孔海民, 劉麗, 李田宇, 汪繼兵, 方萍,*
(1.浙江大學環境與資源學院,污染環境修復與生態健康教育部重點實驗室,杭州 310058;2.浙江省農業技術推廣中心,杭州 310020;3.貴州大學農學院農業資源與環境系,貴陽 550025;4.浙江大學環境與資源學院,浙江省亞熱帶土壤與植物營養重點研究實驗室,杭州 310058)
?

濃縮味精廢液作為高溫堆肥調酸保氮劑的適宜添加時間研究
孔海民1,2, 劉麗1,3, 李田宇1, 汪繼兵4, 方萍1,4*
(1.浙江大學環境與資源學院,污染環境修復與生態健康教育部重點實驗室,杭州 310058;2.浙江省農業技術推廣中心,杭州 310020;3.貴州大學農學院農業資源與環境系,貴陽 550025;4.浙江大學環境與資源學院,浙江省亞熱帶土壤與植物營養重點研究實驗室,杭州 310058)

濃縮味精廢液; 豬糞; 高溫堆肥; pH; 氮素損失
Summary The pH rise of the compost mixture is one of the main causes for nitrogen volatilization loss in the composting process. As a consequence of organic degradation, accumulated ammonium nitrogen will trigger pH rise spontaneously. It is generally believed that ammonia nitrogen (NH3) will volatilize once the pH of compost mixture exceeds 8.0. And the higher the pH is, the more the NH3volatilization will be. In this way, the pH rise of mixture will result in substandard compost products, not only because its pH is out of the upper limit (pH=8.5) of the NY 525—2012 standard, but also significant decline of nutrition content due to NH3volatilization. Hence, adjusting the pH of materials to control nitrogen loss becomes one of the hot issues in the organic fertilizer industry. A lot of chemical agents have been applied to adjust the pH in composting. However, most of them are difficult to implement efficiency and decrease production cost, let alone the dilution effects and imbalance of nutrition. The concentrated monosodium glutamate wastewater (CMGW) is an evaporative and concentrated liquid waste from discharged organic water in production of monosodium glutamate, characterized by rich nutrients and free heavy metal pollution. Previous studies have indicated that CMGW is a promising conditioning agent to adjust acidity and reduce NH3volatilization for composting, and the suggested optimum dosage is 2% of the mixture in mass.
The appropriate adding time of CMGW for adjusting pH and decreasing nitrogen loss due to NH3volatilization in composting was further discussed in present study by a compost simulation experiment. The simulation experiment took place in a composting device (patent number: ZL 201010589910X) with the mixture of fresh pig manure and mushroom residues at a ratio of 3∶1 in mass, as well as 1% fermentation bacterial agent of the mixture. Three treatments were conducted as follows: 1) M1, application of 2% CMGW before composting; 2) M2, application of 2% CMGW at the 5th day of composting; 3) CK, control group without CMGW.


高溫堆肥是實現畜禽養殖廢棄物無害化、資源化最為有效的途徑[1],但在堆肥升溫和高溫階段,由于微生物大量繁殖,有機物加速分解,大量銨態氮在堆體中積聚,使物料pH值升高,引起氮素中的NH3揮發損失[2],不僅會加劇堆肥場的惡臭,降低肥料中的養分含量,也常常導致堆肥產品pH超標[3],達不到農業部有機肥行業標準NY 525—2012規定的酸堿度(pH 5.5~8.5)的要求。如何調節物料pH值來控制氮素損失已成為有機肥行業關注的熱點。目前,用于堆肥物料調酸保氮的物質主要有磷酸、硫酸鋁[4]、氫氧化鎂[5]、硫酸亞鐵、過磷酸鈣[6-7]、草炭和沸石[8]等,但是這些調理劑必須達到足夠的添加量才能發揮作用。據王秀娟等[9]報道,在雞糞堆肥中添加3%硫酸亞鐵、10%過磷酸鈣、9%草炭才能達到良好的保氮效果。然而,大量添加硫酸亞鐵、氫氧化鎂和沸石等化學調理劑不僅增加了有機肥的生產成本,還因稀釋效應使產品的養分含量降低;同時,大量添加磷酸或過磷酸鈣作為調酸保氮劑會造成堆肥產品含磷量過高,進而導致有機肥氮磷鉀3要素配比失衡,在實踐中難以被有機肥生產企業廣泛接受。為此,尋找價廉質優、資源豐富的堆肥物料的調酸保氮材料是提高有機肥品質、拓展有機肥市場的有效保障。
濃縮味精廢液是在味精生產中產生的離交尾液的蒸發濃縮液,具有營養物質(主要為菌體蛋白質、氨基酸、還原糖、N、P、K及微量元素等)豐富、pH低、無重金屬超標等特性,可望用作堆肥物料的調理劑解決堆肥過程中產品pH超標及其造成的氮素揮發損失等問題。本課題組前期已通過不同濃縮味精廢液添加量的堆肥物料高溫培養試驗對此進行了驗證,結果[10]表明,添加濃縮味精廢液可以降低堆肥物料的pH和NH3揮發量,其添加量為堆肥物料質量1%和3%處理的NH3日揮發量比對照分別降低了22.8%~39.7%和65.3%~78.9%;相繼3次每隔3 d添加1%和2%濃縮味精廢液處理的10 d累積NH3揮發總量分別比對照降低了15%和71%,培養25 d后堆肥物料pH分別從對照的9.1降至8.5和7.7。本文擬進一步通過堆肥模擬試驗,研究堆肥過程中濃縮味精廢液添加時間對其調酸保氮效果的影響。
1.1供試材料
新鮮豬糞取自浙江大學華家池校區牧場;經風干粉碎后的菇渣取自浙江省金華市豐源農業科技有限公司;濃縮味精廢液由安徽環宇肥料有限公司提供;發酵菌劑是由本實驗室自行研發制備的混合菌劑;用于發芽指數測定的黃瓜種子購自浙江省勿忘農種業有限公司。供試原料的基本理化性質見表1。

表1 供試原料的基本理化性質
CMGW: Concentrated monosodium glutamate wastewater.
1.2試驗方法
試驗采用的模擬堆肥裝置由本課題組設計發明(專利號:ZL 201010589910X)。將新鮮豬糞和菇渣按質量比3∶1混合,添加混合物質量1%的發酵菌劑進行堆置。分別在堆置前和堆置5 d時添加堆肥物料質量2%的濃縮味精廢液,并設不添加的為對照,共3個處理,分別記作M1、M2和CK。將物料與濃縮味精廢液充分混勻,調節堆肥物料含水率至62%左右,裝入模擬堆肥裝置中,7.5 kg/桶,各處理重復3桶。試驗第1周每隔2 h用氣泵對物料強制通氣30 min,通氣量為25 L/min,第2周停止通氣。每5 d翻堆一次并取樣,樣品分為鮮樣和烘干樣,分別進行理化性質測定。
1.3測定項目及方法

堆肥物料的腐熟程度由物料鮮樣的種子發芽指數評價[12]。種子發芽指數測定過程:在直徑9 cm的培養皿內先墊1張濾紙,均勻放入20顆黃瓜種子后加入發酵物料的浸提液(在10 g物料新鮮樣品中加入100 mL蒸餾水,攪拌浸泡30 min)5.0 mL,于25 ℃黑暗培養箱中培養48 h后測定發芽率和根長,每個樣品重復3次,同時用蒸餾水作為對照。
種子發芽指數/%=(處理發芽率×處理根長)/(空白發芽率×空白根長)×100。
1.4數據分析
試驗數據采用Excel 2007整理及作圖,利用DPS V14.50軟件[13]進行方差分析和最小顯著差異法多重比較。
2.1堆體中心溫度的變化動態
由圖1可見,在整個堆肥過程中堆肥物料溫度高于環境溫度,堆肥伊始堆體中心溫度急劇上升,至第3天升至50 ℃,至第4天高達55 ℃以上,隨后除了因每隔5 d翻堆取樣時溫度有所降低外,直至第15天基本保持在50 ℃以上,此后逐步回落至45 ℃以至35 ℃。3個處理間的差異并不明顯。說明添加濃縮味精廢液對堆肥物料升溫無明顯影響。

CK:未添加濃縮味精廢液;M1:堆肥開始前添加物料質量2%的濃縮味精廢液;M2:堆肥啟動后5 d添加物料質量2%的濃縮味精廢液;AT:環境溫度。CK: Without concentrated monosodium glutamate wastewater (CMGW); M1: Application of 2% CMGW before composting; M2: Application of 2% CMGW at the 5th day of composting; AT: Environmental temperature.圖1 不同處理堆體中心溫度變化動態Fig.1 Change dynamic of central temperature of compost matrix under different treatments
2.2堆肥物料pH變化動態
圖2顯示:堆肥起始第1天處理M1的物料pH顯著低于此時尚未添加濃縮味精廢液的處理M2和對照CK;此后的整個堆肥過程中CK的物料pH不僅顯著高于M1和M2,而且都超過8.5,最終高達8.9,超出NY 525—2012規定的有機肥酸堿度標準的上限8.5;此外,M1處理的物料pH始終低于M2。說明在堆肥升溫前添加濃縮味精廢液對物料的調酸效果優于升溫后添加。
2.3堆肥物料含水率變化動態
圖3表明:堆肥物料的含水率在堆肥起始的前5 d急劇下降,至第10天略有回升,隨后又緩慢下降;在整個堆肥過程中,M1的含水率始終低于CK和M2,并與CK的差異有統計學意義(P<0.05);M2的變化曲線也一直位于CK之下,第10天、15天和25天均與CK差異達統計學上的顯著水平(P<0.05)。說明添加濃縮味精廢液有利于堆肥物料的水分散失,且堆肥開始前添加的效果比物料升溫后添加更為明顯。

各處理符號表示的含義詳見圖1注。圖上不同小寫字母表示在同一堆肥時間下不同處理間在P<0.05水平差異有統計學意義。Please see footnote of Fig.1 for details of each treatment. Different lowercase letters mean statistically significant differences among different treatments at the same composting time at the 0.05 probability level.圖2 不同處理堆肥物料pH值變化動態Fig.2 Change dynamic of the pH value of compost mixture under different treatments

各處理符號表示的含義詳見圖1注。圖上不同小寫字母表示在同一堆肥時間下不同處理間在P<0.05水平差異有統計學意義。Please see footnote of Fig.1 for details of each treatment. Different lowercase letters mean statistically significant differences among different treatments at the same composting time at the 0.05 probability level.圖3 不同處理堆肥物料含水率變化動態Fig.3 Change dynamic of moisture content of compost mixture under different treatments


各處理符號表示的含義詳見圖1注。圖上不同小寫字母表示在同一堆肥時間下不同處理間在P<0.05水平差異有統計學意義。Please see footnote of Fig.1 for details of each treatment. Different lowercase letters mean statistically significant differences among different treatments at the same composting time at the 0.05 probability level.圖4 不同處理堆肥物料-N含量變化動態Fig.4 Change dynamic of -N content of compost mixture under different treatments


各處理符號表示的含義詳見圖1注。圖上不同大寫字母表示在同一堆肥時間下不同處理間在P<0.01水平差異有統計學意義。Please see footnote of Fig.1 for details of each treatment. Different capital letters mean statistically significant differences among different treatments at the same composting time at the 0.01 probability level.圖5 不同處理堆肥物料-N含量變化動態Fig.5 Change dynamic of -N content of compost mixture under different treatments
2.5堆肥前后物料理化性質變化
堆肥開始和結束時物料pH、電導率、全氮含量和種子發芽指數如表2所示。堆肥開始時,添加濃縮味精廢液處理M1的pH顯著低于未添加的2個處理CK和M2;M1的電導率顯著高于M2和CK;M1的全氮含量略高于M2和CK;3個處理的種子發芽指數均低于60%,表明都尚未腐熟。經25 d堆置后,即堆肥結束時3個處理物料的4項指標都有不同程度的上升,其中pH以CK高達8.9而明顯超標,M2為8.7,顯著低于CK但仍超標,M1最低(7.6),已經達標;電導率為M1>M2>CK,差異有統計學意義(P<0.01);M1的全氮含量最高,顯著高于M2,極顯著高于CK;3個處理的種子發芽指數均超過110%,說明均已腐熟。
表2堆肥前后物料pH值、電導率(EC)、全氮(TN)及種子發芽指數(GI)的變化
Table 2Change of compost mixture pH, electrical conductivity (EC), total nitrogen (TN) content and seed germination index (GI) under different treatments before and after composting

處理Treatments 0d 25d pHEC mS cm w TN g kg GI %pHEC mS cm w TN g kg GI %CK8 5aA1 81bB18 32ab55 0a8 9A1 93C27 96bB121 6aM17 0bB3 08aA19 11a48 0a7 6C3 67A29 02aA114 2aM28 2aA1 78bB18 03b52 0a8 7B2 32B28 12bAB114 5a
同列數據后的不同小寫或大寫字母分別表示在P<0.05或P<0.01水平差異有統計學意義。
The values followed by different lowercase or capital letters in the same column mean statistically significant differences at the 0.05 or 0.01 probability level, respectively.

[1]程紹明,馬楊暉,姜雄暉.我國畜禽糞便處理利用現狀及展望.農機化研究,2009,31(2):222-224.
CHENG S M, MA Y H, JIANG X H. Comprehensive utilization technologies of livestock manure.JournalofAgriculturalMechanizationResearch, 2009,31(2):222-224. (in Chinese with English abstract)
[2]李順義,張紅娟,郭夏麗,等.畜禽糞便堆肥過程中氨揮發及調控措施.農機化研究,2010,32(1):13-17.
LI S Y, ZHANG H J, GUO X L,etal. Ammonia volatilization and the regulation measures in the livestock manure compost.JournalofAgriculturalMechanizationResearch, 2010,32(1):13-17. (in Chinese with English abstract)
[3]李帆,朱宏斌,郭熙盛,等.畜禽糞便高溫堆肥過程中氨揮發的機制及控制.安徽農業科學,2008,36(25):10996-10997.
LI F, ZHU H B, GUO X S,etal. Mechanism of ammonia volatilization and technique for nitrogen conservation in composting of livestock manure.JournalofAnhuiAgriculturalSciences, 2008,36(25):10996-10997. (in Chinese with English abstract)
[4]DELAUNE P B, MOORE P J, DANIEL T C,etal. Effect of chemical and microbial amendments on ammonia volatilization from composting poultry litter.JournalofEnvironmentalQuality, 2004,33(2):728-734.
[5]任麗梅,賀琪,李國學,等.氫氧化鎂和磷酸混合添加劑在模擬堆肥中的保氮效果研究及其經濟效益分析.農業工程學報,2008,24(4):225-228.
REN L M, HE Q, LI G X,etal. Effect of Mg(OH)2and H3PO4amendments on nitrogen conservation during simulated aerobic composting and its benefit analyses.TransactionsoftheChineseSocietyofAgriculturalEngineering, 2008,24(4):225-228. (in Chinese with English abstract)
[6]胡明勇,劉強,陳雄鷹,等.2種鈣化合物在豬糞-稻草堆肥中除臭及保氮效果研究.湖南農業科學,2009(7):51-54.
HU M Y, LIU Q, CHEN X Y,etal. Deodorization and nitrogen preservation effects of two kinds of calcium compound in compositing of pig-manure combined with straw.HunanAgriculturalSciences, 2009(7):51-54. (in Chinese)
[7]史春梅,王繼紅,李國學,等.不同化學添加劑對豬糞堆肥中氮素損失的控制.農業環境科學學報,2011,30(5):1001-1006.
SHI C M, WANG J H, LI G X,etal. Control of different chemical additives on nitrogen loss during composting of pig manure.JournalofAgro-EnvironmentScience, 2011,30(5):1001-1006. (in Chinese with English abstract)
[8]熊建軍,劉淑英,鄒國元,等.高溫堆肥過程中除臭保氮技術研究進展.中國農學通報,2008,24(1):444-448.
XIONG J J, LIU S Y, ZOU G Y,etal. Research progress on deodorizing and reducing nitrogen loss from high temperature compost system.ChineseAgriculturalScienceBulletin, 2008,24(1):444-448. (in Chinese with English abstract)
[9]王秀娟,劉慧穎,孫文濤,等.有機肥發酵氮素損失調控技術研究.雜糧作物,2004,24(4):236-237.
WANG X J, LIU H Y, SUN W T,etal. Control techniques of nitrogen loss in organic fertilizer fermentation.RainFedCrops, 2004,24(4):236-237. (in Chinese)
[10]LIU L, KONG H M, LU B B,etal. The use of concentrated monosodium glutamate wastewater as a conditioning agent for adjusting acidity and minimizing ammonia volatilization in livestock manure composting.JournalofEnvironmentalManagement, 2015,161:131-136.
[11]魯如坤.土壤農業化學分析方法.北京:中國農業科學技術出版社,2000:107-160.
LU R K.AnalyticalMethodsofSoilAgrochemistry. Beijing: China Agricultural Science and Technology Press, 2000:107-160. (in Chinese)
[12]黃國鋒,吳啟堂,孟慶強,等.豬糞堆肥化處理的物質變化及腐熟度評價.華南農業大學學報,2002,23(3):1-4.
HUANG G F, WU Q T, MENG Q Q,etal. Substance changes and maturity evaluation during pig manure composting.JournalofSouthChinaAgriculturalUniversity, 2002,23(3):1-4. (in Chinese with English abstract)
[13]TANG Q Y, ZHANG C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.InsectScience, 2013,20(2):254-260.
[14]單德鑫,李淑芹,許景鋼.固體有機廢物堆肥過程中氮的轉化.東北農業大學學報,2007,38(2):265-269.
SHAN D X, LI S Q, XU J G. Nitrogen transformations in solid organic waste composting.JournalofNortheastAgriculturalUniversity, 2007,38(2):265-269. (in Chinese with English abstract)
[15]REECE F N, BATES B J, LOTT B D. Ammonia control in broiler houses.PoultryScience, 1979,58:754-755.
[16]MOORE JR P A, HUFF W E, DANIEL T C,etal. Effect of aluminum sulfate on ammonia fluxes from poultry litter in commercial broiler houses//Proceedings of Fifth International Symposium on Livestock Environment.TransactionsoftheASAE, 1997,2:883-891.
[17]鄭瑞生,肖本木,李延.堆肥化過程中氮素轉化和NH3揮發研究.泉州師范學院學報,2007,25(2):122-125.
ZHENG R S, XIAO B M, LI Y. A study on nitrogen transformation and NH3emission during composting.JournalofQuanzhouNormalCollege, 2007,25(2):122-125. (in Chinese with English abstract)
[18]李靜,陳志良.接種硝化菌劑降低豬糞堆肥氮素損失的研究.安徽農業科學,2011,39(15):8976-8978.
LI J, CHEN Z L. Study on reducing nitrogen loss using nitrifying bacteria inoculants in pig dung compost.JournalofAnhuiAgriculturalSciences, 2011,39(15):8976-8978. (in Chinese with English abstract)
[19]鮑艷宇,周啟星,顏麗,等.畜禽糞便堆肥過程中各種氮化合物的動態變化及腐熟度評價指標.應用生態學報,2008,19(2):374-380.
BAO Y Y, ZHOU Q X, YAN L,etal. Dynamic changes of nitrogen forms in livestock manure during composting and relevant evaluation indices of compost maturity.ChineseJournalofAppliedEcology, 2008,19(2):374-380. (in Chinese with English abstract)
[20]羅泉達,黃惠珠,鄭長焰,等.豬糞堆肥的腐熟度指標.福建農林大學學報(自然科學版),2009,38(1):84-87.
LUO Q D, HUANG H Z, ZHENG C Y,etal. The indices of swine manure compost maturity.JournalofFujianAgriculturalandForestryUniversity(NaturalScienceEdition), 2009,38(1):84-87. (in Chinese with English abstract)
Appropriate adding time of concentrated monosodium glutamate wastewater as acidity adjusting and nitrogen loss control agent in high temperature composting.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(4):495-501
KONG Haiming1,2, LIU Li1,3, LI Tianyu1, WANG Jibing4, FANG Ping1,4*
(1.KeyLaboratoryofEnvironmentRemediationandEcologicalHealthoftheMinistryofEducation,CollegeofEnvironmentalandResourceSciences,ZhejiangUniversity,Hangzhou310058,China; 2.AgriculturalTechnologyPopularizationCenterofZhejiangProvince,Hangzhou310020,China; 3.DepartmentofAgriculturalResourceandEnvironment,CollegeofAgriculture,GuizhouUniversity,Guiyang550025,China; 4.ZhejiangProvincialKeyLaboratoryofSubtropicalSoilandPlantNutrition,CollegeofEnvironmentalandResourceSciences,ZhejiangUniversity,Hangzhou310058,China)
concentrated monosodium glutamate wastewater; pig manure; high temperature compost; pH; nitrogen loss
國家自然科學基金(31272242).
Corresponding author):方萍(http://orcid.org/0000-0001-7784-7873),Tel:+86-571-88982480,E-mail:pfang@zju.edu.cn
聯系方式:孔海民(http://orcid.org/0000-0001-7014-426X),E-mail:konghaimin2004@163.com
2015-08-13;接受日期(Accepted):2015-11-27;網絡出版日期(Published online):2016-04-12
S-3; X 703
A
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160412.1447.002.html