田宜水,王 茹
(1.農業(yè)部規(guī)劃設計研究院農村能源與環(huán)保研究所,北京 100125; 2.農業(yè)部農業(yè)廢棄物能源化利用重點實驗室,北京 100125;3.中國農業(yè)大學工學院,北京 100083)
?
基于多升溫速率法的典型生物質熱動力學分析
田宜水1,2,王茹1,3
(1.農業(yè)部規(guī)劃設計研究院農村能源與環(huán)保研究所,北京 100125;2.農業(yè)部農業(yè)廢棄物能源化利用重點實驗室,北京 100125;3.中國農業(yè)大學工學院,北京 100083)
摘要:為研究典型生物質熱動力學,判斷反應機理,獲得反應的動力學速率參數,該文采用熱重分析技術對玉米秸稈、小麥秸稈、棉稈、松樹木屑、花生殼、甜高粱渣等生物質原料進行了氮氣氣氛下不同升溫速率的熱解特性試驗研究,利用Friedman法、Flynn-Wall-Ozawa法計算活化能,用Malek法確定最概然機理函數,建立了生物質熱分析動力學模型,并討論了不同生物質的差異性。結果表明:生物質的熱解過程均包括3個主要階段:干燥預熱階段、揮發(fā)分析出階段、碳化階段。典型生物質活化能隨著轉化率的增加而增加,在揮發(fā)分析出階段,熱解活化能介于144.61~167.34 kJ/mol之間;反應動力學機理均符合Avrami-Erofeev函數,但反應級數有一定的差異;指前因子介于26.66~33.97 s-1之間。這為生物質熱化學轉化過程工藝條件的優(yōu)化及工程放大提供理論依據。
關鍵詞:生物質;熱動力學;溫度;熱分析;活化能;機理函數
田宜水,王茹. 基于多升溫速率法的典型生物質熱動力學分析[J]. 農業(yè)工程學報,2016,32(3):234-240.
Tian Yishui, Wang Ru. Thermokinetics analysis of biomass based on model-free different heating rate method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 234-240. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.034http://www.tcsae.org
熱分析是在程序控溫下,測定物質物理及化學性質與溫度關系的一類技術。借用熱分析技術來研究生物質的燃燒、熱解、氣化反應動力學,判斷反應遵循的機理、獲得反應的動力學速率參數(活化能E和指前因子A等),可為生物質熱化學轉化過程的工藝條件優(yōu)化及工程放大提供重要的理論基礎與依據。
目前,國內外已有大量學者對玉米秸稈[1-5]、稻草[6-7]、稻殼[8-10]、木屑[10-14]、核桃殼[15-16]等生物質[17-29]的熱解動力學進行了研究。但由于生物質熱解反應復雜,非均相反應實際上包含多個基元反應平行、連續(xù)進行,局限于試驗手段和方法,結果差異較大。另外,由于指前因子A和活化能E的相互補償,不同研究模式函數都會有相近的良好線性,所對應的動力學參數卻有顯著的差異,導致實際動力學過程與理想過程推導出來的機理不相符合。以玉米秸稈為例,不同研究的活化能分布在58.4~63.4 kJ/mol(賴艷華等[2])、63.95~69.97 kJ/mol(張曉東等[1]、宋春財等[4])、91.99~101.51 kJ/mol(齊國利等[3])、161 kJ/mol(王明峰等[5]);反應涉及一級反應[1-4]、J-M-A方程等[5]。
本文針對玉米秸稈、小麥秸稈、棉稈、松樹木屑、花生殼、甜高粱渣等典型生物質,開展多升溫速率熱重試驗,利用Friedman法、Flynn-Wall-Ozawa 法計算活化能,用Malek法確定最概然機理函數,建立了生物質熱分析動力學模型,并討論了不同生物質的差異性,為生物質熱化學過程的工藝條件優(yōu)化及工程放大提供理論依據。
1.1試驗材料
本試驗選取玉米秸稈、小麥秸稈、棉稈、松樹木屑、花生殼、甜高粱渣等6種典型的生物質,其工業(yè)分析、元素分析、組分分析和熱值見表1。玉米秸稈、花生殼取自于北京市,小麥秸稈、松樹木屑取自于天津市,棉稈、甜高粱渣取自于河北省。生物質原料經過破碎、干燥、細粉、篩分等,選取粒徑在80~120目之間的作為試驗樣品。
1.2試驗儀器
試驗采用日本SHIMADZU公司的DTG-60A/60AH型熱重分析儀,試驗坩堝材質為鉑金,尺寸為Φ6 mm×2.5 mm,單次裝樣量為坩堝容積的1/3~1/2。
1.3試驗方法
將3~4 mg左右生物質樣品分別在5、10、20、30 ℃/min的升溫速率下進行熱解試驗,溫度從室溫升至600℃,反應氣氛為99.99%的高純氮氣,氣流量為100 mL/min。
2.1熱解特性分析
下面以30℃/min升溫速率下的熱解試驗為例進行討論。

表1 樣品的工業(yè)分析、元素分析、組分分析和熱值Table 1 Industrial analysis, elemental analysis, component analysis and calorific value of biomass samples
生物質樣品的TGA和DTG曲線整體趨勢相似,整個熱解過程分為干燥預熱、揮發(fā)分析出、碳化等階段3個階段,見圖1。
DTG曲線上出現的峰指示質量發(fā)生變化,峰頂與失質量變化速率最大處相對應,可作為生物質樣品熱解溫度區(qū)間分段的依據。DTG曲線的第1個峰值出現在室溫(20℃)~200℃內,為干燥預熱階段,質量損失率為2.68%~6.40%,見表2。質量損失主要原因是生物質內水分的釋放(室溫~110℃)及生物質高聚物的解聚(生物質大分子間氫鍵斷開)及玻璃化轉變過程(110~200℃左右)[30]。生物質所含水分含量越高,第1階段失質量率越大。

圖1 升溫速率30℃/min下的生物質熱解曲線Fig.1 Biomass pyrolysis curves at heating rate of 30 ℃/min

表2 樣品熱解過程的溫度區(qū)間和失質量率Table 2 Temperature range and mass loss rate of samples in pyrolysis process
揮發(fā)分析出階段是熱解過程最主要的階段,包括纖維素、半纖維素和部分木質素在各自不同溫度區(qū)間的熱分解反應,大分子碳水化合物的鏈被打碎[31],樣品失質量速率隨著溫度的升高迅速增大。在這個階段,生物質樣品的DTG曲線在350~400℃之間均有一個明顯的失質量主峰,這主要是由纖維素和小部分木質素的分解引起的。纖維素失質量溫度區(qū)間較小,熱解固體殘余物極少,大部分轉化成了揮發(fā)分。
在390~430℃左右,進入第3階段碳化階段,該階段主要是木質素的繼續(xù)熱解反應,失質量率為5.29%~8.11%,熱解剩余產物主要是炭和灰分。
2.2熱分析動力學模型
傳統的單升溫速率法中,由于k(T)和f(α)或G(α)不能分離,難以保證所選機理模型函數的合理性。
多升溫速率法是指用不同升溫速率所測得的幾條熱分析曲線來進行動力學分析,可將k(T)和f(α)或G(α)分離,在相同轉化率α下f(α)或G(α)的值不隨升溫速率的不同發(fā)生改變,從而在不引入動力學模型函數的前提條件下得到比較可靠的動力學參數活化能E的數值,因此多升溫速率法又稱為Model-free Method[32]。
2.2.1計算活化能E
固體分解反應動力學方程一般可表示為


在非等溫非均相體系中繼續(xù)沿用在等溫均相反應體系中的動力學方程,在升溫速率為β時,非等溫非均相反應的動力學方程

式中α為反應物向產物轉化的百分數,T為溫度,A為指前因子,E為活化能,R為普適氣體常數,f(α)為反應機理函數。
1)Friedman法
Friedma法[33]是一種微分的方法,其表達式是直接對式(2)兩邊取對數運算得出,即

以花生殼為例,在不同升溫速率β下進行一系列的TG試驗(見圖2),獲得一組TGA曲線。

圖2 不同升溫速率下花生殼熱解TGA曲線Fig.2 TGA curves of peanut shell at different heating rates
在多重加熱速率β下測定,選擇等α處,以ln(dα/dt) 與1/T作圖(如圖3a),直線的斜率為:?E/R,可求得反應的活化能E。
2)Flynn-Wall-Ozawa法
將(3)式進行移項并兩端同時積分得到:

式中積分下限T0的積分值趨近于0,積分下限可由0代替。P(u)稱為溫度積分(temperature integral),

式中u=E/RT。

圖3 花生殼熱分解過程在不同轉化率處關系曲線Fig.3 Thermal decomposition curves of peanut shells at different conversion rates
取轉化率a=0.1~0.9、步長為0.1,作lgβ?1/T圖,得到幾乎完全平行的直線(見圖3b),由回歸直線的斜率得到各轉化率所對應的活化能E的數值。
表3列出了不同加熱速率下花生殼熱分解過程的活化能。可以看出,在整個轉化率范圍內,花生殼的活化能并不是一個定值,隨著轉化率的增加,花生殼的活化能逐漸增加,說明花生殼熱解是一個極其復雜的多步反應過程,在不同的溫度區(qū)間內具有不同的活化能和反應機理。

表3 不同加熱速率下花生殼熱分解過程的活化能Table 3 Activation energy of peanut shells on thermal decomposition process by different heating rates
在α<0.2、α>0.8的范圍內,由于粒度尺寸和浮力以及非均相熱解階段相互重疊等不確定因素的影響,難以保證整條TG曲線在不同升溫速率下同一轉化率下的溫度滿足要求,計算所得活化能的高度相關。
在轉化率范圍a=0.3~0.7,花生殼的活化能的數值幾乎不隨轉化率變化,與花生殼的DTG曲線上的峰吻合,處于揮發(fā)分析出階段。用Friedman法和Flynn-Wall-Ozawa 法求得的反應活化能基本一致,平均值為148.12 kJ/mol,相關系數r幾乎都在0.99~1.00之間,說明計算的活化能是可靠的。
2.2.2用Malek法確定最概然機理函數
Malek法是由定義函數y(α)和確定f(α)和G(α)的一種方法。
根據式(3)、(5)并采用同KAS法同樣的溫度近似,將3個方程合并可得

式中Z(α)為定義函數。將不同升溫速率下的試驗數據α、β、T、dα/dt和E代入公式,作Z(α)-α關系曲線,視該曲線為試驗曲線。
將人為數據α和各種可能的動力學模型函數f(α)、G(α)帶入上式,作Z(α)-α關系曲線,構成標準曲線。常用固態(tài)反應動力學機理函數見表4。

表4 常用固態(tài)反應動力學機理函數Table 4 Commonly used kinetic mechanism functions for solid-state reactions
由圖4可知,在轉化率范圍a=0.3~0.7,試驗曲線和曲線AE3(Avrami-Erofeev方程)趨向相同,基本重疊,判定該熱分解反應動力學機理可以用隨機成核和隨后生
根據回歸直線的斜率,在轉化率范圍a=0.3~0.7,得到:lnA=27.70 s-1。
2.2.3不同生物質反應的動力學速率參數
根據上述計算過程,可獲得其他5種生物質的反應的動力學速率參數,見表5。
活化能作為活化分子的平均能量與反應物分子平均能量的差值,在揮發(fā)分析出階段,典型生物質熱解活化能基本介于144.61~167.34 kJ/mol之間。其中,玉米秸稈和小麥秸稈作為禾本科作物,活化能較高,分別為167.34和167.20 kJ/mol;棉稈、松樹木屑和花生殼相對木質化程度較高,活化能較低,分別為154.06、147.29 和146.91 kJ/mol。甜高粱渣經過生物化學處理后,活化能最低,為144.61 kJ/mol。

圖4 花生殼的Z(α)-α試驗與標準曲線Fig.4 Standard curves and experiment curves of Z(α) vs α for peanut shells
玉米秸稈、小麥秸稈、棉稈、松樹木屑、花生殼、甜高粱渣等反應動力學機理均符合Avrami-Erofeev函數,說明不同生物質原料,其成分和結構基本相同,熱化學反應機理基本相同。但反應級數有一定的差異,玉米秸稈、花生殼的反應級數為3,小麥秸稈、棉稈、甜高粱渣的反應級數為2,松樹木屑的反應級數為1.5。
熱解動力學方程得出的指前因子沒有明確的物理意義;碰撞理論的指前因子是頻率因子,是反應系統中單位體積、單位時間內分子之間的碰撞數。上述生物質原料的指前因子lnA介于26.66~33.97 s-1之間。

表5 典型生物質熱化學反應的動力學速率參數[34-36]Table 5 Kinetic rate parameters of biomass thermodynamic reaction
1)生物質樣品的熱解過程可分為:干燥預熱、揮發(fā)分析出、碳化等3個階段。
2)用非等溫多重掃描速率法和Malek法分別計算花生殼分解過程動力學參數,花生殼的活化能隨著轉化率的增加而增加。在轉化率范圍為0.3~0.7,其活化能平均值為148.12 kJ/mol,反應機理系成核與生長模型。
3)在揮發(fā)分析出階段,典型生物質熱解活化能基本介于144.61~167.34 kJ/mol之間;反應動力學機理均符合Avrami-Erofeev函數,說明不同生物質原料,其成分和結構基本相同,熱化學反應機理基本相同。但反應級數有一定的差異;指前因子介于26.66~33.97 s-1之間。
[參考文獻]
[1] 姚向君,田宜水. 生物質能資源清潔轉化利用技術[M]. 北京:化學工業(yè)出版社,2005.
[2] 王久臣,戴林,田宜水,等. 中國生物質能產業(yè)發(fā)展現狀及趨勢分析[J]. 農業(yè)工程學報,2007,23(9):276-282. Wang Jiuchen, Dai Lin, Tian Yishui, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 276-282. (in Chinese with English abstract)
[3] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks[J]. Energy Conversion and Management, 2004, 45(5): 651-671.
[4] 張曉東,許敏,孫榮峰,等. 玉米秸熱解動力學研究[J]. 燃料化學學報,2006,34(1):123-125. Zhang Xiaodong, Xu Min, Sun Rongfeng, et al. Study on the kinetics of corn stalk pyrolysis by TG-DTG analysis[J]. Journal of Fuel Chemistry & Technology, 2006, 34(1): 123-125. (in Chinese with English abstract)
[5] 賴艷華,呂明新. 秸稈類生物質熱解特性及其動力學研究[J].太陽能學報,2002,23(2):203-206. Lai Yanhua, Lu Mingxin, Ma Chunyuan, et al. Study on the characteristics and dynamics of pyrolysis process agricultural residues[J]. Acta Energiae Solaris Sinica, 2006, 34: 123-125. (in Chinese with English abstract)
[6] 齊國利,董芃. 生物質熱解的動力學特性研究[J]. 電站系統工程,2006,22(5):12-14. Qi Guoli, Dong Peng. Study on kinetics of pyrolysis of biomass[J]. Power System Engineering, 2006, 22(5): 12-14. (in Chinese with English abstract)
[7] 宋春財,胡浩權,朱盛維,等. 生物質秸稈熱重分析及幾種動力學模型結果比較[J]. 燃料化學學報,2003,31(4):311-316. Song Chuncai, Hu Haoquan, Zhu Shengwei, et al. Biomass pyrolysis and its kinetic parameters with different methods[J]. Journal of Fuel Chemistry & Technology, 2003, 31(4): 311-316. (in Chinese with English abstract)
[8] 王明峰,蔣恩臣,周嶺. 玉米秸稈熱解動力學分析[J]. 農業(yè)工程學報,2009,25(2):204-207. Wang Mingfeng, Jiang Enchen, Zhou Ling. Kinetic analysis of cornstalk pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 204-207. (in Chinese with English abstract)
[9] 傅旭峰,仲兆平,肖剛,等. 幾種生物質熱解特性及動力學的對比[J]. 農業(yè)工程學報,2009,25(1):199-202. Fu Xufeng, Zhong Zhaoping, Xiao Gang, et al. Comparative study on pyrolysis characteristics and dynamics of grass biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 199-202. (in Chinese with English abstract)
[10] 肖瑞瑞,楊偉,于廣鎖. 常見農林生物質稻草的催化熱解動力學特性[J]. 化工進展,2013,32(5):1001-1005. Xiao Ruirui, Yang Wei, Yu Guangsuo. Characteristics of catalytic pyrolysis kinetics of straw[J]. Chemical Industry & Engineering Progress, 2013, 32(5): 1001-1005. (in Chinese with English abstract)
[11] 郭清杰,王君,陳明強,等. 采用雙外推法計算稻殼熱解活化能[J]. 化學與生物工程,2008(7):28-30. Guo Qingjie, Wang Jun, Chen Mingqiang, et al. Calculation of the activation energy for thermolysis of rice husks using double exploration method[J]. Chemistry & Bioengineering, 2008(7): 28-30. (in Chinese with English abstract)
[12] 王章霞,陳明強,王君,等. 稻殼熱解特性及其動力學研究[J]. 安徽理工大學學報:自然科學版,2009(1):43-46. [13] 王明峰,蔣恩臣,張強,等. 稻殼熱解模型建立與應用[J].農業(yè)工程學報,2011,27(增刊2):114-118. Wang Mingfeng, Jiang Enchen, Zhang Qiang, et al.Model construction and application for rice husk pyrolysis[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 114-118. (in Chinese with English abstract)
[14] 趙保峰,張曉東,孫立,等. 稻殼熱解的動力學模擬[J]. 工程熱物理學報,2008,29(5):747-750. Zhao Baofeng, Zhang Xiaodong, Sun Li, et al. Kinetic simulation of rice husk pyrolysis[J]. Journal of Engineering Thermophysics, 2008, 29(5): 747-750. (in Chinese with English abstract)
[15] 王昶,徐敬,賈青竹. 植物類生物質熱解特性及動力學研究[J]. 天津科技大學學報,2007,22(1):8-12. Wang Chang, Xu Jing, Jia Qingzhu. Study on characteristics and dynamics of pyrolysis process of wood biomass[J]. Journal of Tianjin University of Science & Technology, 2007, 22(1): 8-12. (in Chinese with English abstract)
[16] 文麗華,王樹榮,施海云,等. 木材熱解特性和動力學研究[J]. 消防科學與技術,2004,23(1):2-5. Wen Lihua, Wang Shurong, Shi Haiyun, et al. Kinetic study on the pyrolysis of wood[J]. Fire Science & Technology, 2004, 23(1): 2-5. (in Chinese with English abstract)
[17] 杜海清,王晶,白雪峰. 木質類生物質熱解過程的熱重分析研究[J]. 黑龍江大學自然科學學報,2008,25(1):85-89. Du Haiqing, Wang Jing, Bai Xuefeng. Study on pyrolysis process of lignocellulosic biomass by thermogravimetric analysis[J]. Journal of Natural Science of Heilongjiang University, 2008, 25(1): 85-89. (in Chinese with English abstract)
[18] 曾凡陽,劉朝,王文釗,等. 生物質熱重實驗及動力學分析[J]. 工業(yè)加熱,2008,37(3):6-8. Zeng Fanyang, Liu Chao, Wang Wenzhao, et al. Thermogrvimetric Experiment and Kinetic Analysis of Biomass[J]. Industrial Heating, 2008, 37(3): 6-8. (in Chinese with English abstract)
[19] 曲雯雯,夏洪應,彭金輝,等. 核桃殼熱解特性及動力學分析[J]. 農業(yè)工程學報,2009,25(2):194-198. (in Chinese with English abstract)
[20] 鄭志鋒,黃元波,蔣劍春,等. 核桃殼熱解特性及幾種動力學模型結果比較[J]. 太陽能學報,2011(11):1677-1682. Zheng Zhifeng, Huang Yuanbo, Jiang Jianchun, et al. Pyrolysis characteristics of walnut shell and its kinetic parameters with different methods[J]. Acta Energiae Solaris Sinica, 2011, 32(11): 1677-1682. (in Chinese with English abstract)
[21] 黃娜,高岱巍,李建偉,等. 生物質三組分熱解反應及動力學的比較[J]. 北京化工大學學報,2007,34(5):462-466. Huang Na, Gao Daiwei, Li Jianwei, et al. Comparison of the pyrolysis and kinetics of three components of biomass[J]. Journal of Beijing University of Chemical Technology, 2007, 34(5): 462-466. (in Chinese with English abstract)
[22] White J E, Catallo W J, Legendre B L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 1-33.
[23] Damartzis T, Vamvuka D, Sfakiotakis S, et al. Thermal degradation studies and kinetic modeling of cardoon (Carnaracardunculus) pyrolysis using thermogravimetric analysis (TGA)[J]. Bioresource Technology, 2011, 102(10): 6230-6238.
[24] Amutio M, Lopez G, Aguado R, et al. Kinetic study of lignocellulosic biomass oxidative pyrolysis[J]. Fuel, 2012, 95: 305-311.
[25] Ranzi E, Corbetta M, Manenti F, et al. Kinetic modeling of the thermal degradation and combustion of biomass[J]. Chemical Engineering Science, 2014, 110: 2-12.
[26] Shen D K, Gu S, Jin B, et al. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods[J]. Bioresource Technology, 2011, 102(2): 2047-2052.
[27] Ga?parovi? L, Labovsky J, Marko? J, et al. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM)[J]. Chemical and Biochemical Engineering Quarterly, 2012, 26(1): 45-53.
[28] Parveen M, Islam M R, Haniu H. Thermal Decomposition Behavior Study of Two Agricultural Solid Wastes for Production of Bio-Fuels by Pyrolysis Technology[J]. Journal of Thermal Science and Technology, 2011, 6(1): 132-139.
[29] Tsamba A J, Yang W, Blasiak W. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells[J]. Fuel Processing Technology, 2006, 87(6): 523-530.
[30] 閔凡飛,張明旭,陳清如,等. 新鮮生物質催化熱解特性的研究[J].林產化學與工業(yè),2008,28(3):28-33. Min Fanfei, Zhang Mingxu, Chen Qingru, et al. Study on catalytic pyrolysis of fresh biomass[J]. Chemistry & Industry of Forest Products, 2008, 28(3): 28-34. (in Chinese with English abstract)
[31] 王威崗,韋杰,董長青. 木質纖維熱解的熱重和反應動力學研究[J]. 可再生能源,2007,25(5):23-36. Wang Weigang, Wei Jie, Dong Changqing. Thermogravimetric and thermokinetic study on pyrolysis of cellulose[J]. Renewable Energy Resources, 2007, 25(5): 23-36. (in Chinese with English abstract)
[32] Vyazovkin S, Wight C A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimicaacta, 1999, 340: 53-68.
[33] FriedmanH L. Kinetics of thermal degradation of char-forming plastic from thermogravimetry. Application to a phenolic plastic[J]. J Polym Sci part C, 1964(6): 183-195.
[34] ?esták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochim Acta, 1971, 31(1): 1-12.
[35] HeideK, H?land W, G?lker H, et al. Die bestimmung kinetischer parameter endothermer zersetzungsreaktionen unter nicht-isothermen bedingungenThermochim. Acta, 1975, 13(4): 365-378.
[36] Zhang J J, Ge L G, Zha X L, et al. Thermal decomposition kinetics of the Zn(II) complex with norfloxacin in static air atmosphere[J]. J Therm Anal Cal, 1999, 58(2): 269-278.
Thermokinetics analysis of biomass based on model-free different heating rate method
Tian Yishui1,2, Wang Ru1,3
(1. Rural Energy and Environmental Research Institute, Chinese Academy of Agricultural Engineering, Beijing 100125, China; 2. Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture, Beijing 100125, China; 3. College of Engineering of China Agricultural University, Beijing 100083, China)
Abstract:Thermokinetics analysis can test the relationship between physical and chemical properties of material and temperature through controlling heating rate. Through thermokinetics analysis, we can study the combustion, pyrolysis and gasification reaction kinetics of biomass, decide the reaction kinetics model and calculate the reaction kinetics parameters, such as activation energy and pre-exponential factor. In the article, we chose 6 kinds of biomass raw materials, including corn straw, wheat straw, cotton stalk, pine sawdust, peanut shell, and residue of sweet sorghum. The thermal gravity analysis (TG) experiments were carried out, and 8 loss curves were obtained under non-isothermal conditions at linear heating rate of 5, 10, 20 and 30 ℃/min. The 99.99% nitrogen continuously passed and the temperature rose from room temperature to 600℃. The initial sample weight was always within the range of 3-4 mg. The method of different heating rates was applied to non-isothermal data. The Friedman method and the Flynn-Wall-Ozawa method were used for the estimation of the activation energy, and the Malek method was used for the decision of the reaction kinetics model, which were defined as the sample of the pre-exponential factor and the conversion function, respectively. The results showed that the pyrolysis process of biomass included 3 main stages: drying and preheating stage, volatile matter evaporation stage and carbonization stage. The higher the total moisture in biomass, the greater the mass loss rate for the sample at the first stage. Volatile matter evaporation stage was the most important stage in the pyrolysis process, in which the mass loss rate of the sample increased rapidly with the increase of the temperature. The carbonization stage was mainly the continued pyrolysis of lignin, and carbon and ash were the final products. In the whole range of conversion rate, the activation energy of biomass was not a fixed value, and it would increase gradually with the increase of conversion rate. Due to the influence of the particle size, the buoyancy and the non homogeneous phase, in the range of conversion rate <0.2, and >0.8, the TG curve was difficult to meet the requirements of the temperature at different heating rates under the same conversion rate. In the volatile matter evaporation stage, the activation energies obtained by Friedman method and Flynn-Wall-Ozawa method were almost the same and hardly changed with the conversion rate. The pyrolysis activation energy of the biomass ranged from 144.61 to 167.34 kJ/mol, and the correlation coefficient was almost between 0.99 and 1.00. This shows that the calculation method of the activation energy is reliable in this paper. Among biomass raw materials, corn straw and wheat straw belonged to gramineous crops, whose activation energy was high, 167.34 and 167.20 kJ/mol respectively; lignification degree of cotton stalk, pine sawdust and peanut shell was higher, whose activation energy was lower, 154.06, 147.29 and 146.91 kJ/mol respectively; residue of sweet sorghum was processed by biochemical process, whose activation energy was the lowest, 144.61 kJ/mol. The reaction kinetics models of the biomass conformed the Avrami-Erofeev function. This shows that because the composition and structure of different biomass materials are basically the same, the reaction kinetics models are basically the same. But, there were some differences in the reaction orders. The reaction order of corn stalk and peanut shell was 3; the reaction order of wheat straw, cotton stalk and residue of sweet sorghum was 2; and the reaction order of pine sawdust was 1.5. The pre-exponential factor of the biomass ranged from 26.66 to 33.97 s-1. Our results show that biomass pyrolysis is an extremely complex multi-step process, which has different activation energy and reaction kinetics model in different temperature range. This is important theoretical basis for the optimization of process conditions and engineering amplification of biomass pyrolysis process.
Keywords:biomass; thermodynamics; temperature; thermal analysis; activation energy; reaction kinetics model
作者簡介:田宜水,男,遼寧阜新人,研究員,主要從事生物質能、秸稈綜合利用和農業(yè)循環(huán)經濟研究工作。北京農業(yè)部規(guī)劃設計研究院,100125。Email:yishuit@yahoo.com。中國農業(yè)工程學會會員:田宜水(E041200402S)
基金項目:2014年農村能源綜合建設項目
收稿日期:2015-07-08
修訂日期:2015-12-17
中圖分類號:TK6
文獻標志碼:A
文章編號:1002-6819(2016)-03-0234-07
doi:10.11975/j.issn.1002-6819.2016.03.034 10.11975/j.issn.1002-6819.2016.03.034http://www.tcsae.org