999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Payne-Rayner Type Inequality for Semilinear Elliptic Equations with Mixed Boundary Condition

2016-08-05 07:44:51SHIFeilin
湖南師范大學自然科學學報 2016年4期

SHI Fei-lin

(School of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)

?

A Payne-Rayner Type Inequality for Semilinear Elliptic Equations with Mixed Boundary Condition

SHI Fei-lin

(School of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)

AbstractIn this paper, a Payne-Rayner type inequality for semilinear elliptic equations with mixed boundary condition is obtained byα-symmetrization method. Moreover, some estimates for the positive solution of a class of the related semilinear elliptic problem are given.

Key wordsPayne-Rayner type inequality; semilinear elliptic equations; mixed boundary problem; Chiti comparison principle;α-symmetrization

The present paper deals with the following semilinear elliptic problem with mixed boundary value condition

(1)

where Ω?RnisaboundeddomainhavingLipschitzboundary?Ω=Γ0∪Γ1,00andv denotes the unit outer normal vector on ?Ω.

The study of Payne-Rayner inequality originates from [1]. Letλ1(Ω) andψ1(x) denote the first eigenvalue and the first eigenfunction respectively of the following eigenvalue problem

(2)

In1972,PayneandRaynerprovedthefollowinginequality

(3)

withequalityifandonlyifΩisaball. (3)isalsoshortforthePayne-Raynerinequality,whichmeansthatthefirsteigenfunctionsatisfiesareverseH?ldertypeinequality.Theliteraturefollowedthispioneeringworkissowidethatitisimpossibletoreportitexhaustively.AslightlydifferentapproachhasbeensuggestedbyJobin[2]andChiti[3]whosucceededinextendingthePayne-RaynerinequalitytoanarbitrarydimensionnbymeansofSchwarzsymmetrizationmethod.WangandXia[4]provedthatthePayne-Raynerinequalityholdsincompactmini-curvedsurfacecontainedinRn.In2011,FutoshiandAkinobu[5]establishedaPayne-RaynertypeinequalityfortheRobinLaplacianproblemonarbitraryminimalsurfacesinRn. Furthermore, many extensions have been given, concerning nonlinear differential operators (for the p-Laplace operator with Dirichlet boundary conditions[6], or for Monge-Ampere operator in the plane[7]) as well as different type of boundary conditions(for the Laplace operator with Neumann boundary conditions[8]).

However, much less has been done concerning mixed boundary problem since Schwarz symmetrization method is not suitable for mixed boundary problem any longer. For Dirichlet Laplacian (2) Schwarz symmetrization method requires an application of the classical isoperimetric inequality to the level set of the first eigenfunctionψ1(x). Unfortunately, classical isoperimetric inequality only applies to closed domains but the lever set for the solution of problem (1) is not closed. These considerations suggest that one should not expect the Payne-Rayner inequality for problem (1) using Schwarz symmetrization method. It is worth pointing out that Ashbaugh and Chiacchio[9]proved the Payne-Rayner type inequality for the following linear eigenvalue problem with mixed boundary condition

bymakinguseofsymmetrizationmethod.NaturallywewouldliketogeneralizethePayne-Raynerinequalitytosemilinearellipticproblemwithmixedboundarycondition.Inthispaper,weprovedaPayne-Raynertypeinequalityforproblem(1)byadoptingαsymmetrizationmethod.

α-symmetrizationisamethodthattransformsdomainsΩhavingfinite“isoperimetricconstantrelativetoΓ1”(denotethroughoutbyQ(Γ1,Ω)intocircularconesC(α,R*)suchthat|Ω|=|C(α,R*)|.ConicalsectorplaysthesameroleastheballinSchwarzsymmetrization.

Throughoutthispaperweassumethefollowingtwoconditionshold,

(H1) Hn-1(Γ0)>0, H(n-1)(Γ1)>0, ?ΩisLipschitz,

AssumeV2(Ω) is the Hilbert space naturally i.e.

V2(Ω)={u∈H1(Ω):u=0 onΓ0},

where the scalar product is given by

〈u,v〉=∫ΩDuDvdx.

We denote by

It is well known thatμ1(Ω) can be achieved by a unique positive functionu1(x). What is more,u1(x) is a solution of problem (1) forμ=μ1(Ω).

We chooseS=C(α,r) in such a way such thatμ1(Ω)=μ1(S). Then our main result can be stated as

Theroem1Letu1(x)betheminimizerofμ1(Ω)andz1(x)betheminimizerofμ1(S).Foranyp≥q+1,thenusatisfies

AsapplicationsofTheorem1,wecandeducetheestimatesforthepositivesolutionoftherelatedsemilinearellipticproblem

(4)

Leth(x) be the positive solution of the following problem

(5)

By similar arguments in [10], the first application of Theorem 1 can be read as

Corollary 2Letw(x) be the unique solution of problem (4),h(x) be the unique solution of problem (5). Then for anyp≥q+1, we have

AnotherapplicationofTheorem1canbeestablishedas

Corollary3Letw(x)betheuniquesolutionofproblem(4)andh(x)betheuniquesolutionofproblem(5).Thenforanyp≥q+1,wehave

∫Ωwp(x)dx≤∫C(α,R*)hp(x)dx,

and

1Notation and preliminary results

WewilldenotebyAαanopensetofSn-1suchthatHn-1(Aα)=α,by∑α={tx∈Rn,x∈Aαandt>0}andby∑(α,R)thefollowing

∑(α,R)=BR∩∑α.

LetΩbeaboundeddomaininRnwithboundaryincludingtwomanifoldsΓ0andΓ1.Wedenoteby|D|theLebesguemeasureofasetDinRnanddefine(see[11, 12, 13])

whereεdenotesthesetofallmeasurablesubsetsEofΩsuchthat?E∩Γ0doesnotcontainanysetofpositiven-1dimensionalHausdorffmeasure.IntheabovedefinitionPΩ(E)istheDeGiorgiPerameterofErelativetoΩ.Youcanseemanyexamplesin[13],whichisthen-1dimensionalHausdorffmeasureof?EΓ1intheregularcase.Generally, PΩ(E)isrepresentedby

WedenotebyC(α,R)anysphericalsectorofRnwithradiusRandsolidangleα.Moreprecisely,

C(α,R)={tx∈Rn,x∈Aαandt>0}∩B(0,R),

whereAαisasphericalcapofSn-1withHn-1(Aα)=α.

Subsequently,werecallsomenotationsandbasicfactsabouttherearrangementoffunction.LetubeameasurablefunctiondefinedinaboundeddomainofRn.

Letf:Ω→Rbeanonnegativemeasurablefunction.Thedistributionfunctionoffisdefinedas

μf(t)=|Ωt|=meas{x∈Ω:f(x)>t},t≥0.

Thedecreasingrearrangementf*offisafunctiondefinedon[0,∞)by

The increasing rearrangementf*offis a function defined on by

f*(s)=f*(|Ω|-s), fors∈(0,∞).

Finally,u#,αandu#,αrepresent the radially decreasing and increasingα-symmetrization ofurespectively and

u#,α=u*(αn|x|n),x∈Cα(Ω),

u#,α=u*(αn|x|n),x∈Cα(Ω),

whereCα(Ω)=∑(α,R*) withR*chosen such that |∑(α,R*)|=|Ω|.

There are many properties of rearrangement. Here, we only give two important properties needed in this paper.

Proposition 1[9,11]Let Ω be a bounded domain satisfying (H1) and (H2) . Then for anyubelong toV2(Ω), we have

∫Ω|Du|2dx≥∫Ca(Ω)|Du#,α|2dx.

Proposition 2[14]LetM,α,βbe real numbers such that 0<α≤βandM>0, Letf,gsatisfy the inequality

Then

3The proof of Theorem 1

In this section, we prove the Theorem 1 by symmetrization method. In order to obtain our results, we introduce the following auxiliary problem

(6)

Similarlyargumentin[16],ityieldsthefollowinglemmas.

Lemma1Letu1(x)betheminimizerofμ1(Ω).Thenthefollowinginequalityholds

(7)

InthesubsequentTheorem2,weproveaChititypecomparisonresultinthespiritofChiti’sapproach,whichconstitutesthemostimportantstepofourtheorem.

Theorem2Letu1(x)betheminimizerofμ1(Ω)andz1(x)betheminimizerofμ1(S).Thenthereexistss0∈2(0,|S|)suchthat

ProofWedefines0tobe

Ifs0=0,weset

Ifs0>0,weset

Finally,wehave

∫S|,

whichisacontradiction,asintheconclusionoftheproofofLemma2.

FromtheLemmasabove,itfollowstheproofofTheorem1.

ProofofTheorem1Since

(8)

Lets0bethepointasdefinedbefore.Fors∈[0,s0]byTheorem2wealsohave

Infact,fromTheorem2wehave

(9)

By(11)and(12)ityieldsthat

(10)

sowehave

By(13)andProposition2,wehave

i.e.

∫Ω(u1)pdx≤∫S(z1)pdxforanyp≥q+1.

Therefore

ItcompletestheproofTheorem1.

FromtheproofofTheorem1weobtain

∫Ω(u1)pdx≤∫S(z1)pdxforanyp≥q+1.

(11)

AcknowledgementsHeartfeltthanksaregiventoProfessorQiuyiDaiformanyinvaluablesuggestions.

References:

[1]PAYNELE,RAYNERME.Anisoperimetricinequalityforthefirsteigenfunctioninthefixedmembraneproblem[J].ZAngewMathPhys, 1972,23:13-15.

[2]THéRSEM,JOBINK.IsoperimetricmonotonicityandisoperimetricinequalitiesofPayne-RaynertypeforthefirsteigenfunctionoftheHelmholtzproblem[J].ZAngewMathPhys, 1981,32:25-646.

[3]CHITIG.AreverseH?derinequalityfortheeigenfunctionsoflinearsecondorderellipticoperators[J].ZAngewMathPhys, 1982,33:143-148.

[4]WANGQL,XIACY.IsoperimetricboundsforthefirsteigenvalueoftheLaplacian[J].ZAngewMathPhys, 2010,61:171-175.

[5]TAKAHASHIF,UEGAKIA.APayne-RaynertypeinequalityfortherobinproblemonarbitraryminimalsurfacesinRn[J].ResultsinMath, 2011,59:107-114.

[6]ALVINOA,FERONEV,TROMBETTIG.Onthepropertiesofsomenonlineareigenvalues[J].SIAMJMathAnal, 1998,29(2):437-445.

[7]BRANDOLINIB,TROMBETTIC.ComparisonresultsforHessianequationsviasymmetrization[J].JEurMathSoc, 2007,9(3):561-575.

[8]BRANDOLINIB,CHIACCHIOF,TROMBETTIC.SharpestimatesforeigenfunctionsofaNeumannproblem[J].CommPartialDifferEqu, 2009,34(10-12):1317-1337.

[9]ASHBAUGHMS,CHIACCHIOF.OnloweigenvaluesoftheLaplacianwithmixedboundaryconditions[J].JDifferEqu, 2011,250:2544-2566.

[10]胡華香,戴求億,賀仁初.半線性橢圓方程正解的等周不等式[J].數學年刊, 2013,34A(1):87-100.

[11]LIONS P L, PACELLA F, TRICARICO M. Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions[J]. Indiana Univ Math J, 1988,37:301-324.

[12]LIONS P L, PACELLA F. Isoperimetric inequalities for convex cones[J]. Proc Amer Math Soc, 1990,109:477-485.

[13]PACELLA F, TRICARICO M. Symmetrzation for a class of elliptic equations with mixed boundary conditions[J]. Atti Sem Mat Fis Univ Modena,1985-1986,XXXIV:75-94.

[14]HARDY G H, LITTLEWOOD J E, PLYA G. Some simple inequalities satised by convex functions[J]. Mess Math, 1929,58:152.

[15]BREZIS KH, KAMIN S. Sublinear elliptic equations in Rn[J]. Manage Math, 1992, 74:87-106.

[16]TALENTI G. Elliptic equations and rearrangements[J]. Ann Scuola Norm Sup Pisa, 1976,3:697-718.

[17]FLEMING H, RISHEL R. An integral formula for local gradient variation[J]. Arch Math, 1960,2:218-222.

(編輯HWJ)

DOI:10.7612/j.issn.1000-2537.2016.04.012

收稿日期:2015-04-17

基金項目:國家自然科學 項目(11271120);湖南省研究生創新 項目(CX2011B198)

*通訊作者,E-mail:shifeilin1116@163.com

中圖分類號O175.25

文獻標識碼A

文章編號1000-2537(2016)04-0072-06

帶混合邊值條件的半線性橢圓方程的Payne-Rayner型不等式

石飛林*

(湖南師范大學數學與計算機科學學院,中國 長沙410081 )

摘要利用α-對稱化方法證明了帶混合邊界條件的半線性橢圓方程的Raye-Rayner型不等式,并推出了相關線性橢圓方程混合邊界條件正解的一些重要估計.

關鍵詞Payne-Rayner型不等式;半線性橢圓方程;混合邊值問題;Chiti比較原理;α對稱

主站蜘蛛池模板: 亚洲日韩高清无码| 天天色综网| 欧美成人午夜视频免看| 国产欧美中文字幕| 国产欧美日韩综合在线第一| 成人一区专区在线观看| 亚洲大尺码专区影院| 久久这里只有精品66| 刘亦菲一区二区在线观看| 国产尤物视频在线| 免费观看欧美性一级| 99国产在线视频| 少妇高潮惨叫久久久久久| 在线视频亚洲欧美| 99精品视频在线观看免费播放| 国产精品开放后亚洲| 2020国产在线视精品在| 欧美精品亚洲精品日韩专| 99精品久久精品| 中文字幕久久波多野结衣| 亚洲天堂777| 人人爽人人爽人人片| 国产成人综合亚洲欧美在| 久久免费看片| 看你懂的巨臀中文字幕一区二区| 日本91在线| 国产极品嫩模在线观看91| 国产成人免费高清AⅤ| 国产av色站网站| 久久精品午夜视频| 国产精品免费福利久久播放| 日本午夜精品一本在线观看| 国产亚洲欧美日韩在线观看一区二区| 亚洲欧美激情小说另类| 2021天堂在线亚洲精品专区| 欧美亚洲激情| 国产一区二区三区夜色| 国产成人禁片在线观看| 国产永久免费视频m3u8| 国产人成网线在线播放va| 波多野吉衣一区二区三区av| 国产成人精品18| 国产精品第一区| 国产福利在线观看精品| 精品少妇人妻一区二区| AV熟女乱| 亚洲天堂免费| 原味小视频在线www国产| 露脸一二三区国语对白| 亚洲成在线观看 | 青青草原国产av福利网站| 亚洲精品va| 亚洲视频免| 丁香婷婷在线视频| 无码不卡的中文字幕视频| 国产微拍精品| 波多野结衣无码中文字幕在线观看一区二区 | 国产精品女同一区三区五区| 91久久大香线蕉| 天天摸天天操免费播放小视频| 国产精品自在线拍国产电影| 色首页AV在线| 在线播放精品一区二区啪视频| a级毛片视频免费观看| 日本日韩欧美| 国内熟女少妇一线天| 在线观看免费国产| 久久狠狠色噜噜狠狠狠狠97视色 | 白浆免费视频国产精品视频| 亚洲成人高清无码| 国产午夜在线观看视频| 亚洲男人在线| 国产99视频在线| 99热这里只有精品在线播放| 午夜少妇精品视频小电影| 免费无码AV片在线观看国产| www.91在线播放| 亚洲午夜福利精品无码| 欧美亚洲中文精品三区| 久青草网站| 91娇喘视频| 多人乱p欧美在线观看|