李雪娜,尹雅芙,杜補(bǔ)林,李亞明
(中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院 核醫(yī)學(xué)科,遼寧 沈陽(yáng) 110001)
?
NOX 4對(duì)高糖代謝乳腺癌細(xì)胞侵襲轉(zhuǎn)移能力的作用
李雪娜,尹雅芙,杜補(bǔ)林,李亞明
(中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院 核醫(yī)學(xué)科,遼寧 沈陽(yáng)110001)
摘要:利用2-氟[18F-2]脫氧葡萄糖([18F]fluorodeoxyglucose,18F-FDG)乳腺癌細(xì)胞攝取實(shí)驗(yàn)篩選高糖酵解率的乳腺癌細(xì)胞;采用基因沉默技術(shù),降低細(xì)胞煙酰胺腺嘌呤二核苷酸磷酸氧化酶4 (NOX 4)表達(dá);采用免疫印跡方法檢測(cè)三組細(xì)胞(空白對(duì)照組、非特異性siRNA轉(zhuǎn)染組和特異性NOX 4-siRNA轉(zhuǎn)染組)的上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transition, EMT)相關(guān)分子HIF-1α和TGF-β表達(dá)水平;通過(guò)細(xì)胞侵襲實(shí)驗(yàn)分析三組細(xì)胞的侵襲能力差異。結(jié)果顯示,高侵襲力的MDA-MB-231較低侵襲力的MCF-7乳腺癌細(xì)胞系具有高糖酵解率(t=10.52,P<0.05);抑制MDA-MB-231細(xì)胞的NOX 4表達(dá),降低了細(xì)胞EMT相關(guān)因子HIF-1α、TGF-β表達(dá)(P均<0.01)與細(xì)胞侵襲能力(t=-8.0,P<0.01)。本研究初步證實(shí)NOX 4失活能夠降低高糖代謝乳腺癌細(xì)胞的侵襲轉(zhuǎn)移能力。
關(guān)鍵詞:乳腺癌;氟18-脫氧葡萄糖;煙酰胺腺嘌呤二核苷酸磷酸氧化酶4;腫瘤轉(zhuǎn)移
乳腺癌是威脅人類健康的主要疾病,腫瘤轉(zhuǎn)移是導(dǎo)致乳腺癌患者死亡的重要原因,腫瘤細(xì)胞活性氧(reactive oxygenspecies, ROS)增加會(huì)影響腫瘤轉(zhuǎn)移。煙酰胺腺嘌呤二核苷酸磷酸氧化酶4(nicotinamide adenine dinucleotide phosphate oxidase 4, NOX 4)由細(xì)胞內(nèi)ROS產(chǎn)生,主要在成人和胎兒腎臟組織表達(dá)。在硬化發(fā)病過(guò)程中,NOX 4表達(dá)增高使ROS生成增高,引起平滑肌細(xì)胞凋亡[1];氧化的低密度脂蛋白能使動(dòng)脈內(nèi)皮細(xì)胞的NOX 4促進(jìn)ROS生成[2]。NOX 4在不同腫瘤中表達(dá)并與腫瘤侵襲轉(zhuǎn)移相關(guān)[3-7],包括乳腺癌[8]。NOX 4在腫瘤中的表達(dá)與腫瘤生物學(xué)行為相關(guān)性為研究熱點(diǎn)[9-11],正常細(xì)胞生物能量主要依賴線粒體氧化磷酸化,腫瘤細(xì)胞能量主要依賴于有氧糖酵解,但NOX 4在高糖代謝腫瘤細(xì)胞轉(zhuǎn)移中的作用尚不明確。近年來(lái),腫瘤線粒體功能障礙與腫瘤生物學(xué)行為以及轉(zhuǎn)移的關(guān)系越來(lái)越受關(guān)注。Kozie等[12]發(fā)現(xiàn)在內(nèi)皮細(xì)胞年齡-衰老模型中,持續(xù)增高NOX 4活性能降低線粒體呼吸鏈復(fù)合物Ⅰ的功能。ROS被證實(shí)與腫瘤的增殖和侵襲相關(guān),其產(chǎn)生重要來(lái)源是NOX 蛋白和線粒體。線粒體內(nèi)的抗氧化劑在細(xì)胞中水平最高,并在維持細(xì)胞氧化還原狀態(tài)發(fā)揮重要作用,在疾病情況下,NOX 蛋白能作用于線粒體而影響其氧化還原反應(yīng)。NOX 蛋白主要定位于核周區(qū)和內(nèi)質(zhì)網(wǎng),但也存在于質(zhì)膜,并與線粒體有關(guān)[13-16]。Kelly等[17]應(yīng)用線粒體定位信號(hào)(MLS)進(jìn)行示蹤分析,發(fā)現(xiàn)NOX 4蛋白的N端含有MLS,證明NOX 4定位于線粒體上。因此,NOX 4與腫瘤的能量代謝關(guān)系密切。
本研究通過(guò)18F-FDG 細(xì)胞攝取實(shí)驗(yàn)篩選出高糖代謝的乳腺癌細(xì)胞系,探究NOX 4對(duì)高糖代謝乳腺癌細(xì)胞侵襲轉(zhuǎn)移能力的影響,為乳腺癌轉(zhuǎn)移機(jī)制提供依據(jù)。
1實(shí)驗(yàn)部分
1.1主要材料
人乳腺癌細(xì)胞系(MDA-MB-231,MCF-7):中國(guó)科學(xué)院上海細(xì)胞庫(kù),細(xì)胞接種在含10%胎牛血清、10 U/mL青霉素和100 mg/L鏈霉素的DMEM培養(yǎng)液中,37 ℃,5% CO2環(huán)境下培養(yǎng);NOX 4抗體:Abcam公司;兔抗人TGF-β單克隆抗體、多克隆抗體、HIF-1α兔抗人多克隆抗體:Cell signal公司;羊抗兔IgG-HRP、胰酶:碧云天公司;內(nèi)參抗體 β-actin:WanLei Life Sciences公司;DMEM培養(yǎng)基:美國(guó)Invitrogen公司;胎牛血清:美國(guó)Hyclone公司;磷酸緩沖鹽溶液(PBS):雙螺旋公司;Transwell小室:美國(guó)Corning公司。
1.218F-FDG乳腺癌細(xì)胞攝取
按照參考文獻(xiàn)[18]中方法,孵育MDA-MB-231和MCF-7乳腺癌細(xì)胞攝取18F-FDG。分為不同的細(xì)胞鋪板密度組:1×105、2×105、5×105、1.0×106;不同的細(xì)胞孵育時(shí)間組:60、90、120、180 min。確定最佳細(xì)胞攝取實(shí)驗(yàn)條件,并篩選高糖酵解的乳腺癌細(xì)胞。
1.3siRNA干擾和細(xì)胞轉(zhuǎn)染
根據(jù)siRNA設(shè)計(jì)原則,選取人NOX 4 RNA中的特異性核酸片段為靶目標(biāo),應(yīng)用Ambion公司iRNA軟件設(shè)計(jì)NOX 4的RNAi序列(上海吉瑪基因化學(xué)技術(shù)有限公司合成)。實(shí)驗(yàn)分三組:空白對(duì)照組、非特異性siRNA轉(zhuǎn)染組(NC)和特異性siRNA轉(zhuǎn)染組(分三個(gè)siRNA序列進(jìn)行特異性轉(zhuǎn)染)。轉(zhuǎn)染具體方法按照說(shuō)明書進(jìn)行。NOX 4 siRNA序列如下:
非特異性siRNA序列:5’-UUCUCCGAACGUGUCACGUTT-3’。
特異性NOX 4-siRNA序列:
1:5’-GCCUCAGCAUCUGUCUUATTUAAGAACAGAUGCUGAGGCTT-3’;
2:5’-CCCUCAACUUCUCAGUGAATTUUCACUGAGAAGUUGAGGGTT-3’;
3:5’-GCCUCUACAUAUGCAAUAATTUUAUUGCAUAUGUAGAGGCTT-3’。
1.4免疫印跡檢測(cè)
胰酶消化細(xì)胞,離心(4 ℃、1 000 r/min、5 min),用PBS清洗細(xì)胞1次,加入適量M-PER細(xì)胞裂解液并吹打均勻,放置冰上裂解30 min,期間間隔混勻,離心(4 ℃、12 000 r/min、15 min),取上清液,棄去沉淀的細(xì)胞碎片。根據(jù)二喹啉甲酸(bicinchoninic acid, BCA)試劑盒的說(shuō)明,測(cè)定裂解液蛋白濃度。
參照參考文獻(xiàn)[19] 中免疫印跡(Western blot)檢測(cè)方法,以β-actin作為內(nèi)參對(duì)照,提取細(xì)胞總蛋白進(jìn)行檢測(cè),檢測(cè)三組細(xì)胞(空白對(duì)照組、非特異性siRNA轉(zhuǎn)染組和特異性NOX 4-siRNA轉(zhuǎn)染組)的HIF-1α、TGF-β、NOX 4蛋白表達(dá)水平。實(shí)驗(yàn)中一抗為NOX 4抗體(1∶1 000)、HIF-1α(1∶2 000)和TGF-β(1∶2 000);二抗為羊抗兔IgG-HRP(1∶5 000)。
1.5細(xì)胞侵襲實(shí)驗(yàn)
實(shí)驗(yàn)Matrigel膠4 ℃過(guò)夜解凍,將Matrigel置冰上后放入超凈臺(tái),用無(wú)血清培養(yǎng)基將膠以1∶2稀釋,下室加入800 μL 30% FBS培養(yǎng)液;上室加入200 μL細(xì)胞懸液,細(xì)胞數(shù)為每孔2×104個(gè)。置于37 ℃、5% CO2、飽和濕度條件下培養(yǎng)24 h。0.5%結(jié)晶紫染液染色5 min,在倒置顯微鏡下(200×)對(duì)遷移至微孔膜下層的細(xì)胞計(jì)數(shù)。
1.6統(tǒng)計(jì)分析

2實(shí)驗(yàn)結(jié)果
2.118F-FDG 細(xì)胞攝取

圖1 MCF-7細(xì)胞的18F-FDG攝取率Fig.1 18F-FDG uptake rates of MCF-7 cells
MCF-7和MDA-MB-231在不同細(xì)胞鋪板密度,不同18F-FDG孵育時(shí)間下18F-FDG放射性攝取率分別示于圖1、圖2。相同細(xì)胞攝取實(shí)驗(yàn)條件下(90 min孵育時(shí)間、1.0×106細(xì)胞計(jì)數(shù)),MDA-MB-231放射性攝取率為(32.37±0.81)%ID/g,高于MCF-7的(15.49±5.08)%ID/g,差異具有顯著性(t=10.52,P<0.05)。因此,篩選出高糖酵解乳腺癌細(xì)胞系為MDA-MB-231。

圖2 MDA-MB-231細(xì)胞的18F-FDG攝取率Fig.2 18F-FDG uptake rates of MDA-MB-231 cells
2.2NOX 4 siRNA 瞬時(shí)轉(zhuǎn)染
應(yīng)用三個(gè)siRNA序列進(jìn)行特異性轉(zhuǎn)染MDA-MB-231細(xì)胞,分為MDA-MB-231細(xì)胞、NC細(xì)胞、NOX 4-siRNA-1細(xì)胞、NOX 4-siRNA-2細(xì)胞、NOX 4-siRNA-3細(xì)胞。
不同特異性siRNA轉(zhuǎn)染后MDA-MB-231乳腺癌細(xì)胞的NOX 4表達(dá)示于圖3。由圖3可知,進(jìn)行siRNA-2序列轉(zhuǎn)染后,MDA-MB-231細(xì)胞NOX 4 表達(dá)下降,篩選出NOX 4基因沉默效率高的為siRNA-2細(xì)胞系。

圖3 不同乳腺癌細(xì)胞NOX 4表達(dá)Fig.3 Expression of NOX 4in different breast cancer cells
驗(yàn)證siRNA-2轉(zhuǎn)染MDA-MB-231細(xì)胞系的NOX 4基因表達(dá)沉默效率,分為MDA-MB-231細(xì)胞、NC細(xì)胞、轉(zhuǎn)染的NOX 4 siRNA-2細(xì)胞。
不同細(xì)胞系的NOX 4表達(dá)示于圖4,Western blot的灰度定量分析示于圖5。結(jié)果顯示,siRNA-2序列轉(zhuǎn)染后的MDA-MB-231細(xì)胞NOX 4 表達(dá)下降,與未轉(zhuǎn)染的MDA-MB-231相比具有顯著性差異(P<0.01);NC細(xì)胞NOX 4表達(dá)與未轉(zhuǎn)染的MDA-MB-231相比無(wú)顯著性差異(P=0.76)。
2.3Western blot檢測(cè)
不同細(xì)胞的HIF-1α與TGF-β表達(dá)示于圖6,HIF-1α與TGF-β Western blot 灰度定量分析示于圖7。結(jié)果表明,特異性siRNA轉(zhuǎn)染組細(xì)胞HIF-1α蛋白和TGF-β表達(dá)低于未轉(zhuǎn)染MDA-MB-231(P均<0.01),NC細(xì)胞HIF-1α和TGF-β表達(dá)與MDA-MB-231相比無(wú)顯著性差異(P=0.158,P=0.821),表明特異性siRNA轉(zhuǎn)染抑制NOX 4表達(dá),降低了乳腺癌細(xì)胞的上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transition, EMT)水平。

a——HIF-1α;b——TGF-β圖6 不同細(xì)胞的HIF-1α與TGF-β表達(dá)a—HIF-1α;b—TGF-βFig.6 Expression of HIF-1α and TGF-β in different breast cancer cells

a——HIF-1α;b——TGF-β圖7 HIF-1α與TGF-β Western blot 灰度定量分析a——HIF-1α;b——TGF-βFig.7 HIF-1α and TGF-β quantitative analysis of gray scale of Western blot
2.4細(xì)胞侵襲
細(xì)胞侵襲結(jié)果示于圖8,定量分析示于圖9。結(jié)果顯示,特異性轉(zhuǎn)染NOX 4-siRNA MDA-MB-231細(xì)胞侵襲數(shù)較未轉(zhuǎn)染MDA-MB-231細(xì)胞侵襲數(shù)顯著性降低(分別為38.6±4.5vs94.6±11.1,t=-8.0,P<0.01),非特異性轉(zhuǎn)染組NC細(xì)胞與未轉(zhuǎn)染MDA-MB-231細(xì)胞侵襲數(shù)相比無(wú)顯著性差異(分別為94.00±13.5vs94.6±11.1,t=-0.06,P=0.71)。

a——MDA-MB-231;b——NC;c——NOX 4-siRNA圖8 細(xì)胞侵襲顯微鏡圖(200×)a——MDA-MB-231;b——NC;c——NOX 4-siRNAFig.8 The microscope chart of invasion experimental

圖9 細(xì)胞侵襲實(shí)驗(yàn)的定量分析Fig.9 Quantitative analysis of cell invasion assay
3討論
腫瘤轉(zhuǎn)移發(fā)生后,通過(guò)破壞細(xì)胞間的連接、活化金屬蛋白酶改變間質(zhì)環(huán)境、激活與細(xì)胞運(yùn)動(dòng)能力相關(guān)的Rho通路而獲得更強(qiáng)的細(xì)胞遷徙能力。研究引發(fā)EMT的機(jī)制對(duì)于治療腫瘤轉(zhuǎn)移具有重要意義。采用免疫印跡方法檢測(cè)細(xì)胞EMT相關(guān)分子HIF-1α和TGF-β表達(dá)水平,結(jié)果顯示,特異性siRNA轉(zhuǎn)染組較對(duì)照組乳腺癌細(xì)胞HIF-1α、TGF-β表達(dá)降低,與Boudreau 等[20]報(bào)道的NOX 4依賴ROS產(chǎn)生誘導(dǎo)乳腺癌MDA-MB-231的EMT結(jié)果一致。有研究報(bào)道,NOX 4通過(guò)參與TGF-β和SMAD3驅(qū)動(dòng)誘導(dǎo)的腫瘤發(fā)生侵襲[21],TGF-β通過(guò)Smad轉(zhuǎn)錄作用直接增加NOX 4蛋白的表達(dá)量而使ROS升高;但也有研究提出,EGF因子的加入能抑制TGF-β引起的FAO細(xì)胞NOX 4蛋白量升高,但并不能影響Smad的磷酸化水平[22]。
細(xì)胞侵襲實(shí)驗(yàn)結(jié)果顯示,特異性siRNA轉(zhuǎn)染組較對(duì)照組乳腺癌細(xì)胞的遷徙能力明顯下降,表明在高糖代謝乳腺癌細(xì)胞中,NOX 4失活能降低高糖代謝乳腺癌細(xì)胞MDA-MB-231的HIF-1α和TGF-β的表達(dá),抑制乳腺癌細(xì)胞的侵襲能力,NOX 4可能是高糖代謝乳腺癌細(xì)胞轉(zhuǎn)移治療的重要靶點(diǎn)。
4小結(jié)
通過(guò)攝取實(shí)驗(yàn)篩選出高糖酵解乳腺癌細(xì)胞系MDA-MB-231;NOX 4-siRNA 瞬時(shí)轉(zhuǎn)染實(shí)驗(yàn)篩選出沉默效率高的NOX 4-siRNA-2特異性轉(zhuǎn)染組細(xì)胞系,siRNA-2序列轉(zhuǎn)染后MDA-MB-231細(xì)胞NOX 4 表達(dá)下降,HIF-1α、TGF-β表達(dá)降低,乳腺癌細(xì)胞MDA-MB-231細(xì)胞侵襲數(shù)顯著性降低。
參考文獻(xiàn):
[1]Eric P, Cécile G, Véronique O, et al. NADPH oxidase NOX 4 mediates 7-ketocho-lesterol-induced endoplasmic reticulm stress and apoptosis in human artic smooth muscle cells[J]. Mol Cell Biol, 2004, 24(24): 10 703-10 717.
[2]Thum T, Borlak J. Mechanistic role of cytochrome P450 monooxy-genases in oxidized low-density lipoprotein induced vascular injury: therapy through LOX-1 receptor antagonism[J]. Circ Res, 2004, 94(1): e1-13.
[3]Weyemi U, Caillou B, Talbot M, et al. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX 4 in normal and cancer thyroid tissues[J]. Endocr Relat Cancer, 2010, 17(1): 27-37.
[4]Xia C, Meng Q, Liu L Z, et al. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor[J]. Cancer Res, 2007, 67(22): 10 823-10 830.
[5]Shimada K, Fujii T, Anai S, et al. ROS generation via NOX 4 and its utility in the cytological diagnosis of urothelial carcinoma of the urinary bladder[J]. BMC Urol, 2011, 11: 22.
[6]Cai T, Kuang Y, Zhang C, et al. Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2[J]. Am J Cancer Res, 2015, 5(5): 1 610-1 620.
[7]Kim H J, Magesh V, Lee J J, et al. Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4[J].Oncotarget, 2015,6(18): 16 287-16 303.
[8]Juhasz A, Ge Y, Markel S, et al. Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues[J]. Free radical research, 2009, 43(6): 523-532.
[9]Bauer K M, Watts T N, Buechler S, et al. Proteomic and functional investigation of the colon cancer relapse-associated genes NOX 4 and ITGA3[J]. J Proteome Res, 2014, 13(11): 4 910-4 918.
[10]Zhang C, Lan T, Hou J, et al. NOX 4 promotes non-small cell lung cancer cell proliferation and metastasis through positive feedback regulation of PI3K/Akt signaling[J].Oncotarget, 2014, 5(12): 4 392-4 405.
[11]Choi J A, Jung Y S, Kim J Y, et al. Inhibition of breast cancer invasion by TIS21(/BTG2/Pc3)-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes[J].Oncogene, 2016, 35(1): 83-93.
[12]Antonio F, Akemi M, Melissa R, et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression[J]. J Clin Invest, 2013, 123(3): 1 068-1 081.
[14]Hilenski L L, Clempus R E, Quinn M T, et al. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2004, 24(4): 677-683.
[15]Block K, Gorin Y, Abboud H E. Subcellular localization of Nox4 and regulation in diabetes[J]. Proc Natl Acad Sci USA, 2009, 106(34): 14 385-14 390.
[16]Kuroda J, Nakagawa K, Yamasaki T, et al. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells[J]. Genes Cells, 2005, 10(12): 1 139-1 151.
[17]Kelly A, Graham M, Mariola K M, et al. NADPH oxidase 4 is an oncoprotein localized to mitochondria[J]. Cancer Biol Ther, 2010, 10(3): 223-231.
[18]王利利,秦頌兵,婁成,等.18F-FDG攝取率評(píng)價(jià)腫瘤細(xì)胞輻射效應(yīng)[J]. 核技術(shù),2011,34(3):222-226.
Wang Lili, Qin Songbing, Lou Cheng, et al. Evaluation of radiation effect on tumor cells by the uptake rate18F-FDG in vitro[J]. Nuclear Techniques, 2011, 34(3): 222-226(in Chinese).
[19]Wen Y Y, Yang Z Q, Song M, et al. The expression of SIAH1 is downregulated and associated with Bim and apoptosis in human breast cancer tissues and cells[J]. Mol Carcinog, 2010, 49(5): 440-449.
[20]Boudreau H E, Casterline B W, Rada B, et al. Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells[J]. Free Radic Biol Med, 2012, 53(7): 1 489-1 499.
[21]Biao Z, Zhen L. Inhibiting cancer metastasis via targeting NAPDH oxidase 4[J]. Biochemical Pharmacology, 2013, 86(2): 253-266.
[22]Carmona-Cuenca I, Herrera B, Ventura J J, et al. EGF blocks NADPH oxidase activation by TGF-P in fetal rat hepatocytes, impairing oxidative stress, and cell death[J]. Journal of Cellular Physiology, 2006, 207(2): 322-330.
Effect of NOX 4 on the Invasion and Metastasis of Breast Cancer Cells with High Glucose Metabolism
LI Xue-na, YIN Ya-fu, DU Bu-lin, LI Ya-ming
(DepartmentofNuclearMedicine,theFirstHospitalofChinaMedicalUniversity,Shenyang110001,China)
Abstract:The breast cancer cells with high glucose metabolism were screened by18F-FDG cell uptake experiment. The gene silencing technique was used to reduce NOX 4 expression in cells. The experiment was divided into three groups: control group, the non-specific transfection group and specific transfection group. Western blotting was used to detect differences in the expression of HIF-1α and TGF-β in three groups. The invasion ability of the three groups by transwell cell invasion assay was analyzed. The results showed that MDA-MB-231 breast cancer cells had a higher rate of glycolysis than MCF-7 tumor cells(t=10.52,P<0.05). The expression of HIF-1α and TGF-β and the invasiveness of cells were reduced by inhibiting the level of NOX 4. This study showed that inhibition of NOX 4 expression was able to inhibit the invasion of breast cancer cell with high glucose metabolism.
Key words:breast cancer;18F- FDG; nicotinamide adenine dinucleotide phosphate oxidase 4; tumor metastasis
收稿日期:2015-12-30;修回日期:2016-02-14
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81271605);遼寧省科學(xué)技術(shù)計(jì)劃項(xiàng)目 (2012225013)
作者簡(jiǎn)介:李雪娜(1980—),女,遼寧盤錦人,主治醫(yī)師,核醫(yī)學(xué)專業(yè) 通信作者:李亞明,E-mail: ymli2001@163.com
中圖分類號(hào):R817.1
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-7512(2016)02-0076-06
doi:10.7538/tws.2016.29.02.0076