999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

General Coulson-type Integral Formula for theEnergy of Digraphs?

2016-05-22 02:34:07GAONanLVWei
工程數學學報 2016年5期

GAO Nan,LV Wei

(1-Department of App lied Mathematics,Northwestern Polytechnical University,Xi’an 710072;2-College of Science,Xi’an Shiyou University,X i’an 710065)

1 Introduction

D=(V,H)denotes a digraph of order n,where V={v1,v2,···,vn}is the set of vertices of D with|V|=n,and H is the set of arcs consisting of ordered pairs of distinct vertices.Throughout this paper,we assume that D has no loops and no multiple arcs.

The ad jacency matrix A of a digraph D whose vertex set v1,v2,···,vnis n × n matrix,and the entry aijis defined as

The characteristic polynom ial|x I?A|of thead jacencymatrix A of D is called the characteristic polynom ialof D and it isdenoted by ?A(D,x).Theeigenvaluesλ1,λ2,···,λnof A are called eigenvalues of D.The eigenvalues of D are in general com plex numbers as the ad jacency matrix A of D is not necessarily a symmetric matrix.

The energy of digraphswas introduced by Pe?na and Rada in[1].It was defined as

where λ1,λ2,···,λnare the(possibly com plex)eigenvalues of D and Re(λi)denotes the real part ofλi.

The energy E(G)of G is defined to be the sum of the absolute values of the eigenvalues of G,which is an invariant related to totalπ-electron energy[2].In 1940,Coulson[3]obtained an im portant integral formula whichmakes it possible to calculate the energy of a graph w ithout know ing its spectrum.That is,for a graph G,its energy

where?A(G,x)is the characteristic polynom ial of A(G)(called the characteristic polynom ial of G).

In the case of a digraph D with n vertices,it was shown[1]

In thispaper,wegivea generalCou lson-type integral formula for theenergy ofdigraphs.This formula is app lied to any polynom ialswhose sum s of the eigenvalues are zeros.

2 prelim inaries

We firstly introduce some basic concepts and results from com plex analysis which w ill be used later.The following three results in com plex analysis arewell known(see[4]).

Lemm a 1(Cauchy’s theorem)Let D bea bounded domainw ith piecew isesmooth boundary.If f(z)is analytic on D,and extends smoothly to?D,then∫

Lemm a 2(Cauchy integral formula)Let D be a bounded domain with piecew ise smooth boundary.If f(z)is analytic on D,and extends smooth ly to the boundary of D,then

Lemm a 3 Suppose thatΓis a piecew ise smooth curve.If f(z)is a continuous function onΓ,then

Further,ifΓ has length L,and|f(z)|≤mon Γ,then

We also need the following simple lemma. The proof is omitted here.

Lemm a 4 Let Srbe the arc z(θ)=a0+reiθ, θ1≤ θ≤ θ2,where a0and r>0 are two realnumbers.If f(z)is a continuous function on the arc Srfor all small r such that

then

3 The main resu lt

Let D be a digraph with n vertices and eigenvaluesλ1,λ2,···,λn.If A is the ad jacency matrix of D then

which imp lies

Theorem 1 Let D be a digraph of order n and?A(D,x)is the characteristic polynom ial of D.Then the energy of D can be given by the follow ing integral formula

proo f If?A(D,x)=(x?λ1)(x?λ2)···(x?λn)is the characteristic polynom ial of the digraph D then the eigenvalues λ1,λ2,···,λnare in general com plex numbers.Since the coeffi cients of?A(D,x)are real numbers(integer)we know that ifλkis an eigenvalue thenisalso an eigenvalue.Furthermore,this can appear on the imaginary axis.Bearing in mind that it is not possible to integrate along a curve passing through a singu larity,the contourΓis changed to the one shown in Figure 1.

In this contour,we choose R>|λ1|,where λ1has maximal module among all λk,k=1,2,···,n,and

As we can see,Γis a positively(i.e.,counter-clockwisely)oriented piecew ise smooth Jordan curve.Γconsists of counterclockw ise oriented C1,C2,Crand C3,with radius R,?,r and ?′,respectively,and four line segments.

Figure 1:The curveΓin Theorem 1

Suppose that

In otherwords,λ1,λ2,···,λn,?λ1,?λ2,···,?λnconsist of the roots of the polynom ial φA(D,x).It is easy to know that

Thus,we can get

that is

For each point of{|λk||λk?=0,k=1,2,···,n}is in the interior of the curve Γ,while each point of{?|λk||λk?=0,k=1,2,···,n}is in the exterior of the curve Γ.By Lemma 1 and Lemma 2,we obtain that

for|z|<δ.Therefore,it follows from Lemma 4

which imp lies that for any?>0 there exists N>0,such that

for|z|>N.Therefore,it holds from Lemma 3

Consequently,we can obtain

Referen ces:

[1]Pe?na I,Rada J.Energy of d igraphs[J].Linear mu ltilinear A lgebra,2008,56(5):565-579

[2]Yates K.H¨uckel molecu lar O rbital Theory[M].New York:Academ ic Press,1978

[3]Cou lson C A.On the calcu lation of the energy in unsatu rated hyd rocarbon molecu les[J].Proceed ings of the Cam bridge Philosophical Society,1940,36(2):201-203

[4]Gam elin T W.Com plex Analysis[M].New York:Sp ringer-Verlag,2001

主站蜘蛛池模板: 国产精品深爱在线| 国产自无码视频在线观看| 亚洲综合精品香蕉久久网| 国产特一级毛片| 久久精品中文无码资源站| 亚洲三级电影在线播放| 国产18在线| 国产成人亚洲精品色欲AV | 国产成人综合日韩精品无码首页 | 无码视频国产精品一区二区| 99伊人精品| 中文字幕日韩欧美| 91精品久久久无码中文字幕vr| 国产v精品成人免费视频71pao | 一级香蕉视频在线观看| 色噜噜狠狠狠综合曰曰曰| 久草视频福利在线观看| 热思思久久免费视频| 国产人免费人成免费视频| 伊人蕉久影院| 精品视频在线观看你懂的一区| 国产粉嫩粉嫩的18在线播放91| 欧美一级99在线观看国产| 国产美女免费| 扒开粉嫩的小缝隙喷白浆视频| 在线观看视频一区二区| 99re免费视频| 免费人欧美成又黄又爽的视频| 免费在线一区| 国产精品网址在线观看你懂的| 2020精品极品国产色在线观看| 亚洲第一香蕉视频| 欧美.成人.综合在线| 91麻豆国产精品91久久久| 日韩欧美中文亚洲高清在线| 久久黄色免费电影| 综合色88| 国产视频a| 高潮毛片免费观看| 亚洲无码不卡网| 亚洲国产日韩在线成人蜜芽| 2024av在线无码中文最新| 精品国产中文一级毛片在线看| 国产精品九九视频| 国产在线一区视频| 亚洲欧洲日本在线| 无码专区在线观看| 在线免费a视频| 在线观看视频一区二区| 中文字幕2区| 69视频国产| 亚洲精选无码久久久| 国产高清免费午夜在线视频| 一本大道无码高清| 国产在线视频导航| 国产日韩av在线播放| 免费无码AV片在线观看中文| 午夜视频在线观看免费网站 | 国产欧美高清| 国产视频a| 国产一级妓女av网站| 亚洲高清在线天堂精品| 伊人狠狠丁香婷婷综合色| 重口调教一区二区视频| 国产人妖视频一区在线观看| 亚洲欧美色中文字幕| 亚洲第一极品精品无码| 欧美精品1区| 亚洲看片网| 夜夜拍夜夜爽| 欧美成人午夜视频| 人禽伦免费交视频网页播放| 国产精品永久免费嫩草研究院| 99视频精品在线观看| 国产在线91在线电影| 亚洲成年人片| 精品国产aⅴ一区二区三区| 一级毛片在线播放免费观看| 无遮挡一级毛片呦女视频| 色屁屁一区二区三区视频国产| 国产欧美日韩另类精彩视频| 国产在线观看91精品亚瑟|