王建 鄧開發



摘要:物聯網的開放式部署環境和有限的資源,使其很容易受到惡意攻擊,而傳統入侵檢測系統又很難滿足物聯網自身的異構和分布式特征。為了適應開放式部署環境、資源有限類物聯網應用需求,提出了一種基于模糊聚類c均值算法(fuzzy c-means,FCM)和主成分分析算法(principal component analysis, PCA)相結合的輕量級入侵檢測系統。相對于傳統入侵檢測方法,該方法能明顯減少測試數據的計算量。仿真實驗結果表明,該方案能明顯縮短檢測時間并具有較高的檢測率。
關鍵詞:物聯網;模糊聚類c均值算法;主成分分析;入侵檢測
DOIDOI:10.11907/rjdk.161248
中圖分類號:TP309文獻標識碼:A文章編號:1672-7800(2016)006-0211-03
參考文獻:
[1]CHANGJUN HAN,YI LV.An intrusion detection system based on neural network[C].Proc of 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC),2011:2018-2021.
[2]胡向東,魏琴芳,向敏.物聯網安全[M].北京:科學出版社,2012.
[3]張馨,袁玉宇.入侵檢測技術在物聯網中的應用研究[J]. 軟件,2012(11):156-159.
[4]CAIMING LIU, JIN YANG. Research on immunity-based intrusion detection technology for the Internet of Things[C].Proc of 2011 Seventh International Conference on Natural Computation(ICNC),2011:212-216.
[5]RONGRONG FU, KANGFENG ZHENG. An intrusion detection scheme based on anomaly mining in internet of things[C].Proc of 4th IET International Conferenc-e on Wireless, Moble & Multimedia Networks (ICWM-MN 2011), 2011:315-320.
[6]REN WULING, CAO JINZHU, WU XIANJIE. Application of network intrusion detection based on fuzzy c-means clustering algorithm[J]. 3rd International Symposium on Intelligent Information Technology Application, IITA ,2009(3):19-22.
[7]CHEN BO, MA,WU. Research of intrusion detection based on principal components analysis[C].Proc of Second International Conference on Information and Computing Science,2009:116-119.
[8]KDD CUP 1999 data[EB/OL]. http://kdd.ics.uci.edu/databases/kddc-up99/kddcup99.html.
[9]YU LEI, LIU HUAN. Feature selection for high-dimensional data:a fast correlation-based filter solution[C].Pr-oceedings of the 20th International Conference on Mac-hine Learning. San Francisco: Mogan Kaufmann Publi-shers, 2003:856-863.
[10]溫重偉,李榮軍.改進的粒子群優化模糊C均值聚類算法[J].計算機應用研究,2010,27(7):2520-2522.
[11]BEZDEK J C. Patten with fuzzy objective function algorithms[M]. New York:Plenum Press,1981.