堯德中 夏陽
摘 要:電生理信息(EEG、局部場電位、神經元單位放電)和血液與代謝信號(fMRI)提供了神經活動的明顯不同、但又相互緊密耦合的不同方面的信息。腦電/電生理對發生在毫秒量級的瞬態神經活動敏感,可以動態地揭示腦功能活動的動態連接性。由于EEG和fMRI信號的產生機理不同,決定了EEG/fMRI兩種技術在時-空兩方面具有互補性。通過信息融合將兩種技術的優點進行集成是一個受到高度關注的研究策略。該研究重點關注電生理的腦網絡分析方法,同時考慮電生理與fMRI信息的融合問題,并將發展的新技術方法用于臨床神經精神疾病的腦機制研究。成功建立了精神分裂癥獼猴模型,為該研究應用發展的數據處理方法在疾病模型上的驗證研究奠定了基礎;在多模態信息融合方面,提出了借助經驗Bayes理論,實現EEG-fMRI信息并集的網絡融合方法;基于顱內電生理技術,發現了產生SSVEP信號的網絡機制。
關鍵詞:腦網絡 腦電 磁共振 信息融合
Abstract:To research of brain function, electrophysiological (including EEG, local field potentials, spikes) and BOLD (fMRI) information may provide the different aspects of closely coupled neural activity. EEG (or electrophysiological) activity occurs in milliseconds and can reveal brain dynamic activities. Due to the different generation mechanism of EEG and fMRI signal, the analysis technologies of EEG and fMRI are complementary in the space-time Scale. Our main works are to develop the analysis methods of brain network based on electrophysiological signal and to develop the analysis methods of electrophysiology and fMRI information fusion. Meanwhile, we pay close attention to mechanism study of clinical neuropsychiatric diseases using above developed methods. So far, we have successfully established schizophrenia rhesus monkey model. We have developed the multimodal information fusion techniques based on Bayes theory. Based on intracranial EEG recording, we found the brain network mechanism of SSVEP generating.
Key Words:Brain network;EEG;MRI;Information fusion
閱讀全文鏈接(需實名注冊):http://www.nstrs.cn/xiangxiBG.aspx?id=49192&flag=1