曹銓,沈禹穎,王自奎,張小明,楊軒
(草地農業生態系統國家重點實驗室,蘭州大學草地農業科技學院,甘肅 蘭州 730020)
?
生草對果園土壤理化性狀的影響研究進展
曹銓,沈禹穎*,王自奎,張小明,楊軒
(草地農業生態系統國家重點實驗室,蘭州大學草地農業科技學院,甘肅 蘭州 730020)
果園生草栽培模式對土壤理化性狀的影響是果園集約、高效、生態、可持續生產的重要基礎。生草栽培可降低土壤容重4.7%~13.0%,提高水穩性土壤團聚體含量,進而改善土壤的導水性能和保水性能,也有助于攔截降雨,提高雨水的利用率;干旱少雨的季節可能會出現牧草與果樹爭水的現象,需要通過選擇適宜的草種及加強田間管理等措施來減小爭水對果樹造成的不利影響;生草有助于土壤有機碳的積累,連續生草6年可使土壤表層有機碳增加19.6%~27.8%,有機碳的累積量會隨生草年限的增加而增加;生草覆蓋可調節果園土壤溫度,增加土壤微生物的多樣性和酶活性;生草還可以促進土壤養分的有效性,同時豆科牧草也可通過固氮作用提高氮素利用效率,總體而言,果園多年種植牧草對土壤養分的積累具有正效應。本研究可為有關的研究工作和生草模式的進一步推廣應用提供依據。
生草模式;土壤水分;土壤養分;土壤有機碳;微生物多樣性;土壤酶活性
果園生產模式與作物生產相比具有投入高、產出高的特點,有效的果園管理有助于降低成本、提高產出[1]。我國果園地面的管理模式仍以清耕加除草劑除草為主,這不僅會導致水土流失、生物多樣性降低及環境污染等問題的產生[2-4],且在多雨的季節不利于田間機械操作。果園生草是指對果園實施全園或行間生草覆蓋,每年割草1~2次覆于樹盤下或用于發展養殖業,亦可常年不刈割的一種果園土壤耕作管理模式[5-6],其已經成為北美[7]和歐洲地區[8-9]果園建設的主流模式。與清耕模式相比,其有利于構建良好的果園生產體系、改善果園環境、提高果園生產力[7,10]。
果園生草具有改良土壤理化性質、調節果園生態環境、抑制雜草和病害、促進果樹生長發育的生產生態效應,所以被認為是一種可持續的果園管理模式[11-13]。該模式自20世紀90年代被引入中國,率先在福建、廣東、山東等地開始應用,但直至目前我國果園土壤耕作管理措施仍以清耕法為主,其主要原因一方面受到 “除草務盡”、“與果爭水肥”等傳統觀念的影響,另一方面因各果產區氣候、立地條件等差異較大,在草種選擇與田間管理方面缺乏相應的規范化技術[14-16]。近幾年有關果園生草的綜述文章也比較多,王艷廷等[3]綜述了生草對果園土壤、小氣候、病蟲害、樹體生長及果實品質等的影響,李發林等[4]綜述了果園生草模式的水土保持效應,杜麗清等[14]主要分析了生草栽培的果園環境效應及果樹生理效應。本研究側重分析生草對果園土壤理化性狀的影響效果及造成這些影響的原因,旨在為果園生草模式有關的研究工作和進一步推廣應用提供依據。
國內大量研究表明果園生草可使土壤結構得到改善、增加孔隙度、降低容重,且能增強土壤水分的入滲能力和持水能力。黃土高原渭北蘋果(Malusdomestica)園間作白三葉(Trifoliumrepens) 7年以后改變了土壤團聚體有機碳含量與分布,增加了果園土壤水穩性團聚體平均重量直徑,降低了團聚體破壞率,顯著提高了0~20 cm土層>0.25 mm水穩性團聚體的含量及其穩定性[17]。生草區比清耕區土壤平均容重降低6.51%,其中0~20 cm土層土壤容重降低6.93%,20~40 cm土層土壤容重降低6.05%[18]。在山西平定縣的研究表明果園生草覆蓋區與對照相比,直徑1.0 mm以上的土壤團聚體增加了10.2%~12.2%,土壤容重下降4.7%~10.8%,土壤孔隙度增加2.5%~5.5%[19]。茶園間作牧草后,與清耕相比其土壤結構和物理性狀得到了明顯改善,土壤團聚體數量增加,通透性改善,容重下降,持水能力增強[20]。國外也有一些研究表明果園種草可改善土壤結構,降低土壤板結發生的可能性,提高土壤滲水能力和保水能力[13,21]。還有研究指出生草使得果園及橄欖(Oleaeuropaea)園土壤的容重增加,飽和導水率降低,這主要是頻繁使用割草機造成的[22-24]。綜上,在清耕果園種草可以改善土壤結構,增強其保水能力,但不合理的牧草刈割模式反而可能會破壞土壤結構,所以應針對不同牧草品種采取適宜的管理措施。
果園生草后果樹和草之間的水分競爭一直是學者和果農最關注的問題之一,相關的研究結果因研究地區以及覆蓋草種的不同而出現差異[25-28]。
果園生草既具有保水的效應,也有爭水的效應(表1)。保水主要體現在以下兩個方面。首先,與清耕相比,生草能夠增加對降雨的攔截,減少地表徑流,特別是在降雨較多的區域或季節。其次,生草能夠優化土壤結構,提高土壤的貯水能力,在多雨季節能顯著增加深層土壤的貯水量。Palese等[23]指出,生草使秋冬雨季過后橄欖園100~200 cm之間的土壤水分提高17%~45%,能夠有效緩解春季和夏季的干旱。生草與果樹之間的水分競爭與降雨量的豐欠關系密切。根據Ritchie[34]的蒸發理論可知,第一階段的土壤蒸發主要和土表的濕潤頻率有關。多雨季節,清耕果園土表蒸發劇烈,生草可大幅度減少地表的太陽輻射進而降低土壤蒸發,起到保水作用;而在少雨季節,清耕果園土表蒸發較為微弱,生草果園牧草的耗水量大于土壤蒸發量,所以生草的爭水效應明顯[28-32]。在生產實踐中,應選擇適宜的草種,加強生草的管理,促進生草的保水效應,抑制其爭水效應。例如,在Oliveira等[22]的研究中,他們每兩周刈割一次紫羊茅(Festucarubra),以防止其對土壤水分的過度消耗。需要注意的是,不能片面的因為種草爭水而否定生草模式,因為生草對土壤有機質積累、養分積累、增加微生物多樣性及酶活性等還有重要的促進作用,下面幾部分將予以綜述。
果園生草由于增加了地表覆蓋,在高溫季節可減少太陽光對地面的直接照射,減緩熱量向深層的傳遞,使得地表溫度升高較慢,有效降低水分蒸發。在寒冷的冬季和夜晚,生草對地面可起到保溫作用,有助于縮小果園土壤的年溫差和日溫差,增強果園的抗逆能力[35-37]。例如,葡萄(Vitisvinifera)園行間種植白三葉可使夏季高溫時地表溫度顯著降低,特別是在中午12:00時,降幅高達21.1%[38];桔(Platycodongrandiflorus)園采取生草覆蓋后,夏季高溫干旱前期的氣溫比清耕對照低1.0~10.0 ℃,高溫干旱期氣溫較清耕低1.0~9.0 ℃[39];茶園間作白三葉草能降低土壤日溫差,增強同一層次土壤溫度的相對穩定性,有利于茶樹穩產高產[20];在高原溝壑果園,覆草法在春、夏季對土壤具有明顯的降溫作用,在秋末覆草比清耕法提高地溫1.5 ℃,具有一定的保溫作用,有利于果樹根系的生長和養分積累[40];桃(Amygdaluspersica)樹行間種植白三葉,在溫度低時起保溫作用,在溫度高時對桃園有降溫作用,在春季干旱時較清耕區明顯地提高相對濕度,從而為桃樹提供適宜的環境條件[41];幼齡桔園間作黑麥草或黑麥草和紫云英(Astragalussinicus)混播具有冬季保暖作用,有利于幼齡桔園免受凍害,保證產量[42]。果園生草對土壤溫度的調節是生草措施影響生態效應的重要基礎。通過覆蓋的措施降低土壤溫差不僅能減少土壤水分的無效蒸發,也有利于土壤微生物的繁殖和活動,從而促進有機質的分解及土壤養分的積累等過程。
Neilsen等[43]指出發展果園生草模式的主要原因是其可以增加土壤有機碳含量,進而提高土壤肥力,增加土壤微生物多樣性,減少農藥和化肥的使用,生產出優質的水果。生草后土壤有機碳含量的增加與生草年限緊密相關。加拿大不列顛哥倫比亞省有灌溉條件的蘋果園種植苜蓿(Medicagosativa)兩年后,土壤有機碳與清耕處理相比無顯著增加,4年后增加9.2%,6年后增加27.8%[1]。陜西渭北旱塬蘋果園連續6年種植白三葉使土壤有機碳含量增加19.6%,果實產量增加14.4%,單果重增加10.2%[44]。不同草種對果園土壤有機碳的影響效果也有所不同。Qian等[51]在陜西洛川旱作果園的研究結果表明,種植白三葉、小冠花和多年黑麥草3年后,土壤有機碳分別提高19.6%,25.4%和9.5%。山西萬榮縣有灌溉條件果園種植不同牧草使土壤有機碳都大幅度提高,但提高幅度差異不顯著,在27%~31%之間[45]。新疆南部阿克蘇地區果園人工生草和自然生草兩種措施都使土壤有機碳有所提高,但人工生草的提高幅度更大;人工生草和自然生草條件下0~10 cm土層有機碳分別比清耕提高了10.7%和1.8%,10~20 cm土層有機碳增加了10.1%和3.1%[46]。也有研究指出牧草混播比單播提高土壤有機碳的效果更加顯著[47]。土壤有機碳近年來越來越受到人們關注,有機碳的增加意味著土壤固定了更多的溫室氣體CO2,所以果園生草是一種綠色環保的生產方式。但是不同生草種類對土壤有機碳狀況的影響存在一定的差異,有機碳的積累程度還和各地的氣候條件、土壤類型和生草年限等因素有關。
不同研究得出的牧草對土壤養分的影響效應不盡相同(表2)。果園生草后,牧草主要通過以下幾個機制影響土壤的養分。首先,牧草的生長會消耗土壤的養分,與果樹存在養分競爭。其次,種植牧草后土壤的微生物數量可能會大幅度增加,從而促進有機碳的分解,增加土壤礦質養分含量;再者,豆科牧草具有固氮作用,種植豆科牧草亦可提高氮素利用效率[48-50]。果園生草下,牧草對養分的消耗與促進作用之間存在一個臨界點,且與果園的基礎養分關系密切;如果其正效應大于負效應,則表現出養分的積累,否則表現出牧草與果樹之間的養分競爭。表2列出的結果差異較大,但總體上牧草對土壤養分積累顯示出正效應。李會科等[52]指出,生草的前期4年,土壤養分消耗大于積累,蘋果與牧草存在養分競爭,在第 5 年全氮、全磷、全鉀呈現恢復性增長,出現這種結果可能與試驗地的基礎養分較差有關。
牧草品種對土壤養分的影響效應差異較大。例如Qian等[51]指出,白三葉、小冠花和黑麥草都顯著提高了土壤速效鉀和速效磷含量,以白三葉的效果最為顯著;種植小冠花和黑麥草的果園土壤速效氮顯著低于清耕,表明它們與果樹之間存在氮的競爭,而種植豆科牧草白三葉的果園土壤的速效氮顯著高于清耕處理。葡萄園行間種植白三葉草和紫花苜蓿使土壤速效氮、全氮含量顯著升高,高羊茅使堿解氮和全氮含量顯著降低[53]。Jerie等[55]的研究表明種植豆科牧草可提高土壤硝態氮和銨態氮的含量,同時可降低土壤的含水量,有助于減少雨季氮素的深層滲漏。

表2 生草對果園養分的影響效應
李會科等[18]對黃土高原旱地生草果園土壤微生物的研究得出,與清耕相比,生草后各樣地細菌、真菌和放線菌的數目均有提高,說明生草后有利于提高土壤微生物的數量。葡萄園生草可顯著提高土壤微生物數量,較清耕處理固氮菌與纖維素分解菌數量升高的幅度較大,放線菌數量升高的幅度最小[53]。Shishido等[56]認為果園土地的不同利用方式,可改變果園微生物群落結構,St. Laurent等[57]的研究也證明果園生草有助于增加土壤微生物的數量。微生物生物量代表參與土壤能量和養分循環以及有機物質轉化所對應的微生物的數量,其多少是決定有機物分解﹑養分循環和能量流動的重要因素。通過種草的方式改善微生物群落結構是防治果園土壤退化、提高果園生態涵養水平的有效措施。
李會科等[58]研究表明在0~60 cm土層,果園生草區及清耕區過氧化氫酶﹑尿酶及堿性磷酸酶活性變化趨勢是上層明顯高于下層,隨土壤深度增加而減少;果園生草區生草第3和第5年土壤過氧化氫酶﹑尿酶及堿性磷酸酶活性都顯著高于清耕區,并隨生草年限的增加,3種酶活性趨于增加;同時,不同的果園生草對過氧化氫酶﹑尿酶、堿性磷酸酶活性影響存在差異。生草栽培提高了梨園土壤堿性磷酸酶、蔗糖酶和過氧化氫酶的活性[59]。葡萄園行間種植的紫花苜蓿、白三葉和高羊茅等土壤酶活性研究測定結果表明,行間播種紫花苜蓿使土壤的脲酶、磷酸酶及纖維素酶活性明顯高于其他處理,而過氧化氫酶在各處理中變化不大[60]。土壤酶是微生物及植物根系等產生的生物活性物質,與土壤肥力狀況和土壤環境質量密切相關,土壤酶活性增加也表明種草改善了土壤的質量。
生草栽培可改善果園土壤結構,提高土壤的導水性能和保水性能,但頻繁的機械操作可能會壓實土壤,降低土壤導水性能,所以在實踐中應采取適度的割草頻率或改進鋤草技術。生草增加了地表覆蓋,有助于攔截降雨,減少地表徑流[61],雨季增加深層土壤貯水,從而減少旱季缺水對果樹生長的抑制,提高雨水的利用率。旱季土壤水分虧缺常常會出現牧草與果樹爭水的現象,需要通過選擇適宜的草種及加強田間管理等措施來減小爭水對果樹造成的不利影響。生草覆蓋不僅有助于土壤有機碳的積累,也可調節果園土壤溫度,進而增加土壤微生物的多樣性和酶活性,微生物多樣性和酶活性的提高能夠促進有機碳的分解,提高土壤肥力。雖然牧草的生長會消耗土壤養分,但微生物數量的增多會促進有機碳的分解,從而增加土壤養分,同時豆科牧草也可通過固氮作用增加土壤養分,種植牧草多年在多數情況下對土壤養分的積累會產生正效應。
果園地面管理對于提高水肥等農業資源的高效利用、改善果實品質及減少CO2和N2O等溫室氣體排放有著重要的影響。很多研究表明果園地面覆蓋地膜、秸稈或者硬質木屑也具有改善土壤結構、減少土壤蒸發、減少溫室氣體排放及改善果實品質的效應[1,10,22-23,51,62-63]。干旱半干旱雨養農業區水分是限制果樹生長的關鍵因子,果園生草可能會促進果園水分虧缺,所以可以嘗試地膜覆蓋、秸稈覆蓋等模式。目前所開展的研究主要局限在生草后對土壤理化性狀、果園小氣候及果樹生長等方面,對果草系統光、水、肥等傳輸過程方面的研究較少。因此,今后應當加強這方面的觀測和模擬,并以地上果草的生長和地下根系的發展為紐帶,將水、肥、氣、熱等的傳輸利用過程結合起來建立模擬果草系統資源利用和生長果草的模擬模型,用以指導果園生產管理。
References:
[1]Neilsen G, Forge T, Angers D,etal. Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance. Plant and Soil, 2014, 378(1): 325-335.
[2]Mason J L. Effect of cultivation and nitrogen on fruit quality, yield and color of Mcintosh apples grown in irrigated grass sod cover crop. Canadian Journal of Plant Science, 1969, 49(2): 149-154.
[3]Wang Y T, Ji X H, Wu Y S,etal. Research progress of cover crop in Chinese orchard. Chinese Journal of Applied Ecology, 2015, 26(6): 1892-1900.
[4]Li F L, Zheng Y R, Zheng T,etal. Research advances on soil and water conservation effect of pasture-planting in orchard. Chinese Agricultural Science Bulletin, 2013, 29(34): 34-39.
[5]Meng L. Orchard Prataculture Technology[M]. Beijing: Chemical Industry Press, 2004.
[6]Ma G H, Zeng M, Wang Y Y,etal. Research progress on orchard sod culture. Chinese Agricultural Science Bulletin, 2005, 21(7): 273-277.
[7]Peck G M, Merwin I A, Thies J E,etal. Soil properties change during the transition to integrated and organic apple production in a New York orchard. Applied Soil Ecology, 2011, 48(1): 18-30.
[8]Celano G, Palese A M, Ciucci A,etal. Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique. Geoderma, 2011, 163(3-4): 163-170.
[9]Ramos M E, Benítez E, García P A,etal. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Applied Soil Ecology, 2010, 44(1): 6-14.
[10]Wang P, Wang Y, Wu Q S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil and Tillage Research, 2016, 155: 54-61.
[11]Milgroom J, Auxiliadora Soriano M, Garrido J M,etal. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renewable Agriculture and Food Systems, 2007, 22(1): 1-10.
[12]Wardle D A, Yeates G W, Bonner K I,etal. Impacts of ground vegetation management strategies in a kiwifruit orchard on the composition and functioning of the soil biota. Soil Biology and Biochemistry, 2001, 33(7-8): 893-905.
[13]Hoyt G D, Hargrove W L. Legume cover crops for improving crop and soil management in the southern United States. HortScience, 1986, 21(3): 397-402.
[14]Du L Q, Wu H, Zheng L Y. Review of eco-enviromental effect of orchard sod culture. Chinese Agricultural Science Bulletin, 2015, 31(11): 217-221.
[15]Lv D G, Qin S J, Du G D,etal. The research on eco-physiologic effects and application of orchard sod culture. Journal of Shenyang Agriculture University, 2012, 43(2): 131-136.
[16]Kou J C, Yang W Q, Han M Y,etal. Research progress on interplanting grass in orchard in China. Pratacultural Science, 2010, 27(7): 154-159.
[17]Wang Y J, Li T C, Zhang D Y,etal. Effects of intercropping white clover on soil aggregates and soil organic carbon of aggregates in apple-white clover intercropping system. Acta Agrestia Sinica, 2013, 21(3): 485-493.
[18]Li H K, Zhao Z Y, Zhang G J. Effects of planting different herbage on soil fertility of apple orchard in weibei areas. Journal of Northwest Forestry University, 2004, 19(2): 31-34.
[19]Hao S Y, Liu H D, Niu J L,etal. Effects of herbage-mulching to the apple yield and soil water and other soil physical properties in the loess plateau. Soils and Fertilizers, 2003, (1): 25-27.
[20]Song T Q, Xiao R L, Peng W X,etal. Effects of straw mulching and white clover intercropping on soil environment and the production of tea in young tea plantation in subtropical hilly region. Transactions of the CSAE, 2006, 22(7): 60-64.
[21]Bugg R L, Waddington C. Influence of understory cover and surrounding habitat on interactions between beneficial arthropods and pets in orchards using cover crops to manage arthropod pests of orchards: a review. Agriculture, Ecosystems & Environment, 1994, 50(1): 11-28.
[22]Oliveira M T, Merwin I A. Soil physical conditions in a New York orchard after eight years under different groundcover management systems. Plant and Soil, 2001, 234(2): 233-237.
[23]Palese A M, Vignozzi N, Celano G,etal. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil and Tillage Research, 2014, 144: 96-109.
[24]Merwin I A, Stiles W C, van Es H M. Orchard groundcover management impacts on soil physical properties. Journal of the American Society for Horticultural Science, 1994, 119(2): 216-222.
[25]Zhao Z Y, Li H K. The effects of interplant different herbage on soil water in apple orchards in the area of weibei plateau. Acta Horticulturae Sinica, 2006, 33(3): 481-484.
[26]Li G H, Yi H L. Influences of sod culture on the soil water content, effect of soil nutrients, fruit yield and quality in citrus orchard. Chinese Journal of Eco-agriculture, 2005, 13(2): 161-163.
[27]Monteiro A, Lopes C M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agriculture, Ecosystems & Environment, 2007, 121(4): 336-342.
[28]Li G C, Wang B Y, Wang M X. Effects of grass on orchard soil water and evapotranspiration. China Fruits, 1996, (1): 18-19.
[29]Hui Z M, Li H, Zhang Z W,etal. Effect of green coverings on soil water content in vineyards. Agricultural Research in the Arid Areas, 2004, 22(4): 123-126.
[30]Li T C, Li H K, Guo H,etal. Soil moisture characteristics of different herbages on soil water in apple orchard in the area of weibei plateau in dry season. Research of Soil and Water Conservation, 2014, 21(1): 29-33.
[31]Li H K, Zhang G J, Zhao Z Y,etal. Effects of growing different herbages on soil water-holding of a non-irrigated apple orchard in the weibei area of the Loess Plateau. Acta Agrestia Sinica, 2007, 15(1): 76-81.
[32]Xu M G, Wen S L, Gao J S. Effects of different forage planting model on soil and water conservation and environments in red hilly regions. Journal of Soil and Water Conservation, 2001, 15(1): 77-80.
[33]Wang Q J, Cheng F H, Zhao Z J. Effects of grassing and mulching on soil water and structure of pear orchard. Chinese Agricultural Science Bulletin, 2010, 26(9): 259-262.
[34]Ritchie J T. Model for predicting evaporation from row crop with incomplete cover. Water Resource Research, 1972, 8(5): 1204-1213.
[35]Chen X, Tang J J, Fang Z G,etal. Ecological role of weeds conserved in orchard in red soil hilly area during hot-dry season. Chinese Journal of Ecology, 2003, 22(6): 38-42.
[36]Meng L, Yu L H, Mao P C,etal. Effects of inter-planting cocksfoot and white clover as cover crops on the microclimate of apple orchard. Pratacultural Science, 2009, 26(8): 132-136.
[37]Qi X S, Ding W J, Wang R Q,etal. Effects of interplantation ofTrifoliumrepensin orchards on soil ecology and apple tree production. Rural Eco-Environment, 2005, 21(2): 13-17.
[38]Wei Z F, Guo J N, Gao D T,etal. The effect of green cover on tree and soil physical properties of red globe vineyards. Journal of Henan Agricultural Sciences, 2012, 41(2): 122-125.
[39]Zhang M F. Effects of bio-mulching on soil temperature, humidity and nutrients in orangerie. Fujian Fruits, 1988, (1): 60-62.
[40]Li H Y. Test of different kinds micro-irrigation for apple trees in gully areas in the plateau. Agricultural Research in the Arid Areas, 2001, 19(4): 32-37.
[41]Mao P C, Meng L, Zhang G F,etal. Effect of planting white clover as a cover crop on the microclimate of a peach orchard and the peach quality. Acta Agrestia Sinica, 2006, 14(4): 360-364.
[42]Wu J J, Li Q S, Yan L J. Soil ecological effects of intercropping forage crops in young citrus plantation and its influence on growth of the trees. Chinese Journal of Ecology, 1996, 15(4): 10-14.
[43]Neilsen G H, Lowery D T, Forge T A,etal. Organic fruit production in British Columbia. Canadian Journal of Plant Science, 2009, 89(4): 677-692.
[44]Deng F C, An G Y, Yu J Y,etal. Research on growing grass in apple orchard in weibei upland. Journal of Fruit Science, 2003, 20(6): 506-508.
[45]Liu H D, Hao S Y, Cao Q,etal. Effect of grass cover on soil nutrient and yield and quality of apple. Chinese Journal of Soil Science, 2003, 34(3): 184-186.
[46]Sun X, Chai Z P, Jiang P A,etal. Effects of growing grass on soil fertility of the arid land apple orchard in the south of xinjiang. Chinese Agricultural Science Bulletin, 2011, 27(7): 177-181.
[47]Chen Q X, Liao J S, Zheng G H,etal. Effects of sown grass mulch on soil fertility and tree growth of young longan orchard. Journal of Fujian Agricultural University, 1996, 25(4): 44-47.
[48]Hoagland L, Carpenter-Boggs L, Granatstein D,etal. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biology and Fertility of Soils, 2008, 45(1): 11-18.
[49]Yao S, Merwin I A, Bird G W,etal. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant and Soil, 2005, 271(1): 377-389.
[50]Kamh M, Horst W J, Amer F,etal. Mobilization of soil and fertilizer phosphate by cover crops. Plant and Soil, 1999, 211(1): 19-27.
[51]Qian X, Gu J, Pan H,etal. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. European Journal of Soil Biology, 2015, 70: 23-30.
[52]Li H K, Zhang G J, Zhao Z Y,etal. Effects of interplanted herbage on soil properties of non-irrigated apple orchards in the loess plateau. Acta Prataculturae Sinica, 2007, 16(2): 32-39.
[53]Hui Z M, Li H, Long Y,etal. Variation of soil microbial populations and relationships Between microbial factors and soil nutrients in cover cropping system of vineyard. Acta Horticulturae Sinica, 2010, 37(9): 1395-1402.
[54]Fan Y Z. The Influence of interplanting white clover in the liyuan on soil nutrient and microorganism’s. Northern Horticulture, 2010, 37(6): 72-73.
[55]Jerie P H, Stork P R. Initial studies of the growth, nitrogen sequestering, and de-watering potential of perennial grass selections for use as nitrogen catch crops in orchards. Australian Journal of Agricultural Research, 2003, 54(1): 27-37.
[56]Shishido M, Sakamoto K, Yokoyama H,etal. Changes in microbial communities in an apple orchard and its adjacent bush soil in response to season, land-use, and violet root rot infestation. Soil Biology and Biochemistry, 2008, 40(6): 1460-1473.
[57]St. Laurent A, Merwin I A, Thies J E. Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity. Plant and Soil, 2008, 304(1): 209-225.
[58]Li H K. Eco-environmental Effect and Integrated Technical System of Green Cover in Apple Orchard in Weibei Dryland Farming Areas[D]. Yang Ling: Journal of Northwest A & F University, 2008 .
[59]Xu L F, Han Q F, Wu Z Y,etal. Spatial variability of soil enzyme activity in pear orchard under clean and sod cultivation models. Scientia Agricultura Sinica, 2010, 43(23): 4977-4982.
[60]Long Y, Hui Z M, Chen J M,etal. Ecological distributing of soil microorganisms and activity of soil enzymes in vineyard green covering. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(6): 99-103.
[61]Gao X Y, Zhang X X, Zhu J G,etal. A comparison of the effect of three grass species on controlling non-point pollution in orchard. Acta Prataculturae Sinica, 2015, 24(2): 49-54.
[62]Meyer A H, Wooldridge J, Dames J F. Effect of conventional and organic orchard floor management practices on arbuscular mycorrhizal fungi in a ‘Cripp’s Pink’/M7 apple orchard soil. Agriculture, Ecosystems & Environment, 2015, 213: 114-120.
[63]Guerra B, Steenwerth K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: a review. American Journal of Enology and Viticulture, 2012, 63(2): 149-164.
[3]王艷廷, 冀曉昊, 吳玉森, 等. 我國果園生草的研究進展. 應用生態學報, 2015, 26(6): 1892-1900.
[4]李發林, 鄭域茹, 鄭濤, 等. 果園生草栽培水土保持效應研究進展. 中國農學通報, 2013, 29(34): 34-39.
[5]孟林. 果園草業技術[M]. 北京: 化學工業出版社, 2004.
[6]馬國輝, 曾明, 王羽玥, 等. 果園生草制研究進展. 中國農學通報, 2005, 21(7): 273-277.
[14]杜麗清, 吳浩, 鄭良永. 果園生草栽培的生態環境效應研究進展. 中國農學通報, 2015, 31(11): 217-221.
[15]呂德國, 秦嗣軍, 杜國棟, 等. 果園生草的生理生態效應研究與應用. 沈陽農業大學學報, 2012, 43(2): 131-136.
[16]寇建村, 楊文權, 韓明玉, 等. 我國果園生草研究進展. 草業科學, 2010, 27(7): 154-159.
[17]王英俊, 李同川, 張道勇, 等. 間作白三葉對蘋果/白三葉復合系統土壤團聚體及團聚體碳含量的影響. 草地學報, 2013, 21(3): 485-493.
[18]李會科, 趙政陽, 張廣軍. 種植不同牧草對渭北蘋果園土壤肥力的影響. 西北林學院學報, 2004, 19(2): 31-34.
[19]郝淑英, 劉蝴蝶, 牛俊玲, 等. 黃土高原區果園生草覆蓋對土壤物理性狀、水分及產量的影響. 土壤肥料, 2003, (1): 25-27.
[20]宋同清, 肖潤林, 彭晚霞, 等. 覆蓋與間作對亞熱帶丘陵幼齡茶園土壤環境和生產的影響. 農業工程學報, 2006, 22(7): 60-64.
[25]趙政陽, 李會科. 黃土高原旱地蘋果園生草對土壤水分的影響. 園藝學報, 2006, 33(3): 481-484.
[26]李國懷, 伊華林. 生草栽培對柑橘園土壤水分與有效養分及果實產量, 品質的影響. 中國生態農業學報, 2005, 13(2): 161-163.
[28]李光晨, 王炳義, 王茂興. 生草對灌溉果園土壤水分及其蒸散的影響. 中國果樹, 1996, (1): 18-19.
[29]惠竹梅, 李華, 張振文, 等. 西北半干旱地區葡萄園生草對土壤水分的影響. 干旱地區農業研究, 2004, 22(4): 123-126.
[30]李同川, 李會科, 郭宏, 等. 渭北黃土高原果園生草地旱季土壤水分特征研究. 水土保持研究, 2014, 21(1): 29-33.
[31]李會科, 張廣軍, 趙政陽, 等. 黃土高原旱地蘋果園生草對土壤貯水的影響. 草地學報, 2007, 15(1): 76-81.
[32]徐明崗, 文石林, 高菊生. 紅壤丘陵區不同種草模式的水土保持效果與生態環境效應. 水土保持學報, 2001, 15(1): 77-80.
[33]王慶江, 程福厚, 趙志軍. 生草和覆蓋對梨園土壤水分和結構的影響. 中國農學通報, 2010, 26(9): 259-262.
[35]陳欣, 唐建軍, 方治國, 等. 高溫干旱季節紅壤丘陵果園雜草保持的生態作用. 生態學雜志, 2003, 22(6): 38-42.
[36]孟林, 俞立恒, 毛培春, 等. 蘋果園間種鴨茅和白三葉對園區小環境的影響. 草業科學, 2009, 26(8): 132-136.
[37]齊鑫山, 衛建, 王仁卿, 等. 果園間種白三葉草對土壤生態及果樹生產的影響. 農村生態環境, 2005, 21(2): 13-17.
[38]魏志峰,郭景南,高登濤,等. 行間生草對紅地球葡萄園樹體及土壤物理性狀的影響. 河南農業科學, 2012, 41(2): 122-125.
[39]張名福. 生物覆蓋對改善柑園溫、濕度和營養物質的效應. 福建果樹, 1988, (1): 60-62.
[40]李懷有. 高塬溝壑區果園土壤管理制度試驗研究. 干旱地區農業研究, 2001, 19(4): 32-37.
[41]毛培春, 孟林, 張國芳, 等. 白三葉對桃園小氣候和桃品質的影響. 草地學報, 2006, 14(4): 360-364.
[42]吳建軍, 李全勝, 嚴力蛟. 幼齡桔園間作牧草的土壤生態效應及其對桔樹生長的影響. 生態學雜志, 1996, 15(4): 10-14.
[44]鄧豐產, 安貴陽, 郁俊誼, 等. 渭北旱塬蘋果園的生草效應. 果樹學報, 2003, 20(6): 506-508.
[45]劉蝴蝶, 郝淑英, 曹琴, 等. 生草覆蓋對果園土壤養分、果實產量及品質的影響. 土壤通報, 2003, 34(3): 184-186.
[46]孫霞, 柴仲平, 蔣平安, 等. 生草對新疆南部干旱區蘋果園土壤肥力的影響. 中國農學通報, 2011, 27(7): 177-181.
[47]陳清西, 廖鏡思, 鄭國華, 等. 果園生草對幼齡龍眼園土壤肥力和樹體生長的影響. 福建農業大學學報, 1996, 25(4): 44-47.
[52]李會科, 張廣軍, 趙政陽, 等. 生草對黃土高原旱地蘋果園土壤性狀的影響. 草業學報, 2007, 16(2): 32-39.
[53]惠竹梅, 李華, 龍妍, 等. 葡萄園行間生草體系中土壤微生物數量的變化及其與土壤養分的關系. 園藝學報, 2010, 37(9): 1395-1402.
[54]范玉貞. 梨園間種白三葉草對土壤養分與微生物的影響. 北方園藝, 2010, (6): 72-73.
[58]李會科. 渭北旱地蘋果園生草的生態環境效應及綜合技術體系構建[D]. 楊凌: 西北農林科技大學, 2008.
[59]徐凌飛, 韓清芳, 吳中營, 等. 清耕和生草梨園土壤酶活性的空間變化. 中國農業科學, 2010, 43(23): 4977-4982.
[60]龍妍, 惠竹梅, 程建梅, 等. 生草葡萄園土壤微生物分布及土壤酶活性研究. 西北農林科技大學學報 (自然科學版), 2007, 35(6): 99-103.
[61]高小葉, 張興興, 朱建國, 等.生草栽培對果園面源污染的控制: 三種牧草的比較研究. 草業學報, 2015, 24(2): 49-54.
Effects of living mulch on soil physical and chemical properties in orchards: a review
CAO Quan, SHEN Yu-Ying*, WANG Zi-Kui, ZHANG Xiao-Ming, YANG Xuan
StateKeyLaboratoryofGrasslandAgro-ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou730020,China
A review has been undertaken to provide a basis for further research on and the application of living mulch practices in orchards. The effects of living mulch on soils’ physical and chemical properties make an important contribution to intensive, efficient, ecological and sustainable production. Forage cultivation can reduce soil bulk density by 4.7%-13.0% and improve the content of soil aggregates, thus enhancing hydraulic properties and water retention capacity. Forage cultivation can also help to raise rainfall interception and improve water use efficiency. Forage grass will compete for water with fruit trees in drought seasons, though adverse effects can be reduced by selecting appropriate grass varieties and strengthening field management. Forage grass cover can improve soil organic carbon (SOC) content. SOC can be improved by 19.6%-27.8% after planting forage grass for 6 years. The accumulation of SOC increases as the duration of forage planting increases. Living mulch can help to adjust soil temperature, which enhances microbial diversity and enzymatic activity. Living mulch will directly deplete soil nutrients, but the increase in the number of microorganisms can promote the decomposition of organic matter that increases nutrients. Moreover, legumes add nutrients through nitrogen fixation. Living mulch usually has a positive effect on soil nutrient accumulation.
living mulch; soil moisture; soil nutrient; soil organic carbon; microbial diversity; soil enzymatic activity
10.11686/cyxb2015500http://cyxb.lzu.edu.cn
曹銓, 沈禹穎, 王自奎, 張小明, 楊軒. 生草對果園土壤理化性狀的影響研究進展. 草業學報, 2016, 25(8): 180-188.
CAO Quan, SHEN Yu-Ying, WANG Zi-Kui, ZHANG Xiao-Ming, YANG Xuan. Effects of living mulch on soil physical and chemical properties in orchards: a review. Acta Prataculturae Sinica, 2016, 25(8): 180-188.
2015-11-03;改回日期:2015-12-28
國家科技支撐計劃-西部城郊生態涵養高效農業模式研究與示范項目(2014BAD14B006)資助。
曹銓(1989-),男,甘肅張掖人,在讀博士。E-mail:qcao14@lzu.edu.cn
Corresponding author.E-mail:yy.shen@lzu.edu.cn