宋明珠, 吳永鋒, 向亞云
(銅陵學院 數學與計算機學院, 安徽 銅陵 244000 )
?
兩兩NQD陣列加權和的LP收斂性
宋明珠, 吳永鋒, 向亞云
(銅陵學院 數學與計算機學院, 安徽 銅陵 244000 )
摘要:研究了兩兩NQD陣列加權和的Lp收斂性,在更弱的條件下得到與陳平炎相同的結論,改進和推廣了前人的研究成果.
關鍵詞:兩兩NQD陣列; 加權和; Lp收斂性
SONG Mingzhu, WU Yongfeng, XIANG Yayun
(InstituteofMathematicsandComputing,TonglingUniversity,Tongling244000,AnhuiProvince,China)
1引言和引理
兩兩NQD (Negatively Quadrant Dependend)列的概念是由統計學家LEHMANN[1]于1966年提出,其定義如下:
定義1若?x,y∈R,都有
P(X≤x,Y≤y)≤P(X≤x)P(Y≤y),

兩兩NQD列是一類非常廣泛的隨機變量序列,著名的NA序列[2]、LNQD序列[3]都是其特殊情況,因此對兩兩NQD列的研究顯得更為迫切.兩兩NQD列極限理論的研究已取得了一些成果,詳見文獻[4-11].
定義2若

文獻[7]在2階Cesàro一致可積的條件下,得到了兩兩NQD列的Lp收斂性.文獻[8]在p(1≤p<2)階Cesàro一致可積的條件下,得到了與文獻[7]相同的結果.
本文在更弱的條件下得到與文獻[8]相同的結論,改進和推廣了前人的研究成果.
引理1[1]設隨機變量X和Y是NQD的,則
(1)EXY≤EXEY;
(2) 對?x,y∈R,都有
P(X>x,Y>y)≤P(X>x)P(Y>y);
(3) 如f,g同為非降(或非增)函數,則f(X)與g(Y)仍為NQD的.


則有


2主要結果及證明









對任意給定的ε>0,有

(1)
只須證I1→0,I2→0(n→∞).



I1→0(n→∞).
(2)
由Zni的定義,知

因為EXni=0,所以?t≥ε,有


則存在N1∈N,對?n>N1,t≥ε,有

由引理2和Cr-不等式得,對?n>N1,有

CI1=∶CI3+CI1.
(3)
下證I3→0.
對?n>N1,t≥ε,有


(4)
因為ε是給定的常數,由條件(1)、(2)得


(5)
又因為


(6)
由式(1)~(6)可得定理1成立.

則




(7)
則

由式(7)可得,對?ε>0,?x0>0,
當x>x0時,有



由1≤p<2以及ε的任意性,可得

即推論1(ii)成立,由推論1知推論2成立.
注由推論2的證明過程可知,本文在更弱的條件下獲得了與文獻[8]相同的結論,進而推廣并改進了文獻[8]的結果.
參考文獻(References):
[1]LEHMAMNEL.Someconceptsofdependence[J].AnnMathStat, 1966,37:1137-1153.
[2]JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Ann-Statist,1983(11):286-295.
[3]NEWMAN C M. Asymptotic independence and limit theorems for positively and negatively dependent random variables[C]//TONG Y L. Inequalities in Statistics and Probability. Hayward:Inst Math Statist,1984(5):127-140.
[4]王岳寶,嚴繼高,成鳳旸,等.關于不同分布兩兩NQD列的Jamison型加權乘積和的強穩定性[J].數學年刊:A輯,2001,22(6):701-706.
WANG Yuebao, YAN Jigao, CHENG Fengyang, et al. On the strong stability for Jamison type weighted product sums of pairwise NQD series with different distribution[J]. Chinese Annals of Mathematics:SerA,2001,22(6):701-706.
[5]吳群英.兩兩NQD列的收斂性質[J].數學學報,2002,45(3):617-624.
WU Qunying. Convergence properties of pairwise NQD random sequences[J].Acta Mathematica Sinica, 2002,45(3):617-624.
[6]陳平炎.兩兩NQD列的強大數定律[J].數學物理學報:A輯,2005,25(3):386-392.
CHEN Pingyan. On the strong law of large numbers for pairwise NQD random variables[J].Acta Mathematica Scientia:SerA,2005,25(3):386-392.
[7]萬成高.兩兩NQD列的大數定律和完全收斂性[J].應用數學學報:中文版,2005,28(2):253-261.
WAN Chenggao. Law of large numbers and complete convergence for pairwise NQD random sequences [J]. Acta Mathematicae Applicatae Sinica:Chinese Series,2005,28(2):253-261.
[8]陳平炎.兩兩NQD隨機序列的Lr收斂性[J].數學物理學報:A輯,2008,28(3):447-453.
CHEN Pingyan.Lrconvergence for pairwise NQD random variables[J]. Acta Mathematica Scientia:SerA, 2008,28(3):447-453.
[9]WU Y F,GUAN M. Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables[J]. J Math Anal Appl,201l,377(2):613-623.
[10]邱德華,甘師信.兩兩NQD列隨機變量序列的完全收斂性[J].武漢大學學報:理學版,2013,59(3):285-290.
QIU Dehua, GAN Shixin. Complete convergence for sequences of pairwise NQD random variables[J]. Journal of Wuhan University: Natural Sciences Edition,2013,59(3):285-290.
[11]穆燕,汪忠志.關于兩兩NQD隨機序列的一個極限定理[J].應用概率統計,2014,30(3):289-295.
MU Yan, WANG Zhongzhi. A limit theorem for pairwise NQD random variables[J]. Chinese Journal of Applied Probability and Statistics,2014,30(3):289-295.

Lpconvergence for weighted sums of arrays with pairwise NQD sequences. Journal of Zhejiang University(Science Edition), 2016,43(2):164-167
Abstract:Lp convergence for weighted sums of arrays with pairwise NQD sequences was studied. The corresponding results about CHEN are obtained under the weaker conditions, which extends the well-known theorems in the previous papers.
Key Words:arrays with pairwise NQD sequences; weighted sums; Lp convergence
中圖分類號:O 211.4
文獻標志碼:A
文章編號:1008-9497(2016)02-164-04
DOI:10.3785/j.issn.1008-9497.2016.02.007
基金項目:安徽省高校自然科學研究重點項目(Kj2016A705);安徽省高校優秀青年人才支持計劃重點項目(gxyqZD2016317). 宋明珠(1979-),ORCID:http://orcid.org/0000-0002-4529-6306,女,碩士,講師,主要從事隨機環境中的馬氏鏈研究,E-mail:songmingzhu2006@126.com.
收稿日期:2015-05-18.