江蘇省射陽縣阜余小學 徐古軍
運用化歸思想,提升數學課堂實效
江蘇省射陽縣阜余小學 徐古軍
數學是一門注重思維的學科,強調用方法解決問題,而數學方法中的化歸思想就是其中最典型的思維方法之一。在數學課堂教學中,巧妙合理地運用化歸思想可以將數學問題化難為易、化繁為簡,從而輕松解決數學問題。
小學數學;教學實效;化歸思想
化歸思想的內涵在于簡化,從復雜抽象的問題中看到簡單的本質,在小學數學課堂教學中,教師要巧妙運用化歸思想,注重在課堂教學中化歸思想的滲透,就能幫助學生將復雜問題簡單化、化生疏的知識為熟悉的知識、將抽象的原理化為直觀,從而輕松解決數學問題。基于此,本文就化歸思想在提升數學課堂實效性方面的具體做法談一談自己的看法。
所謂知識生長點,是指知識的實質和本源,找準了知識生長點,也就是找準了學習的方向,學生學起來自然事半功倍。例如我在教學的過程中,首先要做的往往就是啟發學生聯系舊知識與新知識,即引導學生從自己已經學習過的知識中尋求與新學到的知識的相似之處,將新問題中陌生的內容或形式轉化為較為熟悉的內容或形式,進而解決新的問題。
例如我在講到“周長的解法”這節課時,就滲透了化歸的思想。首先我給學生展示了一片樹葉,然后我問學生:“我們如何準確測量這片形狀不規則的葉子呢?請發揮自己的想象提出解決辦法。”過了一會,有個學生舉手回答道:“由于葉子是不規則圖形,用普通的求周長的方法解決不了,所以我認為可以用一根細線繞著葉子的形狀走一圈,然后拉直細線,再用直尺測量細線的長度,得出來的結果也就等于樹葉的周長。”我極力表揚了那個學生,然后總結道:“這位同學正是運用到了化歸的思想,將樹葉的周長轉化為細線的長,這種轉化的思維非常值得大家學習。”通過這種引導,聯系了以前的思維方法,并巧妙運用于新的知識中,極大啟發了學生的思維。
兒童心理學表明:兒童學習新知識總是建立在一定的知識經驗上。因此,教師在教學時要善于利用生活中常見的事物,并聯系學習過的知識點,為學生提供豐富的感性材料,從而豐富學生的生活經驗,激發其記憶表象,并能從中提煉出新知識的“生長點”,將學生未曾了解的知識轉化為學生熟悉的內容,學生也在這個過程中逐漸學會了思考問題解決問題的方法。
將復雜問題簡單化是化歸思想的核心,在解決數學問題的過程中,有些前提條件倘若學生缺乏揣摩,就往往把握不了問題本質,更不用提解決問題了。因此,面對這類問題時,教師便可以引導學生運用化歸的思想去思考,將復雜問題簡單化,從而化繁為簡,達到由表及里、由現象到本質解決問題的目的。
例如有一道“百分數的應用”的習題如下:小明、 小剛、 小亮為了慶祝國慶節一共做了3萬面小旗。其中小明比小剛少做了12%,小亮比小剛多做了15%,三人各自做了多少面小旗?對于這個數學問題,學生倘若單純地使用以往的學習經驗就難免繞彎子,最后越想越糊涂。因此,當學生都陷入困惑中時,我適時地引導學生將“小明比小剛少做12%”改為“小剛比小明多做了12%”,然后再來看這個問題,一切就明了多了:小剛為題目中的關鍵點。通過再次讀題,學生立刻明白了:小亮比小剛做的多,小剛比小明做的多,也就是小亮做的最多,小剛次之,小明做的最少。這個時候,我又結合百分數的相關內容引導學生通過畫線段來解決,利用數形結合,這個數學問題便簡單多了。
在這個教學案例中,我主要采用了化繁為簡、鋪路搭橋的教學手法,在解決百分數的相關問題時,對已知條件進行合理轉化,于是,比較復雜的問題變得十分簡單,解決數學問題時也就顯得得心應手了。
希爾伯特曾說:“當我聽別人講解某些數學問題時,常覺得很難理解,甚至不可能理解。這時便想,是否可以將問題化簡些呢?往往在終于弄清楚之后,實際上它只是一個更簡單的問題。”轉化,指的就是把將要解決的復雜的數學問題經過一定的轉化,歸結成比原來問題更簡單、更易于解決的問題。在教學中,能將日常生活中的事件與數學問題結合起來,更能促進學生對化歸思想的理解。
例如一道經典的習題“雞兔同籠”:雞兔同籠,共有頭48個,腳132只,求雞和兔各有多少只。對于接觸數學尚處初級階段的學生而言,這一類的問題還是很有難度的。因此,要想較為輕松地解決這個問題,在課堂教學的過程中,教師要在保證題目中已知條件不變的情況下轉換問題方向,通過引導轉化讓較難的數學問題簡單化。這個時候,我們可以引導學生將原來的習題變為“一只雞有幾個頭,幾個腳,一只兔有幾個頭,幾個腳”,然后讓學生通過列表格的方法逐個增加或減少雞和兔的個數,進而解答這個數學問題。
在解答這個問題的過程中,學生通過猜想與論證一步步完成解答,極大發展了他們的思維。由這個案例也可以看出,在解決一些較難的問題時,學生往往會無從下手,教師通過引導學生將難的部分化解為簡單的問題,這樣就會輕松許多,而化難為簡的過程恰恰就是最鍛煉思維的過程,需要極其認真地對待。
總之,在數學教學中,數學思維是最重要的,而思維是融化于思想中的,化歸思想倡導簡化的思維,將復雜問題簡單化。教師要在教學過程中合理滲透,具體問題具體分析,將能真正幫助學生思考,提升學習效率。
[1]施澤.如何在數學教學中培養學生的化歸能力——以“倍數與因數”教學為例[J].小學教學參考,2015(29).
[2]張敏.基于數學課堂的“化歸思維”培養[J].數學教學通訊,2016(13).