鄧亞運,莊英瀅,馮 越,陸思源,程家高,徐曉勇,2*(.華東理工大學藥學院藥物化工所,上海市化學生物學重點實驗室,上海 200237;2.上海生物制造技術協同創新中心,上海 200237)
?
順硝烯新煙堿殺蟲劑環氧蟲啶在水中的光降解
鄧亞運1,莊英瀅1,馮 越1,陸思源1,程家高1,徐曉勇1,2*(1.華東理工大學藥學院藥物化工所,上海市化學生物學重點實驗室,上海 200237;2.上海生物制造技術協同創新中心,上海 200237)
摘要:為了正確評估新型殺蟲劑環氧蟲啶(CYC)的環境風險,了解環氧蟲啶在水環境中的光降解規律,探討了CYC初始濃度、溫度、初始pH值、過氧化氫濃度及硝酸根對CYC光降解的影響.結果表明,CYC的光降解符合一級動力學反應.直接光降解中,隨濃度降低、溫度升高,光解速率加快,環氧蟲啶的反應活化能為21.27kJ/mol.通過測定CYC的pKa值為3.42以及模擬計算CYC不同粒子形式的光反應活性,可知pH值對CYC光解的影響較為復雜:酸性條件下,CYC的降解速率取決于其形態(陽離子和中性粒子)與單線態能量;堿性條件下,降解速率主要受羥基自由基數量的影響.間接光降解中,硝酸根和過氧化氫對CYC光解均表現為促進作用.在評估環氧蟲啶的環境風險時,應綜合考慮環境因素對其降解的影響.
關鍵詞:新煙堿類殺蟲劑;環氧蟲啶;光降解;羥基自由基;HOMO-LUMO值
* 責任作者, 教授, xyxu@ecust.edu.cn
近年來,新煙堿類殺蟲劑被認為是農業領域的里程碑[1].是自擬除蟲菊酯商業化后銷售量增長最快的一類農藥,其全球銷量占整個殺蟲劑市場的24%,約為26.32億美元[2].至今為止,已經商業化的新煙堿類殺蟲劑包括吡蟲啉、噻蟲啉等.當殺蟲劑在田間噴灑至土壤表面、水體和植物表面之后,它們將在自然環境中經歷生物降解、水解及光解過程,在這些變化過程中往往會對環境產生負面的影響,因而必須進行其環境行為的研究.有關新煙堿殺蟲劑光降解研究已有報道[1,4-5], Pe?a等[6]研究了噻蟲嗪和噻蟲啉在污水、溶解有機質和表面活性劑的水溶液中的光降解.
作為對吡蟲啉的抗性害蟲具有顯著活性的新煙堿殺蟲劑,環氧蟲啶(CYC)具有良好的市場前景,Shao等[7]在2010年首次對它進行了報導.該殺蟲劑由華東理工大學李忠教授等設計合成,具有廣譜和高效的殺蟲活性,極有前景進入市場成為國際上具有重要影響力的新一類殺蟲劑.因而很有必要進行環氧蟲啶環境行為的研究,為環氧蟲啶的進一步開發和安全合理使用以及最終消除可能產生的環境污染提供科學依據. Liu 等[8]研究了環氧蟲啶在淹水無氧土壤中的降解情況.然而關于環氧蟲啶在水環境中的光穩定性還缺乏研究.
本文對環氧蟲啶在水中的光穩定性進行了研究,包括直接光降解和間接光降解兩部分.考察了濃度、溫度、pH值、過氧化氫及硝酸根等影響因素,以期為評價環氧蟲啶的環境特性提供科學依據.
1.1 材料
用于HPLC分析的乙腈為色譜純,購自Merck公司;MilliQ超純水(Milli-pore, 18M?·cm);環氧蟲啶標準品(實驗室自制,含量≥99.0%).其它試劑均為分析純.
1.2 儀器
XPA系列走馬燈式旋轉光反應儀(南京胥江機電廠);Agilent 1200液相色譜儀,二極管陣列(DAD)檢測器;光電分析天平,Mettler Toledo EL204,精確到0.1mg;pH精密酸度計,雷磁PHS-3C;Sirius T3理化常數儀.
1.3 實驗方法
使用Sirius T3理化常數儀進行空白樣實驗,測定試驗參數,測定環氧蟲啶的pKa值.
采用Chemoffice軟件構建小分子三維結構,采用Gaussian軟件,分別計算環氧蟲啶小分子的HOMO和LUMO值并計算軌道差,預測環氧蟲啶不同狀態下的反應活性.
用超純水準確配制環氧蟲啶的溶液,同時添加不同濃度的化合物作為影響因子,取新鮮配制的溶液于50mL石英試管中,置于光化學反應儀上,進行光照反應,并設置鋁箔包裹的黑暗對照.燈源為300W高壓汞燈,光照時石英試管距光源10cm.間隔一定時間取樣,對樣品進行HPLC分析.在pH對環氧蟲啶光降解影響實驗中,用NaOH和HCl調節超純水的pH值,并使用該pH的溶液配制環氧蟲啶溶液.
采用一級反應動力學描述光解反應,并使用ln(Ct/C0)-t線性擬合得到一級反應速率常數k.公式T1/2=ln2/k計算半衰期.
1.4 分析方法
CYC的定量分析采用Agilent 1200液相色譜分析.分析柱為Zobarx Extend-C18 (5μm, 250mm×4.6mm),柱溫25℃.流速為1ml/min,紫外檢測波長為340nm,自動進樣,進樣量為10μL.流動相為甲醇/水=30:70(體積比),樣品運行時間為6min.此分析條件下,環氧蟲啶的保留時間為4.39min.
2.1 環氧蟲啶的直接光降解
2.1.1 濃度對環氧蟲啶光降解的影響 從表1和圖1可見,濃度為5×10-5,1×10-4, 2× 10-4mol/L的環氧蟲啶光降解速率常數分別為0.0911,0.0578,0.0294min-1,環氧蟲啶初始濃度增加,光降解速率常數k減小.與Orellana-García等[9]對除草劑氨基三唑、二氯吡啶酸、氯氟吡氧乙酸、二氯苯二甲脲光解的研究結果一致.本研究中同時也進行了對照暗反應實驗,結果表明環氧蟲啶在無光照下沒有降解,說明水解或生物降解對環氧蟲啶的光降解沒有貢獻.
2.1.2 溫度對環氧蟲啶光降解的影響 實驗結果見表1與圖2,表明溫度對環氧蟲啶光解有重要影響.15℃,25℃,35℃下,環氧蟲啶光降解半衰期對應為11.04,7.61,6.21min.15℃時環氧蟲啶的光降解速率僅為35℃的56.25%.可見升高環境溫度,環氧蟲啶光降解速率常數增加,反應加快.環氧蟲啶的光降解速率常數與溫度之間的關系,遵循Arrhenius-type經驗式:

表1 環氧蟲啶在不同條件下的光降解動力學常數Table 1 Cycloxaprid photodegradation kinetics constants under different conditions

圖1 不同底物濃度對環氧蟲啶直接光降解的影響Fig.1 Effect of initial concentration on direct photolysis of CYC in Milli-Q water

式中:k是反應速率常數,min-1;T是絕對溫度,K.
環氧蟲啶的反應活化能為21.27KJ/mol.溫度影響環氧蟲啶的光降解,因而在考察其他因素的影響時,實驗溫度嚴格控制為25℃.

圖2 溫度對環氧蟲啶直接光降解的影響Fig.2 Effect of temperature on direct photolysis of CYC in Milli-Q water
2.1.3 pH值對環氧蟲啶光降解的影響 很多研究表明,溶液的pH值能夠顯著影響有機化合物的光降解[10].Bagal等[15]研究表明pH值降低2,4-二硝基苯酚的光降解速率變慢,這是由于低pH值下,2,4-二硝基苯酚為中性粒子,比陰離子狀態對光敏感.Zhou等[16]研究對氨基苯甲酸的光解,發現對氨基苯甲酸的光降解速率隨著pH值的增大而加快.Benitez等[17]發現高pH值環境抑制苯并三唑和N,N-二乙基間甲苯甲酰胺的光降解.
初始濃度為5×10-5mol/L的環氧蟲啶在不同pH條件下的光降解情況如圖3和表1所示.pH 3.00,4.76,7.63,9.20,10.05條件下對應的環氧蟲啶光降解速率常數分別為1.0622,0.0931,0.0911, 0.0501,0.0391min-1.可見,pH值對水中環氧蟲啶的光降解具有非常重要的影響,隨著pH值的增加,環氧蟲啶的光降解變慢.通過Sirius T3理化常數測定儀測得環氧蟲啶的pKa值為3.42,因此,水溶液中,環氧蟲啶存在中性分子和陽離子兩種狀態.pH<7時,隨pH值降低,環氧蟲啶在溶液中陽離子含量增加;pH>7時,溶液中環氧蟲啶以中性分子形式存在.基于以上結果,猜測環氧蟲啶的陽離子光反應活性高于環氧蟲啶中性分子.Zhou 等[16]利用DFT計算出對氨基苯甲酸的各粒子形態的單線態能量值,發現其光降解反應速率與該值有關.單線態能量值越小,粒子越易發生光反應,即光降解速率越快.為驗證猜想,我們也利用Gaussian 03計算環氧蟲啶不同粒子的LOMOHOMO值.如圖4所示,環氧蟲啶存在兩種不同的構型,左圖為它們的中性分子狀態,右圖為陽離子, 在(a)構型下的陽離子LOMO-HOMO值為3.89eV,中性分子為4.50eV;環氧蟲啶在(b)構型下的陽離子為3.95eV,中性分子為4.64eV.比較兩種構型中陽離子和中性分子的LOMO-HOMO值,可知環氧蟲啶的陽離子均比中性分子所需活化能低.環氧蟲啶的陽離子更易發生光降解反應,當溶液中環氧蟲啶陽離子的含量增多時,光降解速率加快.以上結論合理地解釋了環氧蟲啶處于酸性環境中光降解比堿性環境中快的現象.

圖3 pH值對環氧蟲啶光降解的影響Fig.3 Effect of initial pH value on the photodegradation of cycloxaprid
堿性條件下,溶液中的環氧蟲啶以中性分子形式存在,其含量不再隨pH值變化而改變.而由表1可知,pH 7.63,9.20,10.05條件下對應的環氧蟲啶光降解半衰期存在差異,分別為7.61,13.84, 17.73min.因此,堿性條件下,環氧蟲啶的光降解速率隨著pH增加而變慢的現象與環氧蟲啶本身性質無關.可能是由于: a)高pH值環境下,堿性降解產物的累積抑制光降解過程; b)隨著pH值的增加,羥基自由基的氧化性降低[18]; c)堿性條件下,羥基自由基迅速消亡[19].Xu等[19]研究鄰苯二甲酸二甲酯的光降解,發現堿性溶液中羥基自由基的含量降低導致鄰苯二甲酸二甲酯的光降解變慢,如式(2)、(3)所示.


圖4 兩種構型的環氧蟲啶的陽離子和中性分子結構Fig.4 The cations and neutral particles of two configuration for cycloxaprid
猜測在堿性條件下,環氧蟲啶的光降解速率與溶液中羥基自由基的含量有關.為驗證猜測,進一步設計實驗,在不同pH值的環氧蟲啶溶液中加入1%叔丁醇作為羥基自由基捕獲劑.結果表明pH為3.00時,加入叔丁醇并未對環氧蟲啶的光降解產生明顯影響.然而pH9.20時,叔丁醇的加入使得環氧蟲啶的光解速率僅為原先的55.29%.叔丁醇顯著減弱該條件下環氧蟲啶的光降解.因此,在堿性條件下,羥基自由基是環氧蟲啶光降解的主要因素.
結合圖表的數據及結論,發現環氧蟲啶光降解與兩個因素有關:一是環氧蟲啶本身的性質,二是溶液中羥基自由基的含量.當pH<7時,環氧蟲啶本身的性質決定了光降解速率,羥基自由基對環氧蟲啶光降解反應的貢獻小;當pH>7時,溶液中羥基自由基的含量成為決定性因素.
2.2 環氧蟲啶的間接光降解
2.2.1 過氧化氫對環氧蟲啶光降解的影響 許多研究表明,高濃度的過氧化氫對于化合物的光降解具有促進作用[20].然而,也有研究表明,光降解速率并不隨過氧化氫濃度的增加一直增加,對于不同的化合物,存在最適宜的過氧化氫濃度[25].為確定過氧化氫對環氧蟲啶光降解的影響,實驗研究了過氧化氫濃度為2×10-3mol/L, 5× 10-3mol/L,1×10-2mol/L和1.5×10-2mol/L時環氧蟲啶的光降解情況.由圖5和表1可以看出,過氧化氫的濃度從0mol/L增加到1×10-2mol/L時,環氧蟲啶的光降解速率也隨之增加;然而當過氧化氫的濃度增至1.5×10-2mol/L時,相比于1× 10-2mol/L,降解速率反而減小.

圖5 過氧化氫對環氧蟲啶光降解的影響Fig.5 Effect of initial H2O2 concentration on the photodegradation of cycloxaprid
2×10-3mol/L濃度的H2O2條件下,環氧蟲啶光降解速率常數是超純水中光降解速率的2.93 倍. 5×10-3mol/L,1×10-2mol/L和1.5×10-2mol/L濃度的過氧化氫條件下,環氧蟲啶的光降解速率常數依次變為原來的5.13,7.71和4.89倍.數據顯示,過氧化氫具有明顯的加速作用.這主要是因為低濃度的過氧化氫在光照下會生成羥基自由基,加速光降解的進行,如下式[27]:

但過氧化氫加速光降解反應存在最優化濃度,過氧化氫濃度為1.5×10-2mol/L的降解速率常數比1×10-2mol/L時的降解速率常數降低36.56%.這主要是由于隨著過氧化氫濃度的增加,溶液中未被光照激發成羥基自由基的過氧化氫會與生成的羥基自由基反應,反而降低了溶液中羥基自由基的含量,可由式(5)~(7)表述[28].

2.2.2 硝酸根對環氧蟲啶光降解的影響 硝酸根離子普遍存在于自然水體中,其濃度因地理位置的差異而略有不同,水環境濃度一般為1× 10-5~1×10-3mol/L[29].硝酸根在光照下產生成·NO2和·OH等活性自由基,從而促進化合物的間接光降解[30],如(8)~(9)所示[33]:

圖6和表1顯示,硝酸根濃度為0,1×10-4,1× 10-3和2×10-3mol/L時,環氧蟲啶光降解的半衰期分別為7.61,7.18,6.29,5.41min,半衰期隨著硝酸根濃度的增加而縮短.這是由于光敏態的NO3-促進羥基自由基的產生,從而加快環氧蟲啶的光降解.然而,相對于不加硝酸根,加入2×10-3mol/L硝酸根,環氧蟲啶的光降解半衰期只縮短了28.9%.說明,相對于環氧蟲啶在水環境中的直接光降解,硝酸根對環氧蟲啶的間接光降解作用為次要的.光敏劑硝酸根的存在并不能顯著影響水環境中環氧蟲啶的光降解行為.

圖6 硝酸根對環氧蟲啶光降解的影響Fig.6 Effect of initial nitrate concentration on the photodegradation of cycloxaprid
3.1 環氧蟲啶的光降解反應可用一級動力學方程模擬.環氧蟲啶初始濃度增加,光降解速率常數k減小;溫度對環氧蟲啶光降解有促進作用,溫度升高,環氧蟲啶光降解加快,環氧蟲啶的反應活化能(Ea)為21.27kJ/mol.
3.2 溶液pH值影響環氧蟲啶的光降解速率.通過測定環氧蟲啶的pKa值為3.42,確定環氧蟲啶在不同pH值溶液中的主要存在形式.當pH值小于7時,隨著pH值的減小,環氧蟲啶在水溶液中的陽離子含量增多.通過高斯計算,確定了環氧蟲啶陽離子的光反應活性高于中性分子.在酸性環境下,環氧蟲啶的光降解由環氧蟲啶本身性質即在水中陽離子的含量決定;當pH值大于7時,環氧蟲啶在水溶液中以中性分子形式存在,羥基自由基對環氧蟲啶的光降解起決定性作用.
3.3 過氧化氫加快環氧蟲啶的光降解速率,但是光降解速率并不隨過氧化氫濃度增加而一直增加,存在最適宜濃度;硝酸根也能促進環氧蟲啶的光降解,但促進作用相對較弱.
參考文獻:
[1] ?ernigoj U, ?tangar U L, Treb?e P. Degradation of neonicoticotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on Ti O2photocatalysis [J]. Appl. Catal. B: Environ., 2007,75(3/4):229-238.
[2] Nauen R, Bretschneider T. New modes of action of insecticides [J]. Pestic. Outlook, 2002,13:241-245.
[3] Jeschke P, Nauen R, Schindler M, et al. Overview of the status and global strategy for noenicotinoids [J]. J. Agric. Food Chem. 2011,59(7):2897-2908.
[4] Dell’ Arciprete M L, Santos-Juanes L, Sanz A A, et al. Reactivity of hydroxyl radicals with neonicotinoid insecticedes: mechanism and changes in toxicity [J]. Photochem. Photobiol. Sci., 2009,8: 1016-1023.
[5] Wamhoff H, Schneider V. Photodegradation of imidacloprid [J]. J. Agric. Food Chem. 1999,47(4):1730–1734.
[6] Pe?a A, Rodríguez-Liébana J A, Mingorance M D. Persistence of two neonicotinoid insecticides in wastewater, and in aqueous solutions of surfactants and dissolved organic matter [J]. Chemosphere, 2011,84(4):464-470.
[7] Shao X S, Fu H, Xu X Y, et al. Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: Design, Synthesis, Crystal structure, and Insecticidal Activities [J]. J. Agric. Food Chem., 2010,58(5): 2696-2702.
[8] Liu X Q, Xu X Y, Li C, et al. Degradation of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil [J]. Chemosphere. 2015,119:334-341.
[9] Orellana-García F, álvarez M A, López-Ramón V, et al. Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation. Effects of operational variables and solution chemistry [J]. Chem. Eng. J. 2014,255: 307-315.
[10] Kim M K, Zoh K D. Effects of natural water constituents on the photo-decomposition of methylmercury and the role of hydroxyl radical [J]. Sci. Total Environ., 2013,449:95-101.
[11] Shephard G S, Stockenstr?m S, de Villiers D, et al. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilizied titanium dioxide catalyst [J]. Water Res., 2002,36(1): 140-146.
[12] Vione D, Maurino V, Minero C, et al. Phenol photonitration upon UV irradiation of nitrite in aqueous solution II: effects of pH and TiO2[J]. Chemosphere, 2001,45(6/7):903-910.
[13] Xu D X, Yuan F, Gao Y X, et al. Influence of pH, metal chelator, free radical scavenger and interfacial characteristics on the oxidative stability of β-carotene in conjugated whey proteinpectin stabilized emulsion [J]. Food chem., 2013,139(1-4):1098-1104.
[14] 陽 海,周碩林,尹明亮,等.克百威光催化降解動力學的研究[J]. 中國環境科學, 2013,33(1):82-87.
[15] Bagal M V, Gogate P R. Degradation of 2, 4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes [J]. Ultrason. Sonochem., 2013, 20(5):1226-1235.
[16] Zhou L, Ji YF, Zeng C, et al. Aquatic photodegradation of sunscreen agent p-aminobenzoic acid in the presence of dissolved organic matter [J]. Water Res., 2013,47(1):153-162.
[17] Benitez F J, Acero J L, Real F J, et al. Photolysis of model emerging contaminants in ultra-pure water: kinerics, by-products formation and degradation pahyways [J]. Water Res., 2013,47(2): 870-880.
[18] Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated eleutrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. J. Phys. Chem. Ref. Data., 1988,17(2):513-886.
[19] Xu L J, Chu W, Graham N. Sonophotolytic degradation of dimethyl phthalate without catalyst: Analysis of the synergistic effect and modeling [J]. Water. Res., 2013,47(6):1996-2004.
[20] Abdullah F H, Rauf M A, Ashraf S S. Photolytic oxidation of Safranin-O with H2O2[J]. Dyes. Pigm., 2007,72(3):349-352.
[21] Devi L G, Kumar S G, Reddy K M, et al. Photodegradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism [J]. J. Hazard. Mater., 2009,164(2/3):459-467.
[22] dos Santos W N L, Brand?o G C, Portugal L A, et al. A photo-oxidation procedure using UV radation/H2O2for decomposition of wine samples-Determination of iron and manganese content by flame atomic absorption spectrometry [J]. Spectrochim. Acta, Part B. 2009,64(6):601-604.
[23] Poulopoulos S G, Arvantitakis F, Philippopolos C J. Photochemical treatment of phenol aqueous solutions using ultraviolet radiation and hydrogen peroxide [J]. J. Hazard. Mater., 2006,129(1-3):64-68.
[24] 馬曉雁,倪夢婷,倪永炯,等.UV體系中3種微量類固醇雌激素的競爭降解及同趨轉化 [J]. 中國環境科學, 2014,34(4):904-911. [25] Aleboyeh A, Moussa Y, Aleboyeh H. Kinetics of oxidative decolourisation of Acid Orange 7in water by ultraviolet radiation in the presence of hydrogen peroxide [J]. Sep. Purif. Technol., 2005,43(2):143-148.
[26] Sarla M, Pandit M, Tyagi D K, et al. Oxidation of cyanide in aqueous solution by chemical and photochemical process [J]. J. Hazard. Mater., 2004,116(1/2):49-56.
[27] Evgenidou E, Konstantinou I, Fytianos K, et al. Oxidation of two organophosphorous insecticides by the photo-assisted Fenton reaction [J]. Water Res., 2007,41(9):2015-2027.
[28] El-Sheikh M A, Ramadan M A, El-Shafie A. Photo-oxidation of rice starch. Part I: Using hydrogen peroxide [J]. Carbohydr. Polym., 2010,80(1):266-269.
[29] Zuo Y G, Wang C J, Van T. Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography [J]. Talanta, 2006, 70(2):281-285.
[30] Zepp R G, Hoigne J, Bader H. Nitrate-induced photooxidation of trace organic chemicals in water [J]. Environ. Sci. Technol., 1987, 21(5):443-450.
[31] Brezonik P L, Fulkerson-Brekken J. Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediate by natural scavenging agents [J]. Environ. Sci. Technol., 1998,32(19):3004-3010.
[32] 展漫軍,楊 曦,鮮啟鳴,等.雙酚A在硝酸根溶液中的光解研究[J]. 中國環境科學, 2005,25(4):487-490.
[33] Warneck P, Wurzinger C. Product quantum yields for the 305-nm photodegradation of nitrate in aqueous solution [J]. J. Phys. Chem., 1988,92(22):6278-6283.
Photodegradation of cis-configuration neonicotinoid cycloxaprid in water.
DENG Ya-yun1, ZHUANG Ying-ying1, FENG Yue1, LU Si-yuan1, CHENG Jia-gao1, XU Xiao-yong1,2*(1.Shanghai Key Lab of Chemistry Biology, Institute of Pesticides and Pharmaceuticals, East China University of Science and Technology, Shanghai 200237, China;2.Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China). China Environmental Science, 2016,36(4):1112~1118
Abstract:In order to correctly evaluate the environmental risk of the new insecticide CYC, the influence of the CYC initial concentration, temperature, initial pH, concentration of hydrogen peroxide and nitrate on the CYC photodegradation in water were studied. The results show that the photodegradation of cycloxaprid was fitted to pseudo-first-order kinetics reaction. For direct photodegradation, cycloxaprid photolysis rate was accelerated with the decreasing of CYC concentration and the increase of temperature. The activation energy of photochemical reaction was 21.27kJ/mol. By measuring the CYC pKa value of 3.42 and simulation CYC reactivity of different forms of light particles, known the complicated influence of pH value on CYC photolysis: In the acidic conditions, the degradation rate of cycloxaprid depended on the different cycloxaprid forms (cations and neutral particles) and their singlet energy values. While, in the alkaline condition, the photodegradation rate was mainly affected by the number of hydroxyl radicals in the solution. For CYC indirect photodegradation, nitrate and hydrogen peroxide were confirmed to promote the role. When evaluating the environmental risk of CYC should comprehensively consider the effect of environmental factors on its degradation.
Key words:insecticide;cycloxaprid;photodegradation;hydroxyl radical;HOMO-LUMO gap
作者簡介:鄧亞運(1990-),女,湖北咸寧人,華東理工大學藥學院碩士研究生,主要從事新煙堿類殺蟲劑環境光化學行為研究.
基金項目:國家”863”項目(2011AA10A207,2013AA065202);國家自然科學基金(21272071);公益性行業(農業)科研專項經費(201103007)
收稿日期:2015-09-12
中圖分類號:X703
文獻標識碼:A
文章編號:1000-6923(2016)04-1112-07