張建龍
(山西省水利建設開發中心,山西 太原 030002)
?
基于地統計學和小波理論的水文時空差異性研究
張建龍
(山西省水利建設開發中心,山西太原030002)
摘 要:為研究河庫水系連通區之間的水文時空差異性,以提高水供求調控能力,利用地統計學和小波理論,以黃河流域來水區和海河流域滹沱河陽泉供水體系受水區為對象,研究其水文時空差異性。結果表明,來受水區降水量變異函數在各方向空間上均具有較強的自相關性,空間變異尺度都很大,其變異主要是由特定的地理位置分布引起的。來受水區徑流量豐枯遭遇比重較大,可達33.6%,兩區域徑流量周期具有一定的差異性,具備形成豐枯調劑、水量互補的條件,來水區可作為受水區的調水水源區。
關鍵詞:降水量;徑流量;時空差異性;水系連通
水是生命之源、生產之要、生態之基。在傳統水資源開發利用模式已經難以為繼的情況下,構建基于河庫水系連通的水資源開發利用體系成為解決水資源問題的一個重要途徑。山西煤長水短,水資源短缺已成為制約經濟社會可持續發展的主要“瓶頸”,其獨特的地形、不同區域間的水源條件、河流水系分布以及相關工程布局條件為河庫水系連通的水資源調控奠定了基礎。目前,國內外諸多學者對水系連通進行了研究,崔國韜、王中根、左其亭、竇明、李原園、夏軍等[1-4]從水系連通發展沿革、基本理論、體系框架、特征和利弊以及存在若干問題與挑戰等方面進行了研究。由于河庫水系連通是一個復雜的系統工程,是在實踐基礎上發展起來的,關于其理論的研究剛剛起步,目前還未形成較為系統的理論、技術體系。基于此,筆者以黃河來水區和海河流域滹沱河陽泉供水體系受水區為研究對象,研究連通區降水量和徑流量的水文時空差異,以期為連通區水供求調控提供指導。
對于降水量時空差異性,以黃河流域上游水源區(下河沿站以上流域)和滹沱河陽泉供水體系受水
各站水文資料為1956—2012年共57年系列數據。降水量資料包括:①黃河流域來水區為黃河沿、唐乃亥、瑪曲、蘭州、安寧渡和下河沿;②滹沱河陽泉供水體系受水區為上永興、王家會、蘆莊、界河鋪、濟勝橋、豆羅橋、南坡、南莊、會里、羅面咀和陽泉。徑流量資料包括:黃河來水區為頭道拐站,滹沱河陽泉供水體系受水區為南莊和濟勝橋站。
2.1地統計學法
地統計學是以區域化變量理論為基礎,以變異函數為主要工具,研究在空間分布上既有隨機性又有結構性或空間相關性和依賴性的自然現象的科學。現代地統計學已廣泛應用于空間域或時空域自然變量的定量化描述,如空間變異和結構分析、空間預測、空間模擬等眾多領域[5]。水文信息的時間特征參數反映了其在時間和空間上的基本統計規律,參數本身雖然不是自然現象,但隨空間位置的變化而變化,可以視為區域的變化量,水文信息參數在空間上的差異性可以代表其變異情況。因此,筆者利用地統計學方法研究水文特征參數空間差異性。
2.1.1模型擬合方法
地統計學主要采用半方差函數來描述其結構性和隨機性,如果利用經驗半方差值來進行克立格插值,可能會導致負的克立格方差,為保證實測數據的任何線性結合都有正的方差,筆者采用理論半方差函數模型擬合。
目前變異函數理論模型主要分3類:無基臺值模型、有基臺值模型、空穴效應模型,有基臺值的變異性比無基臺值的變異性更具適應性,且變異函數有多變的形式,能夠滿足水文信息參數空間差異性的要求[6]。在有基臺值模型中,高斯模型可以精確地模擬水文信息時空差異性的結構性和隨機性。因此,筆者采用高斯模型擬合理論半方差值,高斯模型變異函數的公式為:

式中:c為基臺值;h為2個圓心間的距離;r為距離參數,定義了模型的空間尺度。
2.1.2時空差異分布格局研究方法
水文信息的時間特征參數存在空間變異性,導致存在空間分布格局的變異性,對于水文信息時空分布格局的研究主要包括2種方法:①水文信息的時間特征參數在研究區域內平穩時,采用普通點克立格法;②水文信息非平穩(即存在一定的漂移現象)時,采用泛克立格法[7]。由于筆者研究的水文信息具有非平穩性,因此采用泛克立格法進行研究。泛克立格法假定平均值是未知的,并且不是一個常數,泛克立格模型可由隨機性和確定性2個部分來構成:

式中:m(x)為確定性部分,又叫做漂移;ε(x)為隨機部分,是一個符合[0,1]分布的隨機函數,又叫殘差。當漂移存在時,隨機函數Z(x)的二階平穩性假設不再成立。
水文信息變量在研究區域上非平穩時,估計權重系數的泛克立格方程組可表示為:

式中:Cp(xi,xj)為測點之間的半方差值;C(xi,x0)為內插點x0和實測點xi之間的半方差值;φ為拉格朗日算子;λi為權重系數;fl(x)為漂移函數。
2.2小波理論
2.2.1小波函數
小波分析的思想源于伸縮與平移的方法,小波分析能否成功與工程技術的實際應用密切相關。水文要素具有復雜周期變換的特征,周期的時間變化、尺度變化很不穩定,小波分析方法具有研究不同尺度(周期)隨時間演變的功能,利用伸縮和平移等運算功能對水文序列進行多尺度細化分析,可作為研究水文要素長期變化的重要工具[8]。由于Mexican Hat小波具有很好的時頻局部化能力,因此筆者采用該函數進行變換,公式如下:

式中:ψ(x)為小波函數;x為水文序列。
式(4)是由標準高斯函數的二階導數取反而來,是厄米特小波集的一個特例,將小波母函數進行伸縮和平移以后就可以得到小波基函數。
2.2.2小波變換
對于給定的小波函數ψ(x),其離散的水文序列f(x)的小波變換函數為:

其相應的反變換公式為:

式中:Wf(a,b)為小波系數或小波變換;b為時間因子;a為尺度因子;為小波函數ψa,b的復共軛函數。
用尺度因子a將基本小波ψa,b做伸縮處理,a越大則小波的周期越長;用時間因子b將基本小波ψa,b做平行移動的量。對于一個持續時間有限的小波而言,不同尺度下小波的持續時間會隨著a的增大而增寬。通過小波分析,可以得到時間序列在任一時刻的頻率特征及在時間-頻率上的變化特征。對一個水文序列,可以用小波系數極值法計算其周期與尺度因子的關系:T=3.974 a。
對電力企業信息化水平評價,要從信息化建設、應用及基礎能力等多方面進行現狀分析,并考慮現有水平下的信息化投資所帶來的效益。根據國內外相關研究成果,結合電力企業特點,提出信息化水平評價體系總體框架。
3.1降水量的時空差異性
3.1.1基本統計特征
根據黃河來水區和滹沱河陽泉供水體系受水區的雨量站資料,利用距平保證率法、距平百分率法計算可知,研究區年均降水量為375.3 mm,最小為140.7 mm,最大為552.6 mm;研究區平均變異系數為0.45,最小為0.26,最大為1.14,區域變異值分布在0.26~1.14,說明研究區年降水量具有中—強變異性,總體上屬于中變異性。
對于黃河來水區而言,平均變異系數為0.48,最小為0.18,最大為0.80,區域變異值分布在0.18~0.80,來水區年降水量具有中變異性;對于滹沱河陽泉供水體系受水區而言,平均變異系數為0.15,最小為0.06,最大為0.71,區域變異值分布在0.06~0.71,受水區降水量屬于弱—中變異性。
3.1.2空間變異分析
利用高斯理論模型進行研究區空間變異分析,擬定參數分別為C0=10、C+C0=26 600、a=1 320 km、C0/(C+C0)=0.000 037 5。研究區在4個方向上多年平均降水量變異函數曲線如圖1—4所示,可以看出:①區域變量構成的變異函數在各個不同方向上具有相同的基臺值,具有明顯的幾何異向性;②各方向上由隨機因素引起的空間異質性占總空間異質性的0.003 75%,具有較強的空間自相關性;③多年平均降水量不管在哪個方向上空間變異尺度都很大,且變異主要由特定的地理位置分布引起。

圖1 東西方向變異尺度

圖2 東北—西南方向變異尺度

圖3 南北方向變異尺度

圖4 西北—東南方向變異尺度
3.1.3空間分布格局
根據變異函數理論模型,利用泛克立格法插值,對每個網格點進行空間局部估計,得到多年平均降水量在整個研究區域的空間格局,如圖5—6所示。可以看出,多年平均降水量在研究區域內存在明顯的空間變異趨勢,由西南至東北呈W形變化趨勢,且兩端較中間部位大,終點值大于起點值。

圖5 多年平均降水量空間變異三維格局

圖6 多年平均降水量空間變異二維格局
3.2徑流序列的時空差異性
3.2.1年際變化分析
利用距平保證率法和距平百分率法進行年際變化分析,距平保證率法以天然徑流量資料為基礎,考慮水文站控制范圍和來受水區未控區域面積,利用面積比擬法計算其天然徑流量,并利用降雨量進行修正,分析來受水區的豐枯遭遇。距平百分率法以來受水區天然徑流量為基礎,利用歷年月(年)徑流量距平與累年月(年)徑流量平均值之比乘以百分數,得出來受水區豐枯遭遇。
按照距平保證率法計算,來受水區同豐遭遇概率為13.2%,同枯遭遇概率為13.3%;豐枯互補的概率可達33.6%,來受水區豐枯水期遭遇的比重較大,具有豐枯遭遇的不均衡性。按照距平百分率法計算,從整體上看2個區域均呈現豐枯交替的現象,年代間存在一定的周期性波動,2個區域在20世紀50、80年代均可實現豐枯互補,代際間具有一定的豐枯互補性,與距平保證率法得出的豐枯遭遇不均衡性結果相吻合。
3.2.2小波周期分析
以來受水區天然年徑流資料為基礎,根據小波理論進行時空差異性研究方法,得到徑流過程的小波變換系數的實部和模,繪制來受水區小波分析結果,如圖7—8所示。可以看出,黃河來水區有3~5年的強周期和8~10年的弱周期,滹沱河陽泉供水體系受水區有9~11年的周期,來受水區在周期上和豐枯交替方面均有一定的差異性,雖然來水區8~10年的弱周期和受水區9~11年的周期比較相似,但來水區還存在一個3~5年的強周期,來受水區豐枯周期不同,實施跨流域調水是可行的。

圖7 黃河來水區小波分析

圖8 滹沱河陽泉供水體系受水區小波分析
當小波系數實部的值為負時,表明徑流量減少;當小波系數實部的值為正時,表明徑流量增多;當小波系數實部的值為零點時,則對應于徑流量的突變點。
筆者以黃河來水區和海河流域滹沱河陽泉供水體系受水區為對象,利用地統計學、小波理論研究了其水文時空差異性,主要結論如下:
(1)來受水區年降水量具有中—強變異性,總體上屬于中變異性。其中,黃河來水區平均變異系數為0.48,屬中變異性;滹沱河陽泉供水體系受水區為0.15,屬于弱—中變異性。來受水區降水量變異主要是由特定的地理位置分布引起的,多年平均降水量不管在哪個方向上的空間變異尺度都很大。
(2)來受水區豐枯遭遇的比重較大,可達33.6%,具有豐枯遭遇的不均衡性。同時,在周期上也具有一定的差異性,各年份間的小波系數正負相位不同,具備形成豐枯調劑、水量互補的基本條件,來水區可作為受水區的調出水源區。
參考文獻
[1]崔國韜,左其亭,竇明.國內外河湖水系連通發展沿革與影響[J].南水北調與水利科技,2011,9(4):73-76.
[2]王中根,李宗禮,劉昌明,等.河湖水系連通的理論探討[J].自然資源學報,2011,26(3):523-529.
[3]李原園,李宗禮,黃火鍵,等.河湖水系連通演變過程及驅動因子分析[J].資源科學,2014(6):1152-1157.
[4]夏軍.河湖水系連通特征及其利弊[J].地理科學進展,2012(1):26-31.
[5]邵惠芳.水文時空變異性分析方法及其在降水分析中的應用[D].北京:清華大學,2005.
[6]舒彥軍.地統計學半變異函數球狀模型優化算法研究[D].南昌:東華理工大學,2012.
[7]龐立新.降雨空間變異性及其徑流響應研究[D].武漢:武漢大學,2005.
[8]桑燕芳,王中根,劉昌明.小波分析方法在水文學研究中的應用現狀及展望[J].地理科學進展,2014(1):1413-1422.
中圖分類號:TV11;P933
文獻標識碼:A
文章編號:1004-7328(2016)03-0028-05
DOI:10.3969/j.issn.1004-7328.2016.03.011
收稿日期:2016—03—10
作者簡介:張建龍(1981—),男,博士,高級工程師,主要從事水資源規劃與管理研究工作。區為整體,研究來受水區的降水量特征、空間變異及空間分布格局;對于徑流量時空差異性,以黃河干流頭道拐和滹沱河南莊、濟勝橋站徑流量為基礎,研究其徑流序列的時空差異性和周期性。