)據(jù)將有助于更好的理解水體釋放N2的形態(tài),但是這些方法和設(shè)備針對氣體收集和測定主要基于空氣環(huán)境中,由于空氣環(huán)境的N2背景,因此很容易使收集的氣體受到空氣中的N2污染。而采用真空集氣容器收集氣體操作過程復(fù)雜、要求高、成本代價高[17],無法有效適用于野外富營養(yǎng)水體釋放氣體的收集。
由于富營養(yǎng)水體釋放氣體隨著時間改變有一個動態(tài)的變化過程,并且反硝化氣體釋放量和釋放速率對于溫度參數(shù)也比較敏感[18-19],現(xiàn)有的水體釋放氣體通量測定的方法由于受到設(shè)備限制,只能采用在固定時間點采樣氣體并測定的方法,這樣將無法準(zhǔn)確反映整個富營養(yǎng)水體釋放氣體隨時間、光照和溫度變化而變化的情況,因此后續(xù)的N2、N2O通量的測定會存在局限性和不完整性。本文提出了一種全天候檢測富營養(yǎng)水體近光層混合氣體釋放動態(tài)分布趨勢的方法,主要測定富營養(yǎng)水體近光層混合氣體在不同時間點的釋放量和釋放速率,從而能夠為后續(xù)混合氣體內(nèi)部不同氣體通量標(biāo)定提供重要的技術(shù)支持和精確的基礎(chǔ)數(shù)據(jù)。
1.1拉力傳感設(shè)備準(zhǔn)確性測試
1.1.1試驗裝置
試驗裝置如圖1,測試設(shè)備底部為一個透明集氣罩5,透明集氣罩5上部開設(shè)有一個采氣口4,采氣口連接了一根采氣橡皮管2,透明集氣罩下部固定了一個金屬網(wǎng)罩6,拉力傳感設(shè)備1通過金屬絲3懸吊整個金屬網(wǎng)罩6,金屬網(wǎng)罩6底部設(shè)置了塑料隔板7。

圖1 氣體收集設(shè)備圖Fig.1 Ebullition collecting equipment
1.1.2試驗方法
準(zhǔn)確性測試試驗采用了富營養(yǎng)池塘作為試驗環(huán)境。透明集氣罩上部連接的采氣橡皮管先封閉,隨著富營養(yǎng)池塘產(chǎn)生氣體并進(jìn)入透明集氣罩,整個透明集氣罩內(nèi)會堆積氣體而使集氣罩質(zhì)量逐漸降低;拉力傳感器每分鐘采集1次集氣罩質(zhì)量數(shù)據(jù)并通過無線傳感網(wǎng)絡(luò)將質(zhì)量數(shù)據(jù)發(fā)送到服務(wù)器數(shù)據(jù)庫中,每個質(zhì)量數(shù)據(jù)標(biāo)定一個時間坐標(biāo)。在幾個固定時間點用滿水集氣瓶完全收集集氣罩內(nèi)的氣體,通過標(biāo)準(zhǔn)電子秤量設(shè)備秤量氣-水混合瓶體質(zhì)量數(shù)值。拉力傳感設(shè)備對氣體質(zhì)量測量準(zhǔn)確性的校驗方法:
1)集氣罩內(nèi)滿水無氣體時的拉力數(shù)值和堆積了固定量氣體(X,mL)后的集氣罩的拉力數(shù)值之間的差值,定義為Sensor data。
2)標(biāo)準(zhǔn)電子秤量設(shè)備所秤量的滿水集氣瓶質(zhì)量數(shù)值和收集了集氣罩內(nèi)的固定量氣體(X,mL)后的氣-水混合集氣瓶質(zhì)量數(shù)值之間的差值,定義為Standard data。
1.2氣體釋放速率測定方法
整個裝置通過塑料隔板7擋住了其他水層氣體進(jìn)入到透明集氣罩5,從而使整個裝置采集的是水體近光層釋放的氣體。集氣瓶與采氣橡皮管2采用封閉不透氣連接,通過氣體排水法,透明集氣罩5收集的富營養(yǎng)水體近光層釋放的氣體通過頂端的采氣橡皮管2完全收集到集氣瓶內(nèi),并采用拉力傳感設(shè)備掛接集氣瓶實現(xiàn)全天候標(biāo)定集氣瓶質(zhì)量變化,集氣瓶每小時質(zhì)量數(shù)值標(biāo)定一個時間坐標(biāo)。
氣體釋放體積定量計算參照公式(1)、公式(2)。

式中V為采集氣體體積值,mL;Wa為集氣瓶充滿水的質(zhì)量,g;Wb為采集氣體進(jìn)入集氣瓶后集氣瓶的質(zhì)量,g;D為綜合水體密度,g/cm3[20]。
2.1傳感器數(shù)據(jù)(Sensor data)與標(biāo)準(zhǔn)值(Standard data)之間的關(guān)系
氣體進(jìn)入集氣罩或集氣瓶后排出了相同體積的水,由于相同體積的氣體相對于相同體積的水,其質(zhì)量可以忽略不計,氣體進(jìn)入集氣罩或集氣瓶后排出的相同體積的水的質(zhì)量與水的密度的比值為收集的氣體體積。因此,通過集氣罩或集氣瓶質(zhì)量的變化能夠反應(yīng)出收集氣體量的變化。
圖2表明拉力傳感設(shè)備所檢測的排出水的質(zhì)量值(sensor data)與標(biāo)準(zhǔn)電子秤量設(shè)備檢測的排出水的質(zhì)量值(standard data)相同(在允許誤差內(nèi)),并且變化趨勢具有一致性,平均誤差為1%,因此能夠驗證拉力傳感設(shè)備的準(zhǔn)確性。

圖2 Sensor data與Standard data對比關(guān)系圖Fig.2 Correlation diagram sensor data and standard data
2.2氣體釋放速率
氣體釋放量24 h變化值與環(huán)境溫度、水溫和光照關(guān)系如圖3所示。圖3表明,富營養(yǎng)池塘近光層由于光合作用和好氧反硝化反應(yīng),氣體釋放量受到光照和溫度參數(shù)影響較大,白天光照充足、溫度較高時,富營養(yǎng)池塘氣體釋放量隨時間變化斜率較大,氣體釋放量大;夜間由于無光照,并且溫度較低,富營養(yǎng)池塘微生物活動性降低,因此氣體釋放量隨時間變化斜率較小,氣體釋放量小。

圖3 氣體釋放量與時間、溫度關(guān)系圖Fig.3 Relationship between ebullition and time/temperature
不同的時間點上,氣體釋放速率會呈現(xiàn)不同的變化趨勢,如圖4。通過參照日出日落數(shù)據(jù),劃分出光照時間段。圖4a中,光照時間段為:15:00-19:00,05:00-14:00;無光照時間段為:20:00-04:00。圖4b中,光照時間段為:13:00-19:00,05:00-12:00;無光照時間段為:20:00-04:00。由圖4表明,富營養(yǎng)池塘在光照較強(qiáng)的時間段,伴隨較高的溫度影響,微生物活動性強(qiáng),因此氣體釋放速率較高;在無光照時間段,伴隨溫度降低,微生物活動性減弱,氣體釋放速率明顯降低。同時由于富營養(yǎng)池塘內(nèi)部儲存了一部分白天微生物活動所滯放的氣體,因此會在早晨光照和溫度的觸發(fā)作用下集中釋放(如圖4a中05:00-08:00時間段,圖4b中05:00-07:00時間段),氣體在早晨的加速釋放造成氣體釋放速率數(shù)值突然增加。

圖4 氣體釋放速率時間分布圖Fig.4 Time distribution diagram about ebullition rate
富營養(yǎng)水體近光層由于好氧反硝化反應(yīng)后而使水體釋放N2O和N2,同時結(jié)合光合作用而產(chǎn)生O2。傳統(tǒng)的方法中,主要采用人工在固定時間點收集富營養(yǎng)水體釋放氣體樣本,然后通過實驗室進(jìn)行釋放氣體內(nèi)部成分和通量的測定和分析,由于富營養(yǎng)水體釋放氣體數(shù)量和速率隨光照、溫度的變化在不同時間坐標(biāo)點上變化較大,因此固定時間點的采樣分析無法準(zhǔn)確和全面的反映富營養(yǎng)水體釋放氣體的變化趨勢。而采用拉力傳感全天24 h實時測定富營養(yǎng)水體內(nèi)氣體釋放量和釋放速率,能夠比較準(zhǔn)確的反映出富營養(yǎng)水體近光層氣體釋放變化規(guī)律,進(jìn)而能夠分析出富營養(yǎng)水體近光層釋放氣體的空間分布、時間分布與環(huán)境光照、溫度變化的相關(guān)性,同時,結(jié)合每個時間點氣體釋放量和釋放速率,通過氣象色譜儀能夠更加準(zhǔn)確地測定和分析出該時間點所采集氣體中N2O 和N2及光合作用所釋放的O2的通量。
本文提出的方法能夠動態(tài)實時測定富營養(yǎng)水體釋放氣體變化趨勢,通過不同時間點氣體釋放速率和釋放量的準(zhǔn)確監(jiān)測,有效分析出富營養(yǎng)水體釋放氣體和環(huán)境因素的相關(guān)性。本研究目前主要基于富營養(yǎng)水體近光層的氣體收集和分析,由于富營養(yǎng)水體底層、底泥附近在無光照條件下也會釋放大量的氣體(針對同一溫度和光照條件下,本研究收集的近光層富營養(yǎng)水體釋放氣體總量為(380.90±35) mL,而同一面積下收集的富營養(yǎng)水體釋放氣體總量為(564.5±46) mL,因此驗證了富營養(yǎng)水體除近光層以外的其他水層也會釋放大量的氣體;同時,通過人工氣相色譜分析出富營養(yǎng)水體釋放氣體成分主要包括氧氣、二氧化碳、甲烷、氧化亞氮、氮氣,而其中二氧化碳、甲烷主要是由非近光層的低泥產(chǎn)生),因此針對富營養(yǎng)水體氣體釋放量的研究還需要考慮不同分層的氣體釋放情況。在后續(xù)的研究工作中,系統(tǒng)將增加氣體成分檢測設(shè)備,通過結(jié)合氣體成分檢測設(shè)備準(zhǔn)確標(biāo)定出不同時間點釋放的混合氣體內(nèi)部不同氣體的通量數(shù)值,以實現(xiàn)富營養(yǎng)水體全天候不同時間點釋放氣體通量的準(zhǔn)確標(biāo)定,從而為富營養(yǎng)化水體治理提供準(zhǔn)確的數(shù)據(jù)基礎(chǔ)和依據(jù)。
[參考文獻(xiàn)]
[1] 閆玉潔,張建,賈文林,等. 同步硝化反硝化過程中污染物的去除及溫室氣體的釋放[J]. 中國環(huán)境科學(xué),2012,32(11):1979-1983.
[2] Avrahami S, Conrad R, Braker G. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers[J]. Applied and Environmental Microbiology, 2002, 68(11): 5685-5692.
[3] Czepiel P, Crill P, Harriss R. Nitrous oxide emission from municipal wastewater treatment[J]. Environ Sci Technol, 1995, 29(9): 2352-2356.
[4] 馬培,李新艷,王華新,等. 河流反硝化過程及其在河流氮循環(huán)與氮去除中的作用[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2014,33(4):623-633.
[5] 呂錫武,稻森悠平,水落元之. 同步硝化反硝化脫氮及處理過程中N2O的控制研究[J]. 東南大學(xué)學(xué)報,2001,31(1):95-99.
[6] Gao Y, Yi N, Zhang Z Y, et al. Fate of15NO3and15NH4+ in the treatment of Eutrophic water using the floating macrophyte, Eichhornia crassipes[J]. Journal of Environmental Quality, 2012, 41: 1653-1660.
[7] 劉新紅,高巖,郭俊堯,等. 一種分層收集自然水體釋放氣體裝置的應(yīng)用效果[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(5):365-367.
[8] Groffman P M, Altabet M A, Bohlke J K, et al. Methods for measuring denitrification: Diverse approaches to a difficult problem[J]. Ecological Applications, 2006, 16(6): 2091-2122.
[9] Teissier S, Torre M. Simultaneous assessment of nitrification and denitrification on freshwater epilithic biofilms by acetylene block method[J]. Water Res, 2002, 36: 3803-3811.
[10] Soonmo An, Wayne S, Gardner, et al. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis[J]. Applied And Environmental Microbilolgy, 2001, 67(3): 1171-1178.
[11] McCutchan J H, Saunders J F, Pribyl A L, et al. Open-channel estimation of denitrification[J]. Limnology and Oceanography: Methods, 2003, 1: 74-81.
[12] 陳能汪,吳杰忠,段恒軼,等. N2:Ar法直接測定水體反硝化產(chǎn)物溶解N2[J]. 環(huán)境科學(xué)學(xué)報,2010,30(12):2479-2483.
[13] Higgins T M, McCutchan Jr J H, Lewis Jr W M. Nitrogen ebullition in a Colorado plains river[J]. Biogeochemistry, 2008, 89: 367-377.
[14] McLinn E L, Stolzenburg T R. Ebullition-facilitated transport of manufactured gas plant tar from contaminated sediment[J]. Environ Toxicol Chem, 2009, 28: 2298-2306.
[15] Bastviken D, Cole J, Pace M, et al. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate[J]. Global Biogeochem, 2004, 18: GB4009.
[16] Grinham A, Dunbabin M, Gale D, et al. Quantification of ebullitive and diffusive methane release to atmosphere from a water storage[J]. Atmos Environ, 2011, 45: 7166-7173.
[17] Sun L G, Zhu R B, Xie Z Q, et al. Emissions of nitrous oxide and methane from Antarctic Tundra: Role of penguin dropping deposition[J]. Atmospheric Environment, 2002, 36: 4977-4982.
[18] Amatya I M, Kansakar B R, Tare V, et al. Impact of temperature on biological denitrification process[J]. J Inst Eng, 2009, 7: 121-126.
[19] Paudel S R, Choi O, Khanal S K, et al. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system[J]. Science of the Total Environment, 2015, 518: 16-23.
[20] McCutcheon S C, Martin J L, Barnwell T O. Water Quality[M]. New York: In Handbook of Hydrology, McGraw-Hill Education, 1993.
Method of calibrating ebullition rate based on tension sensor in eutrophic waters
Zeng Kai1,2, Liu Xinhong1, Zhang Zhenhua1, Yan Shaohua1※
(1. Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjng 210014, China; 2. School of Information Engineering, Zhejiang A & F University, Lin’an 311300, China)
Abstract:A method based on tension sensor was deployed to calibrate the ebullition rate in the eutrophic waters. The ebullition was collected using sealed glass bottle connected to a transparent collector and the weight of ebullition in the collector was detected in every hour in the day or night. The transparent collector was used under the water because of its transparent did not shield the light and affect the normal ecosystem activity under the light in water. All the ebullition was collected by the transparent collector connected to a sealed glass bottle through the rubber tube. The sealed glass bottle was fitted with two rubber tubes. The one was used to collect ebullition, and the other was used for drainage. The sealed glass bottle was filled with water first. With the ebullition entering into the sealed glass bottle, the weight of the sealed glass bottle was reduced. The change of the weight of the sealed glass bottle reflected the change of the ebullition. The weight of the sealed glass bottle can be detected by the tension sensor in situ. The weight of the sealed glass bottle was related to the ebullition quantity of the eutrophic waters. The rate of weight reduction was related to the ebullition rate of the eutrophic waters. All of the data can be measured and transmitted by a tension sensor, and collected by the monitoring system in a computer. The analysis and statistics about the ebullition quantity and rate can be monitored through the system software. The method can monitor the ebullition in the eutrophic waters in every minute. It had less artifacts compared to the manual monitoring which is inefficiency, low accuracy, higher complexity and labor intense. The method can completely detect the ebullition in the every time node during a day or night. Not only the method can monitor ebullition rule to reflect ecosystem activity in the eutrophic waters during the day, but also during the night. The results indicated that the method could detect the ebullition rates from 57 to 539 g/(m2·h) in the day with the high temperature, and the ebullition rates from 49 to 280 g/(m2·h) in the night with the low temperature in the near optical layer. With this method, we determined ebullition quantity change with time and correlated the ebullition rates and temperatures, light intensities in the environment. Through detecting ebullition quantity and rates in the time node and using the gas chromatography instrument to analyze the component about gas which was collected in a time node, it was found that there were many kinds of gases in the ebullition, and ebullition quantity and rates of each kind of the gas in the eutrophic waters at the different time nodes can be determined. So the ebullition rate at the divided-period contributed to assess the N2, N2O ebullition fluxes in the eutrophic waters.
Keywords:sensors; gases; waters; eutrophic; ebullition rate; tension sensor
通信作者:※嚴(yán)少華,研究員,博士生導(dǎo)師,從事湖泊污染生態(tài)學(xué)方面的研究。南京江蘇省農(nóng)業(yè)科學(xué)院,210014。Email:shyan@ jaas.ac.cn
作者簡介:曾凱,男,實驗師,博士生,從事湖泊污染生態(tài)學(xué)方面的研究。南京江蘇省農(nóng)業(yè)科學(xué)院,210014。Email:brownzengkai@163.com
基金項目:國家自然科學(xué)基金項目(41471415);江蘇省科技支撐計劃項目(BE2013436);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項目[CX(14)20937]資助
收稿日期:2015-08-14
修訂日期:2015-12-21
中圖分類號:X502
文獻(xiàn)標(biāo)志碼:A
文章編號:1002-6819(2016)-03-0216-04
doi:10.11975/j.issn.1002-6819.2016.03.031