999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

探究小學數學思想滲透

2016-05-30 04:06:24左佳
儷人·教師版 2016年13期
關鍵詞:解題思想數學

左佳

【摘要】數學思想是指人們對數學理論和內容的本質的認識,數學方法是數學思想的具體化形式,實際上兩者的本質是相同的,差別只是站在不同的角度看問題。通常混稱為“數學思想方法”。而小學數學教材是數學教學的顯性知識系統,看不到由特殊實例的觀察、試驗、分析、歸納、抽象概括或探索推理的 心智活動過程。而數學思想方法是數學教學的隱性知識系統。

【關鍵詞】小學數學 思想

一、方程和函數思想

在已知數與未知數之間建立一個等式,把生活語言“翻譯”成代數語言的過程就是方程思想。笛卡兒曾設想將所有的問題歸為數學問題,再把數學問題轉化成方程問題,即通過問題中的已知量和未知量之間的數學關系,運用數學的符號語言轉化為方程(組),這就是方程思想的由來。

在小學階段,學生在解應用題時仍停留在小學算術的方法上,一時還不能接受方程思想,因為在算求解題時,只允許具體的已知數參加運算,算術的結果就是要求未知數的解,在算術解題過程中最大的弱點是未知數不允許作為運算對象,這也是算術的致命傷。而在代數中未知數和已知數一樣有權參加運算,用字母表示的未知數不是消極地被動地靜止在等式一邊,而是和已知數一樣,接受和執行各種運算,可以從等式的一邊移到另一邊,使已知與未知之間的數學關系十分清晰,在小學中高年級數學教學中,若不滲透這種方程思想,學生的數學水平就很難提高。例如稍復雜的分數、百分數應用題、行程問題、還原問題等,用代數方法即假設未知數來解答比較簡便,因為用字母x表示數后,要求的未知數和已知數處于平等的地位,數量關系就更加明顯,因而更容易思考,更容易找到解題思路。在近代數學中,與方程思想密切相關的是函數思想,它利用了運動和變化觀點,在集合的基礎上,把變量與變量之間的關系,歸納為兩集合中元素間的對應。數學思想是現實世界數量關系深入研究的必然產物,對于變量的重要性,恩格斯在自然辯證法一書有關“數學”的論述中已闡述得非常明確:“數學中的轉折點是笛卡兒的變數,有了變數,運動進入了數學;有了變數,辨證法進入了數學;有了變數,微分與積分也立刻成為必要的了。”數學思想本質地辨證地反映了數量關系的變化規律,是近代數學發生和發展的重要基礎。在小學數學教材的練習中有如下形式:

6×3= 20×5= 700×800=

60×3= 20×50= 70×800=

600×3= 20×500= 7×800=

有些老師,讓學生計算完畢,答案正確就滿足了。有經驗的老師卻這樣來設計教學:先計算,后核對答案,接著讓學生觀察所填答案有什么特點(找規律),答案的變化是怎樣引起的?然后再出現下面兩組題:

45×9= 1800÷200=

15×9= 1800÷20=

5×9= 1800÷2=

通過對比,讓學生體會“當一個數變化,另一個數不變時,得數變化是有規律的”,結論可由學生用自己的話講出來,只求體會,不求死記硬背。研究和分析具體問題中變量之間關系一般用解析式的形式來表示,這時可以把解析式理解成方程,通過對方程的研究去分析函數問題。中學階段這方面的內容較多,有正反比例函數,一次函數,二次函數,冪指對函數,三角函數等等,小學雖不多,但也有,如在分數應用題中十分常見,一個具體的數量對應于一個抽象的分率,找出數量和分率的對應恰是解題之關鍵;在應用題中也常見,如行程問題,客車的速度與所行時間對應于客車所行的路程,而貨車的速度與所行時間對應于貨車所行的路程;再如一元方程x+a=b等等。 學好這些函數是繼續深造所必需的;構造函數,需要思維的飛躍;利用函數思想,不但能達到解題的要求,而且思路也較清晰,解法巧妙,引人入勝。

二、化歸思想

化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。應當指出,這種化歸思想不同于一般所講的“轉化”、“轉換”。它具有不可逆轉的單向性。

例: 狐貍和黃鼠狼進行跳躍比賽,狐貍每次可向前跳4 1/2 米,黃鼠狼每次可向前跳2 3/4米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔12 3/8米設有一個陷阱, 當它們之中有一個掉進陷阱時,另 一個跳了多少米?

這是一個實際問題,但通過分析知道,當狐貍(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每 次所跳距離4 1/2(或2 3/4)米的整倍數,又是陷阱間隔12 3/8米的整倍數,也就是4 1/2和12 3/8的“ 最小公倍數”(或2 3/4和12 3/8的“最小公倍數”)。針對兩種情況,再分別算出各跳了幾次,確定誰先掉 入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求“最小公倍數”的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。

三、極限的思想方法

極限的思想方法是人們從有限中認識無限,從近似中認識精確,從量變中認識質變的一種數學思想方法,它是事物轉化的重要環節,了解它有重要意義。

現行小學教材中有許多處注意了極限思想的滲透。在“自然數”、“奇數”、“偶數”這些概念教學時,教師可讓學生體會自然數是數不完的,奇數、偶數的個數有無限多個,讓學生初步體會“無限”思想;在循環小數這一部分內容中,1÷3=0.333…是一循環小數,它的小數點后面的數字是寫不完的,是無限的;在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。

當然,在數學教育中,加強數學思想不只是單存的思維活動,它本身就蘊涵了情感素養的熏染。而這一點在傳統的數學教育中往往被忽視了。我們在強調學習知識和技能的過程和方法的同時,更加應該關注的是伴隨這一過程而產生的積極情感體驗和正確的價值觀。《標準》把“情感與態度”作為四大目標領域之一,與“知識技能”、“數學思考”、“解決問題”三大領域相提并論,這充分說明新一輪的數學課程標準改革對培養學生良好的情感與態度的高度重視。它應該包括能積極參與數學學習活動,對數學有好奇心與求知欲。在數學學習活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心。初步認識數學與人類生活的密切聯系及對人類歷史發展的作用,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性,形成實事求是的態度以及進行質疑和獨立思考的習慣。另一方面引導學生在學習知識的過程中,學會合作學習,培養探究與創造精神,形成正確的人格意識。

猜你喜歡
解題思想數學
用“同樣多”解題
設而不求巧解題
思想之光照耀奮進之路
華人時刊(2022年7期)2022-06-05 07:33:26
思想與“劍”
當代陜西(2021年13期)2021-08-06 09:24:34
用“同樣多”解題
艱苦奮斗、勤儉節約的思想永遠不能丟
人大建設(2019年4期)2019-07-13 05:43:08
“思想是什么”
當代陜西(2019年12期)2019-07-12 09:11:50
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
解題勿忘我
主站蜘蛛池模板: 欧美视频在线不卡| 暴力调教一区二区三区| 免费a在线观看播放| 成人国产一区二区三区| 日韩欧美视频第一区在线观看| 中文字幕一区二区视频| 伊人久综合| 国产欧美精品专区一区二区| 亚洲欧美自拍一区| 男女性色大片免费网站| 奇米影视狠狠精品7777| 亚洲国产精品久久久久秋霞影院 | 欧美不卡视频一区发布| 91热爆在线| 久久精品国产精品一区二区| 精品国产Ⅴ无码大片在线观看81| 日韩人妻精品一区| 国产人人射| 午夜福利免费视频| 精品国产成人a在线观看| 欧美日韩国产高清一区二区三区| 欧美不卡二区| 好紧好深好大乳无码中文字幕| 呦系列视频一区二区三区| 国产亚洲美日韩AV中文字幕无码成人| 亚洲一区二区三区香蕉| 美女免费黄网站| 国产视频只有无码精品| 亚洲欧美一区二区三区蜜芽| 亚洲日本www| 国产亚洲精品在天天在线麻豆 | 伊人中文网| 91福利国产成人精品导航| 中文字幕日韩视频欧美一区| 日韩小视频在线播放| 91美女视频在线| 99视频全部免费| 亚洲无码A视频在线| 国产精品一区二区国产主播| 91精品视频网站| 亚洲大学生视频在线播放 | 婷婷伊人久久| av一区二区三区在线观看| 国产一级二级三级毛片| 毛片a级毛片免费观看免下载| 国产69囗曝护士吞精在线视频| 国产福利观看| 国产超碰在线观看| 又大又硬又爽免费视频| 日韩成人在线一区二区| 婷婷六月激情综合一区| 色婷婷视频在线| 国产 在线视频无码| 成人av专区精品无码国产| 亚洲小视频网站| 911亚洲精品| 试看120秒男女啪啪免费| 国模粉嫩小泬视频在线观看| 久久性妇女精品免费| 免费看久久精品99| 亚洲欧美日韩高清综合678| 亚洲天堂久久久| 国产福利一区视频| 91小视频在线观看| 秋霞国产在线| 国产精品综合色区在线观看| 国产精品久久久免费视频| 在线观看亚洲天堂| 国产精品亚洲专区一区| 国产成人精品视频一区视频二区| 午夜丁香婷婷| 久久夜色撩人精品国产| 91成人试看福利体验区| 91尤物国产尤物福利在线| 天堂av高清一区二区三区| 久青草免费在线视频| 国产欧美视频综合二区| 亚洲精品国产日韩无码AV永久免费网| 欧美精品二区| 91探花在线观看国产最新| 亚洲中文字幕手机在线第一页| 久久久久青草大香线综合精品 |