999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A modified relation between the intraocular and intracranial pressures

2016-09-14 08:16:45HanjingTianRuiqiDuFanSongStateKeyLaboratoryofNonlinearMechanicsLNMInstituteofMechanicsChineseAcademyofSciencesBeisihuanxiRoadNo15Beijing100190China

Hanjing Tian,Ruiqi Du,Fan Song?State Key Laboratory of Nonlinear Mechanics(LNM),Institute of Mechanics,Chinese Academy of Sciences,Beisihuanxi Road No.15,Beijing,100190,China

?

A modified relation between the intraocular and intracranial pressures

Hanjing Tian,Ruiqi Du,Fan Song?
State Key Laboratory of Nonlinear Mechanics(LNM),Institute of Mechanics,Chinese Academy of Sciences,Beisihuanxi Road No.15,Beijing,100190,China

h i g h l i g h t s

?A novel relation between the intraocular and intracranial pressures.

?The present relation is in good agreement with the existing experiments.

?This relation overcomes the induced singularity of conventional models.

a r t i c l ei n f o

Article history:

Accepted 14 March 2016

Available online 1 April 2016

and Interdiscipline

Intraocular pressure

Intracranial pressure

Lamina cribrosa

Glaucoma

A modified relation between the intraocular and intracranial pressures is presented by employing the least square method to fit the existing experiments.Relative analysis here indicates that this modified relation not only is better than the previous relation by comparing with the existing experimental data but also overcomes the induced singularity in applying the existing mechanical models to compute the mechanical properties of the lamina cribrosa.The present study will be a beneficial help to understanding the relationship between the intraocular and intracranial pressures and even glaucomatous developing.

?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Glaucoma is the most common cause of irreversible blindness, affectingmorethan60millionpeopleworldwide,andincreasingto about80millionby2020[1].Inthecourseofdevelopingglaucoma, the difference between the intraocular pressure(IOP)and the intracranial pressure(ICP)plays a key role.It is this difference that exerts on the primary site of glaucoma-the lamina cribrosa (LC),then results in the irreversible deformation of LC,and finally induces the damage of the optic nerves passing through LC,thus triggers the visual field defect,which is medically considered to be the main pathological mechanism of glaucoma[2,3].The existing studies already prove that the glaucomatous visual field defect is positively correlated with the difference between IOP and ICP and inversely correlated with the ICP[4].Because directly observing anddeterminingthedeformationofLCandthedamageoftheoptic nerves in LC in a living body is scarcely possible in the clinical diagnosisandtreatmentofglaucoma,buildingamechanicalmodel of LC now still remains the most efficient way to understand the states of LC in vivo[5].Obviously,the relation between IOP and ICP is of the essence in correctly making the mechanical model of LC.However,the exact relation between IOP and ICP has not been understood very well yet so far.

In the existing studies of the relation between IOP and ICP, whenIOPisgreaterthan20mmHg,Quigley[3]experimentallyand clinically proved that ICP is roughly equal to 10 mmHg,i.e.

When IOP is less than 20 mmHg,on the one hand,there is not a deterministic result as Eq.(1a)deriving directly from clinic and experiment up to now,but lots of investigations indicate that ICP is significantly and positively correlated with IOP[6-10].On the other hand,in order to analyze the deformation of LC,all the existing mechanical models of LC greatly simplify the relation between IOP and ICP as a linear relation when IOP is less than 20 mmHg[5,11,12],i.e.

However,this simplification results directly in a serious problem:the derivatives of Eq.(1)at the point of IOP=20 mmHg are inexistence,or the rate of change of ICP at the point is discontinuousaccordingtoEq.(1),asshowninFig.1,whichfurther induces that the singularity of the deformation appears at the

http://dx.doi.org/10.1016/j.taml.2016.03.002

2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

?Corresponding author.

E-mail address:songf@lnm.imech.ac.cn(F.Song).point in the existing mechanical model of LC[11,12],as shown in Fig.2.This can never happen in a living body.It is because that IOP is produced by the aqueous humor and ICP derives from the cerebrospinal fluid pressure.The changes of the two liquids that generate the two pressures have to be continuous in a live body.Therefore,exactly determining the relation between IOP and ICP becomes a key point in understanding the behaviors of LC.In addition,there is a big error between the values that the existing mechanical models[11,12]compute the deformations of LC according to Eq.(1)and the existing experiments measure the deformations of LC[13]when ICP is less than 20 mmHg,as shown in Fig.2.

Fig.1.The relations between IOP and ICP.The broken line stands for Eq.(1), the solid line expresses Eq.(3),and different figurate points indicate the different experimental data from Refs.[6-9].The derivatives of the broken line do not exist at IOP=20 mmHg.

Here we modify the relation between IOP and ICP,and make the modified relation satisfy the three conditions:(i)at the point of IOP=20 mmHg,its derivatives are continuous;(ii)when IOP≥20 mmHg,its values are equal to the values of Eq.(1a); (iii)when IOP<20 mmHg,its values are better than those of Eq.(1b)in fitting the existing experiments.

Based on the characteristics and topography of Eq.(1),we choose a modified error function to fit the relation between IOP and ICP,namely,

First of all,according to the properties of Gauss error function andEq.(1a),themodulusofEq.(2)isreadilydeterminedasA=10.

Secondly,we use the existing experimental data between ICP and IOP to fit the other undetermined coefficient.By synthesizing the four group experimental data[6-9],we obtainα=0.088 by virtue of employing the least square method,as shown in Fig.1. Therefore,Eq.(2)is written by

The relative error between Eqs.(1a)and(3)at the point of IOP=20 mmHg is readily calculated to be 1.28%,which reaches a very good approximate in the theory of biomechanics[14].And withIOPincreasing,theerrorwillrapidlydecreaseaccordingtothe property of Gauss error function.

Further,we separately compare the root mean squared errors (RMSEs)of Eqs.(1b)and(3)with the experimental data from Refs.[6-9].All RMSE values of Eq.(3)are better than those of Eq.(1b),as shown in Table 1.

Fig.2.The deflections of LC.The solid curves stand for the results of the different mechanical models from Refs.[11,12]by employing Eq.(1),and the broken curves display the results of the different mechanical models from Refs.[11,12]by employing Eq.(3).There are the derivative singular points of the solid curves at IOP=20 mmHg.

Table 1 The RMSEs of Eqs.(1)and(3)with respect to the experiments[5-8].

Finally,employingtheexistingmechanicalmodelsofLCandthe modified relation between IOP and ICP,Eq.(3),we compute the deformations of LC,and compare these results with the existing experiments,as shown in Fig.2.Our computed results display that atthepointofIOP=20mmHg,thederivativeofthedeformationis continuous;whenIOP≥20mmHg,thedeformationsarethesame as the values obtained by using Eq.(1a);when IOP<20 mmHg, the deformations are better fit to the existing experiments than the values given by using Eq.(1b).This is an indication that the modified relation between IOP and ICP,Eq.(3),is closer to the real states than Eq.(1a)in clinic experiments.

In conclusion,based on the existing experiments,we use the least square method to obtain a modified relation between IOP and ICP.The modified relation not only is better than the previous relation by virtue of comparing with the existing experimental data,but also thoroughly overcomes the induced singularity in applying the existing mechanical model of LC to compute the mechanical properties of LC.Obviously,the present result is a beneficial help to understanding the relationship between IOP and ICP and even glaucomatous developing.

Acknowledgment

This work was supported by the National Natural Science Foundations of China(11232013 and 11472285).

References

[1]H.A.Quigley,A.T.Broman,The number of people with glaucoma worldwide in 2010 and 2020,Br.J.Ophthalmol.90(2006)262-267.

[2]H.A.Quigley,R.M.Hohman,E.M.Addicks,et al.,Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma,Am.J. Ophthalmol.95(1983)673-691.

[3]H.A.Quigley,Pathophysiology of optic nerve in glaucoma,in:J.A.McAllister, R.P.Wilson(Eds.),Glaucoma,Butterworths,London,1986,pp.30-53.

[4]R.J.Ren,J.B.Jonas,G.G.Tian,et al.,Cerebrospinal fluid pressure in glaucoma a prospective study,Ophthalmology 117(2010)259-266.

[5]T.Newson,A.El-Sheikh,Mathematical modeling of the biomechanics of the lamina cribrosa under elevated intraocular pressures,J.Biomech.Eng.-Trans. ASME 128(2006)496-504.

[6]M.K.Lashutka,A.Chandra,H.N.Murray,et al.,The relationship of intraocular pressure to intracranial pressure,Ann.Emerg.Med.43(2004)585-591.

[7]S.A.Sajjadi,M.H.Harirchian,N.Sheiklibahaei,et al.,The relation between intracranial and intraocular pressures:Study of 50 patients,Ann.Neurol.59 (2006)867-870.

[8]T.Spentzas,J.Henricksen,A.B.Patters,etal.,Correlationofintraocularpressure with intracranial pressure in children with severe head injuries,Pediatr.Crit. Care Med.11(2010)593-598.

[9]Z.Li,Y.X.Yang,Y.Lu,et al.,Intraocular pressure vs intracranial pressure in disease conditions:A prospective cohort study(Beijing iCOP study),BMC Neurol.12(2012)4.

[10]J.B.Jonas,N.L.Wang,D.Y.Yang,et al.,Facts and myths of cerebrospinal fluid pressure for the physiology of the eye,Prog.Retin.Eye Res.46(2015) 67-83.

[11]D.Q.He,Z.Q.Ren,A biomathematical model for pressure-dependent lamina cribrosa behavior,J.Biomech.32(1999)579-584.

[12]M.E.Edwards,T.A.Good,Use of a mathematical model to estimate stress and strain during elevated pressure induced lamina cribrosa deformation,Curr. Eye Res.23(2001)215-225.

[13]N.S.Levy,E.E.Crapps,Displacement of optic nerve head in response to shortterm intraocular pressure elevation in human eyes,Arch.Ophthalmol.102 (1984)782-786.

[14]Y.C.B.Fung,Elasticity of soft tissues in simple elongation,Am.J.Physiol.213 (1967)1532-1544.

9 March 2016

*This article belongs to the Biomechanics

主站蜘蛛池模板: 久久香蕉国产线看精品| 亚洲无码37.| 欧美视频在线不卡| 九九这里只有精品视频| 欧美国产在线看| 亚洲日韩在线满18点击进入| 97成人在线视频| 白浆免费视频国产精品视频| 日韩精品无码免费一区二区三区 | 青青草91视频| 少妇精品久久久一区二区三区| 在线观看精品国产入口| 2022国产91精品久久久久久| 国产自在自线午夜精品视频| 亚洲成人77777| 国产精品第一区在线观看| 色婷婷电影网| 国产AV无码专区亚洲精品网站| 国产男女免费视频| 午夜啪啪福利| 欧美日韩综合网| 91久久性奴调教国产免费| 九色免费视频| 国产精品对白刺激| 在线人成精品免费视频| 欧美A级V片在线观看| 强乱中文字幕在线播放不卡| 手机永久AV在线播放| 亚洲欧美成人在线视频 | 国产精品视频系列专区| 人人看人人鲁狠狠高清| 欧美亚洲国产一区| 日本福利视频网站| 亚洲日韩精品无码专区| 欧美成人aⅴ| 日韩专区欧美| 72种姿势欧美久久久久大黄蕉| 又黄又湿又爽的视频| 欧美精品成人一区二区在线观看| 欧美精品1区2区| av大片在线无码免费| 久久中文无码精品| 亚洲精品无码抽插日韩| 日韩无码黄色| 国产精品久久久免费视频| 一区二区日韩国产精久久| 欧美黄色网站在线看| 手机成人午夜在线视频| 亚洲精品无码久久久久苍井空| 中文字幕在线看| 亚洲bt欧美bt精品| 欧美色99| 亚洲无码精品在线播放| 久久久久久久97| 亚洲福利一区二区三区| 亚洲人成人无码www| 青草视频免费在线观看| 中文字幕精品一区二区三区视频| 很黄的网站在线观看| 国产精品视频999| 91年精品国产福利线观看久久| 国内精品视频| 成人在线天堂| 亚洲一级色| 九九线精品视频在线观看| 国产永久免费视频m3u8| 久夜色精品国产噜噜| 一级做a爰片久久免费| 国产精品自在在线午夜区app| 国产无码网站在线观看| 亚洲精品你懂的| 国产日韩精品一区在线不卡| 亚洲女同一区二区| 亚洲国产成人综合精品2020| 国产91小视频在线观看| 青青操视频免费观看| 嫩草影院在线观看精品视频| 亚洲视频免费播放| 国产在线观看一区精品| 日韩在线网址| 国产哺乳奶水91在线播放| 亚洲精品视频在线观看视频|