萬箭波,王福山,王海玲,周軍峰,李懷亮,王 徽,王東峰
(1.天津市精研工程機械傳動有限公司,天津 300409;2.天津工程機械研究院,天津 300409;3.海洋石油工程股份有限公司,天津 300451)
?
o設計計算o
四履帶張緊器恒張力控制建模與仿真
萬箭波1,王福山2,王海玲2,周軍峰1,李懷亮3,王徽1,王東峰1
(1.天津市精研工程機械傳動有限公司,天津 300409;2.天津工程機械研究院,天津 300409;3.海洋石油工程股份有限公司,天津 300451)
摘要:四履帶張緊器是深海臍帶纜鋪設系統中的關鍵設備,而恒張力控制技術是張緊器的核心技術。通過分析張緊器的恒張力控制系統,提出了四履帶張緊器的恒張力控制數學模型。利用AMESim軟件搭建四履帶張緊器的恒張力控制系統模型,仿真驗證了恒張力控制的有效性,研究了張緊器在不同海況下恒張力控制參數的設定規律,為進一步研究PID自適應控制算法提供分析數據。
關鍵詞:四履帶張緊器;恒張力;AMESim;數學模型
臍帶纜作為水下控制的關鍵組成部分,是連接上部設施和水下生產系統之間的“神經和生命線”,已成功地應用到淺水、深水和超深水域[1-2];海洋柔性管道與臍帶纜鋪設技術在油氣集輸和水下生產中的作用變得越來越重要[3-7]。為了提高我國在深海管道與纜線的鋪設能力,由中海油深海開發有限公司牽頭承擔了國家“十二五”科技重大專項“南海深水油氣開發示范工程”項目。為配合荔灣3-1氣田工程設計、建造、安裝技術的實施,研制出一種具有自主知識產權的深水臍帶纜鋪設用四履帶張緊器。
目前,國外在四履帶張緊器的研制上已較成熟,工程上已有廣泛應用;國內在四履帶張緊器的總體方案、結構計算、液壓系統、夾緊油缸系統的研究已經做了大量工作,而對張緊器的恒張力控制系統的研究還較少。在四履帶張緊器的研制過程中,利用AMESim仿真平臺建立四履帶張緊器仿真系統模型,包含機械系統部分建模和恒張力控制系統部分建模,驗證恒張力控制算法的有效性,同時通過仿真模型研究張緊器在不同深度的海域作業時纜繩張力的變化規律,進而對恒張力控制系統在不同工況下的PID參數設置提出建議,也為進一步研究PID自適應控制算法提供分析數據。
1四履帶張緊器工作原理
四履帶張緊器總體結構如圖1所示。主要由履帶總成、上履帶翻轉機構、履帶框架總成及底座總成組成。履帶總成通過四組液壓缸推動對臍帶纜進行夾緊和張開動作;通過變頻電機驅動履帶,實現對臍帶纜的收放[8-9]。
在鋪設管道之前,各條履帶在液壓缸的驅動下沿導軌向中心運動夾緊管道,通過位移傳感器和壓力傳感器實時監測液壓缸的行程和工作壓力,保證管道在中心夾緊,并進行恒壓力控制。同時每條履帶帶有懸浮液壓缸,用來補償管道外徑的變化,保證履帶有效接觸面積。張緊器通過控制履帶對管道的夾緊力和履帶的正反向驅動,自動實現恒張力條件下管道沿船舶航跡鋪設,同時可根據船舶和海上環境狀態,自動實現收放管道工作。

1—履帶總成;2—上履帶翻轉機構;3—履帶框架總成;4—底座總成。
由于管線終端尺寸較大,需將上框架履帶總成打開,沿軸向方向將管線牽引至張緊器履帶總成之間,再將上框架履帶總成閉合。
2恒張力控制數學模型
四履帶張緊器的恒張力控制系統,是張緊器電氣控制系統的關鍵部分。在海底管線鋪設過程中,由于海洋工況的復雜性,鋪設的管線所受的張力為非線性,數學模型存在不確定性,簡單采用單閉環控制策略,不能滿足實際要求,控制精度不好。由于鋪管(纜)船具有大慣量、速度變化率慢的特點,張緊器固定安裝在鋪管(纜)船上,因此張緊器履帶驅動系統的恒張力控制策略可以利用此特點。在張緊器的設計中,履帶驅動系統恒張力控制策略采用靜態前饋-串級反饋控制策略,控制原理如圖2所示。

圖2 張緊器恒張力控制原理
在恒張力控制系統中通過設定管線張力值,進行靜態前饋函數W1(0)得到運算值A;通過檢測管線張力的測力傳感器與設定鋪設張力值的差值,進行PID函數W2(s)得到運算值B;通過測速編碼器檢測出的鋪設速度值,進行PID函數W3(s)得到運算值C;將這三個運算值迭加后輸送給變頻器驅動變頻電機。
在張緊器的機械結構和傳動形式確定后,其固有的機械損失與時間因子無關。通過對裝備進行靜態標定檢測,得出裝備的補償信號大小,固有機械損失補償認為在兩兩標定值之間的數據是線性比例特性,故W1(0)為
A=W1(0)=Yn-1+
(1)
式中:Xn、Xn-1為實際設定張力值在標定時的上、下張力值;Yn、Yn-1標定時的上、下張力值對應的補償信號值;F0為實際設定張力值。
在函數W2(s)和W3(s)的選擇上,考慮PID調節器有典型的結構,參數調整方便,程序設計簡單,計算工作量小,各參數具有明確的物理意義,并且能得到比較滿意的效果。因此函數W2(s)和W3(s)采用PID控制函數。
(2)
(3)
式中:KP2,KP3為比例系數;Ti2,Ti3為積分時間常數;Td2,Td3為微分時間常數。
3基于AMESim張緊器恒張力控制建模
3.1仿真模型建立
采用AMESim信號庫和機械庫搭建四履帶張緊器的履帶傳輸的恒張力控制系統模型如圖3所示。

圖3 張緊器恒張力控制系統模型
張緊器履帶恒張力系統仿真模型由靜態前饋控制、張力PID反饋控制、速度PID反饋控制、機械系統和鋪設管線模型5個子模型組成。
在系統張力和速度PID反饋控制模型中,考慮PLC的掃描周期為0.1 s,而AMESim模型仿真步長至少在0.01 s以下才能求解到比較好的收斂曲線,因此要加入過濾算法和采樣開關來保持兩者計算頻率的一致性,過濾算法為
(4)
式中:Zn為過濾算法第n次輸出值;Zn-1為過濾算法第n-1次輸出值;Z為傳感器進行模數轉換后輸出值;T為PLC循環掃描時間;N為過濾周期。
鋪設管線模型是整個仿真系統重要的子模型之一,由于目前還沒有實際鋪管船舶在管線鋪設過程中的載荷譜數據,而建立上千米長的管線多體動力學模型數據量非常龐大,很可能無法計算或收斂,因此需要建立管線的力學等效模型來進行仿真[10]。鋪管船運行速度和管線鋪設速度的不同是引起管線張力變化的根本原因,其過程與彈簧兩端加載不同運動速度而引起彈力變化的過程類似,鋪管船自身噸位大小的變化、鋪管海域深淺的變化、鋪管長度的變化等諸多因素會影響管線張力速度的變化率,而這些因素的影響結果都可以通過彈簧阻尼系統的剛度變化來體現。故本文采用變剛度阻尼彈簧系統來等效模擬鋪設管線,在不同深度的海域采用不同剛度、阻尼的彈簧系統來代替鋪設管線的動力學模型。為了簡化仿真模型,海浪等對鋪管過程的影響在后續研究中再做進一步分析。
3.2仿真參數設定
根據設計要求,張緊器的總鋪設張力為850 kN,則每條履帶提供的張力為212.5 kN,最大鋪設速度為0.34 m/s,據此可以選定減速機及電機參數。張力和速度PID反饋控制模型中,除了設定常規PID參數外,還需要設置PLC的循環掃描周期、靜帶(死區)值等,模型仿真參數設置如表1所示。

表1 模型仿真參數
4試驗及仿真結果分析
4.1試驗與仿真數據比對
仿真模型中變剛度彈簧阻尼系統參數設置是整個仿真模型最關鍵的問題,由于管線鋪設過程和工作環境復雜多變性,通過理論計算方法獲得其等效剛度和阻尼非常困難,本文采用管線鋪設試驗數據來標定仿真模型的方法進行設定。具體過程為:首先在一定條件下進行管線鋪設試驗,得到恒張力控制曲線;然后將仿真條件設定與試驗條件保持一致,同時不斷調整彈簧系統的剛度和阻尼值,直至仿真得到的恒張力控制曲線與試驗得到曲線近似一致,此時得到的剛度和阻尼值即認定為管線的力學等效模型設定值。
試驗采用天津市精研工程機械傳動有限公司研制的150 kN電驅動式張緊器,具備25~250 mm電纜鋪設功能,模擬海上施工過程進行張緊器停、收、放、停運動狀態下恒張力控制試驗,如圖4所示。通過計算機測試系統采集實際張力值和設定張力值,測量結果如圖5所示。

圖4 工程船運行速度模擬

圖5 試驗測試的恒張力控制曲線
相同的管線鋪設條件下仿真模型得到的恒張力控制曲線如圖6所示,仿真參數設定如表2所示。

圖6 基準工況的張力控制曲線

管線剛度k/(N·m-1)2.0×106管線阻尼c/(N·(m·s-1)-1)2.0×105過濾周期N/ms100張力PID控制增益Pf80速度PID反饋增益Pv253.2靜帶寬度w/%1
由圖5~6可知,試驗和仿真得到的恒張力曲線調整過程非常相近,超調量均為15 kN左右,但經過2~3次動態調整均很快穩定在設定值附近。定義此仿真曲線下為基準工況,其管道等效剛度、阻尼值即為表2中的數值。為了減少試驗次數,根據基準工況的數據,利用仿真模型來進一步研究張緊器在不同海域下工作時PID控制和速度反饋的參數調整趨勢。
4.2仿真數據分析
根據實際海底管線鋪設情況可知,在淺海區鋪設管線時,由于海水深度較淺并且管線總長度很短,管線的剛度很大而阻尼很小;而在深海鋪設時,則恰恰相反,管線長達上千米,管線具有很好的柔性,剛度相對較小而阻尼較大。故采用低剛度大阻尼的彈簧系統模擬深海作業工況的管線,高剛度小阻尼的彈簧系統模擬淺海作業工況的管線,由于不同海域下管線的等效剛度需要后期實際鋪管作業時才能測定,當前仿真模型各工況以經過試驗標定的工況1作為基準工況,然后剛度、阻尼按一定倍數增減進行設定,如表3所示。

表3 仿真工況參數設置
相對于工況1,工況2、3模擬淺海作業,剛度增大為工況1的1.5倍、2.5倍,阻尼減小為3/4、1/2,其仿真控制參數調整結果如表4所示,張力控制曲線如圖7所示。

表4 工況2、3仿真參數設置

a 工況2

b 工況3
由圖7、表4可知,隨著管線剛度的增大和阻尼的減小,管線的張力在動態調整階段超調量增大、振蕩頻率增大、穩定到張力設定值的時間增長。為了將管線張力響應曲線調整為工況1的狀態,通過增加管線張力濾波周期來降低張力振蕩頻率,使其調整過程變得比較緩和;通過減小張力PID參數Pf來減小超調量;而速度PID反饋參數Pv主要影響系統的穩態值,降低Pv系統的響應速度加快,但是穩態誤差增大。此外,過濾周期N的設定對系統響應影響很大,隨著N增大,張力振蕩頻率會降低,張力調整過程變緩,穩定到設定值時間加長,系統的穩定性較好;但是濾波周期較大時,濾波算法會濾掉張力瞬態峰值,致使管線張力較大時因得不到調整而產生較大的瞬時超調。
相對于工況1,工況4、5分別將剛度降為3/4、1/2,阻尼增加為1.5倍、2.5倍,其控制參數調整結果如表5所示,控制參數調整過程如圖8所示。

表5 工況4、5仿真參數設置

a 工況4

b 工況5
由圖8、表5可知,隨著管線剛度的減小和阻尼的增大,張力超調量降低,振蕩頻率降低,管線張力很快穩定在設定值,系統具有很好的穩定性,因為此時管線剛度低柔性好,故當船速變化時張力的變化不再劇烈。
將上述各個工況按照管道剛度由低到高排序,可以得到控制參數的調整趨勢,即隨著管道剛度的增大和阻尼的減小,增加過濾周期、降低PID控制增益、速度反饋增益能得到較好的張力響應曲線。
5結論
1)張緊器在淺海區域作業時管線具有較高的剛度和較小的阻尼;在深海區域作業時管線具有較低的剛度和較大的阻尼。
2)當張緊器在淺海作業時,隨著管線剛度的增加,恒張力控制系統瞬態響應超調量加大,系統振蕩頻率明顯增大,建議增大傳感器數值過濾算法的過濾周期,使系統響應趨于緩和,減小系統振蕩,增強系統的穩定性,但過大的過濾周期會產生較大的瞬時超調量;減小張力PID控制參數能夠降低系統超調量,但會增加穩定時間;降低速度PID反饋控制參數也可增加系統的穩定性,但系統穩態誤差會增大。
3)張緊器在深海作業時,隨著管線剛度的降低,柔順性變好,因此管線張力對母船速度變化敏感度降低;在一定范圍內淺海區域控制系統參數也適用于深海區,即使控制參數不做調整也能得到較好的恒張力控制曲線。
4)仿真模型中管線模型采用等效剛度阻尼彈簧系統替代,該方法能夠模擬管線的剛度特性,但忽略了管線的空間結構,后期研究應對管線結構進行離散化,建立等效的多自由度系統力學模型。
參考文獻:
[1]張俊亮,劉文利,陳翠和,等.深水鋪管船用張緊器液壓夾緊系統建模與仿真[J].系統仿真學報,2010,22(2):521-527.
[2]郭宏,屈衍,李博,等.國內外臍帶纜技術研究現狀及在我國的應用展望[J].中國海上油氣,2012(2):74-78.
[3]孫亮,張仕民,林立,等.海洋鋪管船用張緊器的總體設計[J].石油機械,2008,36(8):36-38.
[4]Zhang Junliang,Lin Li,Zhang Shimin.A Tensioner System for a DeepwaterPipelaying Vessel[C]// International Conference of Measuring Technology and Mechatronics Automation,2009:36-39.
[5]孫晶晶,劉培林,段夢蘭,等.深水臍帶纜安裝技術發展現狀與趨勢[J].石油礦場機械,2011,40(12):1-5.
[6]郭志平,李冠孚,劉仕超,等,四履帶式海洋船用臍帶纜張緊器設計[J].機械設計與制造,2013(8):266-272.
[7]張宏,李志剛,趙宏林,等.深水海底管道鋪管設備技術現狀與國產化設想[J].石油機械,2008,36(9):201-204.
[8]于博泉.深水臍帶纜四履帶張緊器結構設計與關鍵技術研究[D].哈爾濱:哈爾濱工程大學,2012.
[9]郭煒.85噸深海船用臍帶纜張緊器設計與履帶系統動力學分析[D].呼和浩特:內蒙古工程大學,2013.
[10]龔順風,何勇,周俊,等.深水海底管道S型鋪設參數敏感性分析[J].海洋工程,2009(11):87-95.
Modeling and Simulation of the Constant Tension Control of the Four-track Tensioner
WAN Jianbo1,WANG Fushan2,WANG Hailing2,ZHOU Junfeng1,LI Huailiang3,WANG Hui1,WANG Dongfeng1
(1.TianjinJingyanConstructionMachineryTransmissionCo.,Ltd.,Tianjin300409,China;2.TianjinResearchInstituteofConstructionMachinery,Tianjin300409,China;3.OffshoreOilEngineeringCo.,Ltd.,Tianjin300451,China)
Abstract:The four-track tensioner is the key equipment in the installation system of deep-water umbilical cable,the constant tension control technology is the core of tensioner.The mathematical model of constant tension for four-track tensioner was obtained through analysis of the system of constant tension for tensioner.The simulation model of constant tension for four-track tensioner was established on the basis of the AMESim software,the effectiveness of constant tension control was verified,and the rule of constant tension diameters at the tensioner working on different sea conditions was studied.The analysis of data was obtained for studying the PID adaptive control algorithm.
Keywords:four-track tensioner;constant tension;ASMESim;mathematical model
文章編號:1001-3482(2016)06-0026-06
收稿日期:2015-12-02
基金項目:國家科技重大專項子項目 “臍帶纜安裝系統關鍵部件(A&R絞車)研制”(2011ZX05056-003-07);天津市科技計劃項目“恒張力控制技術研究與裝備產業化”(14ZCDZGX00069)
作者簡介:萬箭波(1981-),男,江西南昌人,高級工程師,主要從事機電設備及其控制系統研發,E-mail:wanjbo@jycmt.com。
中圖分類號:TE952
文獻標識碼:A
doi:10.3969/j.issn.1001-3482.2016.06.006