999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Wnt信號通路與心臟發(fā)育和心肌誘導(dǎo)分化

2016-09-29 06:22:14黃巧麗
關(guān)鍵詞:信號

黃巧麗, 周 華, 李 濤

(浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院,浙江 金華 321004)

?

Wnt信號通路與心臟發(fā)育和心肌誘導(dǎo)分化

黃巧麗,周華,李濤

(浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院,浙江 金華321004)

Wnt信號通路是調(diào)控心肌細(xì)胞分化和心臟發(fā)育的重要信號通路.在哺乳動物中,迄今已發(fā)現(xiàn)19個分泌性Wnt蛋白,10個Frizzled受體和多個拮抗分子,顯示W(wǎng)nt信號家族效應(yīng)廣泛復(fù)雜.Wnt通路大致分為β-catenin依賴的經(jīng)典通路和β-catenin非依賴的非經(jīng)典通路,二者均在心臟發(fā)育中發(fā)揮重要的作用,廣泛調(diào)控心肌細(xì)胞的增殖、分化、黏附、遷移和極化等.研究發(fā)現(xiàn),Wnt信號通路在心肌細(xì)胞分化進程中存在明顯的階段特異性效應(yīng),呈現(xiàn)典型的雙相性作用.通過小分子或轉(zhuǎn)基因等調(diào)制Wnt信號通路,可有效提高體外多能干細(xì)胞向心肌的誘導(dǎo)分化效率.

Wnt信號通路;心臟發(fā)育;心肌誘導(dǎo)分化;干細(xì)胞

1 Wnt信號通路主要成員

Wnt信號通路的主要成員有:分泌性信號蛋白(Wnt)、跨膜受體、胞質(zhì)蛋白及核內(nèi)轉(zhuǎn)錄因子等.胞質(zhì)蛋白包括散亂蛋白(disheveled,Dsh或Dvl)、β-連環(huán)蛋白(β-catenin)、結(jié)腸腺瘤樣息肉病蛋白(APC)、糖原合成酶激酶3β(GSK3β)和軸蛋白(Axin).轉(zhuǎn)錄因子為T細(xì)胞因子/淋巴增強因子(Tcf/Lef)[1-2].

Wnt蛋白是一類分泌型糖蛋白,以旁分泌的形式激活不同的信號轉(zhuǎn)導(dǎo)通路而在靶細(xì)胞內(nèi)起作用.在哺乳動物細(xì)胞基因組中,目前已經(jīng)鑒定出19個不同的Wnt基因.Wnt蛋白合成后需要進行翻譯后修飾,包括N-連接的糖基化和脂酰化修飾,如棕櫚酰化等,然后被分泌出細(xì)胞,通過旁分泌的形式與細(xì)胞膜上的受體相互作用而發(fā)揮其功能.根據(jù)作用機制不同,Wnt信號的傳導(dǎo)被分為2類——經(jīng)典通路和非經(jīng)典通路.屬于經(jīng)典通路的Wnt分子包括Wnt1,Wnt2,Wnt3,Wnt3a,Wnt8和Wnt10a等;而非經(jīng)典Wnt通路則包括Wnt4,Wnt5a,Wnt5b,Wnt6,Wnt7b和Wnt11等.

Wnt信號傳導(dǎo)主要通過Frizzled受體實現(xiàn),這是一類七次跨膜蛋白,胞外N端很長,含有一個保守的由10個半胱氨酸組成的結(jié)構(gòu)域,被稱為CRD(cysteine riched domain).分泌性Wnt信號分子與胞膜上Frizzled受體的CRD結(jié)構(gòu)域結(jié)合,發(fā)揮信號轉(zhuǎn)導(dǎo)功能.果蠅和線蟲中已經(jīng)鑒定出了4種Frizzled受體,而小鼠和人類中這類受體的數(shù)量已經(jīng)達到了10種.不同的Fzd受體傾向激活不同的下游信號通路,或經(jīng)典或非經(jīng)典.也有研究認(rèn)為單一類型的Fzd受體可以激活2個Wnt下游途徑.低密度脂蛋白受體相關(guān)蛋白(LRP)則是Wnt通路的輔受體,已知如LRP5和LRP6,是一類單次跨膜蛋白,與Frizzled受體及Wnt配體組成三聯(lián)體,啟動下游信號,在Wnt/β-catenin的活化過程中發(fā)揮重要的作用.此外,還發(fā)現(xiàn)了非Frizzled受體,包括單次跨膜酪氨酸受體中的Ryk和Ror家族受體,前者通過Wnt抑制因子結(jié)構(gòu)域、后者通過胞外區(qū)的CRD結(jié)構(gòu)域與Wnt配體結(jié)合,發(fā)揮其功能[2].

此外,有很多內(nèi)源性物質(zhì)可以干擾Wnt信號通路,如DKK和SFRP.SFRP家族是分泌性卷曲相關(guān)蛋白,有與Frizzled同源的半胱氨酸富集區(qū)CRD,通過和Frizzled受體競爭或者直接和Frizzled受體結(jié)合,達到拮抗Wnt的目的.SFRP分子根據(jù)同源性分為3組.第1組:SFRP1,SFRP2和SFRP5;第2組:SFRP3和SFRP4;第3組:Sizzled和Crescent.其中,第3組成員在兩棲動物、魚和鳥類中出現(xiàn),在哺乳動物中并沒有相關(guān)報道[3].

β-catenin是Wnt經(jīng)典通路的核心成分,由染色體3p21—22區(qū)的CTNNb1基因編碼.β-catenin蛋白的一級結(jié)構(gòu)包含150個氨基酸的N端、550個氨基酸中間連接臂和100個氨基酸的C端.N端是GSK3β磷酸化部位,介導(dǎo)降解作用;β-catenin的C端與核轉(zhuǎn)錄活性因子Tcf/Lef結(jié)合.正常功能狀態(tài)下,大部分β-catenin被束縛在胞膜下與E-鈣黏素(E-cadherin)結(jié)合,組成E-cadherin-β-catenin-α-catenin復(fù)合物,由α-catenin連接細(xì)胞骨架,參與細(xì)胞黏附;而其余部分與GSK3β,APC,Axin和酪蛋白激酶1(CK1)等共同形成的多聚蛋白復(fù)合物結(jié)合.β-catenin氨基端的第33,37和41位氨基酸分別被CKI和GSK3β順序磷酸化,被磷酸化的β-catenin募集包含β-TrCP的E3泛素連接酶,使β-catenin發(fā)生泛素化,經(jīng)泛素-蛋白酶體途徑降解,從而使胞質(zhì)內(nèi)游離β-catenin維持較低的濃度.

2 Wnt信號通路主要活化方式

Wnt信號通路的主要活化方式分Wnt經(jīng)典通路和Wnt非經(jīng)典通路(見圖1).

圖1 Wnt信號通路激活模式圖

2.1Wnt經(jīng)典通路

經(jīng)典Wnt/β-catenin通路,其最關(guān)鍵的特征是發(fā)生β-catenin胞漿內(nèi)穩(wěn)化和入核.當(dāng)Wnt配體與細(xì)胞膜上的Frizzled受體及輔助受體LRP5/6結(jié)合時,胞漿內(nèi)Dvl被募集,抑制GSK3β和CKI的活性,并通過固定Axin蛋白,拆解多蛋白復(fù)合物,解放被束縛的β-catenin,導(dǎo)致非磷酸化β-catenin在胞漿中富集,并入核結(jié)合到Tcf/Lef轉(zhuǎn)錄因子上形成轉(zhuǎn)錄復(fù)合體,開啟靶基因的轉(zhuǎn)錄活化.AKT激酶亦可抑制GSK3β或直接磷酸化β-catenin,促其入核[4].靜息期Tcf/Lef募集Goucho等抑制性分子結(jié)合于基因的啟動子區(qū),無法啟動轉(zhuǎn)錄,靶基因處于沉默狀態(tài);β-catenin活化入核后,與Tcf/Lef分子相互作用,替代Goucho等抑制性分子,同時募集CBP/p300等轉(zhuǎn)錄活化子,協(xié)同激活下游靶基因的轉(zhuǎn)錄.Wnt經(jīng)典通路的下游靶基因包括c-Myc,cyclinD1,BMP4,CD44,MMP7和IL-8等.Wnt經(jīng)典通路的特點是無效應(yīng)放大,但保證了信號的特異性.

2.2Wnt非經(jīng)典通路

Wnt非經(jīng)典通路通常與細(xì)胞骨架重排導(dǎo)致的細(xì)胞極性建立、細(xì)胞遷移和組織構(gòu)型形成等有關(guān).非經(jīng)典通路又可分為Wnt/Ca2+通路和平面細(xì)胞極性(planar cell polarity,PCP)通路.Wnt/Ca2+通路活化時,Wnt分子與細(xì)胞表面的Frizzled受體結(jié)合,后者與異源三聚體的G蛋白偶聯(lián)受體(GPCR)相連,而由G蛋白激活磷脂酶C(PLC),進一步激活下游通路使細(xì)胞內(nèi)Ca2+濃度升高,進而激活Ca2+依賴的激酶,如蛋白激酶C(PKC)和鈣調(diào)蛋白依賴性蛋白激酶II(CaMK II),以調(diào)節(jié)細(xì)胞運動和細(xì)胞黏附性.Ca2+濃度升高還可以激活鈣調(diào)磷酸酶(CaN),后者可以使NFAT分子發(fā)生去磷酸化進而發(fā)生核轉(zhuǎn)位,調(diào)控基因表達.PCP通路在果蠅翼翅中建立平面上皮細(xì)胞與臨近細(xì)胞間的相對極性,并因此而得名,在哺乳動物的同系物是Wnt/JNK通路.該通路的主要特征為Wnt分子激活在經(jīng)典通路中不發(fā)揮作用的Dvl蛋白DEP結(jié)構(gòu)域,從而激活RhoGTP酶的家族成員(如RhoA,Rac和Cdc42),并進而激活下游效應(yīng)分子,如JNK,PKC和Rho相關(guān)激酶(ROCK),主要調(diào)控細(xì)胞骨架重排和建立細(xì)胞極性,影響形態(tài)發(fā)生.同時,活化的JNK磷酸化下游轉(zhuǎn)錄因子ATF2及c-jun,以調(diào)控基因表達.

非經(jīng)典Wnt信號通路與經(jīng)典Wnt信號通路有很多的聯(lián)系.有研究發(fā)現(xiàn),Wnt5a可以通過Nemo樣激酶抑制經(jīng)典Wnt 信號通路中Tcf/Lef的轉(zhuǎn)錄活性[5].

3 Wnt信號通路與胚胎心臟發(fā)育和心肌誘導(dǎo)分化

在心臟發(fā)育過程中,Wnt分子及其受體呈高度異質(zhì)性的時空表達,這提示W(wǎng)nt信號在心臟早期發(fā)育中扮演著重要角色.Wnt信號通路幾乎參與了心臟發(fā)育的所有階段,即早期特化、心肌分化、心管環(huán)化、細(xì)胞遷移與擴增、腔室及瓣膜形成及傳導(dǎo)系統(tǒng)構(gòu)建等多個環(huán)節(jié)[6].干細(xì)胞向心肌分化的過程可按基因表達差異分成多個分化階段,早期多能干細(xì)胞首先分化為BrachyuryT+中胚層細(xì)胞,繼而分化為Mesp1+生心中胚層細(xì)胞,然后是表達心肌特異性轉(zhuǎn)錄因子的心肌前體干細(xì)胞最終發(fā)育為自發(fā)搏動的功能性心肌細(xì)胞.研究表明,Wnt通路在不同分化階段作用不同[7].

3.1Wnt經(jīng)典通路與心臟發(fā)育

關(guān)于Wnt經(jīng)典信號具體是激活還是抑制心肌分化曾經(jīng)存在激烈的爭議,不同的實驗?zāi)P偷玫降慕Y(jié)論截然相反.在蛙胚和雞胚模型,經(jīng)典Wnt信號分子Wnt1和Wnt3a等在神經(jīng)板和背側(cè)神經(jīng)管處的表達被認(rèn)為是抑制該部位向心肌分化的主要原因.Wnt/β-catenin在前中胚層的活化抑制了生心新月區(qū)的形成,以及心肌特異性轉(zhuǎn)錄因子基因Nkx2.5和Gata4的表達.Wnt內(nèi)源性拮抗分子Cresent和DKK1作為前內(nèi)胚層的信號,通過封閉經(jīng)典Wnt活性,可以誘導(dǎo)內(nèi)胚層區(qū)產(chǎn)生異位心臟;在雞胚中,外源Wnt3a和Wnt8刺激可以直接促進原條、后中胚層細(xì)胞分化為造血細(xì)胞[8-9].在爪蟾中,敲除Wnt6導(dǎo)致心臟結(jié)構(gòu)擴大,同時SFRP1可以拮抗Wnt6的效應(yīng),促進心肌分化及正常心臟結(jié)構(gòu)和大小尺寸的形成[10-11].在小鼠中,利用Cytokeratin-19啟動子控制的Cre-Loxp重組技術(shù),發(fā)現(xiàn)抑制β-catenin在咽弓內(nèi)胚層的表達后會導(dǎo)致小鼠內(nèi)胚層異位心臟的形成,提示經(jīng)典Wnt信號可能抑制小鼠的心臟發(fā)育[12].但在果蠅中,Wnt經(jīng)典信號卻能夠促進心臟的發(fā)育.在小鼠畸胎瘤細(xì)胞系P19CL6細(xì)胞中,加入Wnt3a蛋白或通過抑制GSK3β以激活經(jīng)典Wnt通路,能夠明顯促進心肌特異轉(zhuǎn)錄因子Nkx2.5,Gata4,Mef2c和Tbx5的表達,促進跳動心肌的出現(xiàn)[13].

Natio等[14]提出經(jīng)典Wnt信號對心臟發(fā)育調(diào)節(jié)具有雙時相,開啟了對Wnt信號新的認(rèn)識.經(jīng)典Wnt信號在胚胎干細(xì)胞(ES)分化的早期階段誘導(dǎo)Sox17促進中胚層分化,早期抑制Wnt導(dǎo)致細(xì)胞向神經(jīng)外胚層分化;在稍晚階段激活經(jīng)典Wnt信號則抑制骨形成蛋白(BMP)信號誘導(dǎo),從而抑制心肌分化,驅(qū)動中胚層定向細(xì)胞分化為造血和血管細(xì)胞.在ES細(xì)胞心肌分化中,也可在分化早期檢測到Wnt3a和Wnt8的誘導(dǎo),早于心肌前體細(xì)胞特異的標(biāo)志基因Nkx2.5和Gata4,而細(xì)胞進入生心中胚層階段后即快速消失.在Wnt8和Dkk1轉(zhuǎn)基因斑馬魚中的研究表明,Wnt經(jīng)典信號在原腸形成前可促進中胚層細(xì)胞特化并轉(zhuǎn)化為線性心管,而在原腸形成期則發(fā)揮抑制作用,參與心肌細(xì)胞的成熟,再次證實經(jīng)典Wnt/β-catenin信號對心臟發(fā)育調(diào)節(jié)具有雙時相性[15].顯然,Wnt信號這種“早期促進,后期抑制”的發(fā)育階段性作用在進化中高度保守.事實上,在心肌誘導(dǎo)分化中,包括BMP和Notch等在內(nèi)的多個信號通路都有階段特異性作用,心肌分化前期和晚期的作用往往截然相反.需要指出的是,Wnt家族成員眾多,作用差異極大.例如,Wnt2雖然屬于經(jīng)典Wnt家族分子,但在ES細(xì)胞中卻通過激活非經(jīng)典通路促進心肌分化[16].

更精細(xì)的研究表明,經(jīng)典Wnt在心肌誘導(dǎo)分化中的作用可以劃分為至少4個時相[7].第1時相大致為早期誘導(dǎo)至BrachyuryT+中胚層階段,經(jīng)典Wnt信號發(fā)揮誘導(dǎo)增殖、促分化作用,其促分化的機制類似于促上皮間質(zhì)轉(zhuǎn)化,在胚胎內(nèi)還可誘導(dǎo)細(xì)胞遷移匯聚成心管,同時中胚層轉(zhuǎn)錄因子Brachyury T本身即受Tcf/Lef的轉(zhuǎn)錄調(diào)控[17].第2時相為中胚層至Mesp1+生心中胚層,再至Isl1+Nkx2.5+陽性心肌前體細(xì)胞期.在該時相,經(jīng)典Wnt信號主要發(fā)揮抑制作用.心肌前體細(xì)胞的遷移運動和生心新月區(qū)的形成也與Wnt3a介導(dǎo)的化學(xué)排斥效應(yīng)相關(guān)[18].第3時相為Isl1+Nkx2.5+陽性心肌前體細(xì)胞自我擴增期,大致對應(yīng)于體內(nèi)第二生心區(qū)內(nèi)的心臟前體細(xì)胞匯入線性心管,擴大心腔,經(jīng)典Wnt此時再次發(fā)揮促分化、促增殖和促遷移的作用.比較而言,BMP信號是第一生心區(qū)的主要調(diào)控信號,調(diào)控Gata4,Mef2c和SRF等生心轉(zhuǎn)錄因子表達,而Wnt主要調(diào)控第二生心區(qū)[19-20].已證明β-catenin可直接調(diào)控Isl1和Nkx2.5表達,并且Wnt3a信號可誘導(dǎo)多個FGF分子(特別是FGF10和FGF20)促進Isl1+細(xì)胞的增殖[20-22].同時,Nkx2.5可上調(diào)Rspo3分泌蛋白表達,以激活Wnt經(jīng)典通路,維持干細(xì)胞增殖[23].而Tbx20調(diào)控Lef1表達,參與了心內(nèi)膜墊成熟和瓣膜細(xì)胞擴張[24].第4時相為心臟塑形的終末分化階段,此時心肌細(xì)胞增殖停滯,經(jīng)典Wnt信號起負(fù)性調(diào)控作用,抑制心肌結(jié)構(gòu)和功能基因表達.

從機制角度說,Wnt經(jīng)典通路分子在心肌分化進程中的表達活化受階段特異性轉(zhuǎn)錄因子的調(diào)控.已知Tcf/Lef可調(diào)控BrachyuryT表達,但Brachyury T下游基因又包括Wnt3a,Axin2,F(xiàn)GF8和Mesp1等[25].因此,可以認(rèn)為Wnt經(jīng)典通路與中胚層分化標(biāo)志物Brachyury T轉(zhuǎn)錄因子之間存在一個正性調(diào)控環(huán).而生心中胚層分化標(biāo)志基因Mesp1啟動子上游也存在一個Tcf/Lef保守位點,受經(jīng)典Wnt信號誘導(dǎo)[26];另外,Mesp1轉(zhuǎn)錄因子可上調(diào)內(nèi)源性Wnt信號通路抑制劑DKK1的表達[27],這樣又構(gòu)建了一個負(fù)反饋網(wǎng)絡(luò)來節(jié)制經(jīng)典Wnt信號的活化.此外,在心肌細(xì)胞中特異表達的非編碼小RNA分子,miR-1,可抑制Frizzled7受體分子的表達,因而可以在分化晚期抑制經(jīng)典Wnt的激活[28].

3.2Wnt非經(jīng)典通路與心臟發(fā)育

Wnt非經(jīng)典通路對細(xì)胞黏附、遷移、心管形成、環(huán)化及腔室形成具有重要的作用.缺失Wnt11,Wnt5a,Wnt5b和Wnt4的模式生物將發(fā)生心管畸形等嚴(yán)重缺陷.在爪蟾的胚胎研究模型中,Wnt11在形成新月區(qū)的中胚層前側(cè)部表達,抑制Wnt11表達能夠阻斷心肌早期分化標(biāo)志基因Nkx2.5和Gata4的表達,并且干擾細(xì)胞遷移、融合和心管形成,導(dǎo)致心臟原基匯合障礙,最終引起雙心畸形.在蛙胚和雞胚的模型中,后中胚層過表達Wnt11能引起異位心臟的形成[29-30].小鼠發(fā)育模型中,Wnt5a和Wnt11對流出道的形成發(fā)揮重要功能,基因突變會導(dǎo)致流出道缺陷,如右心室雙出口和主動脈干永存,表型與人類某些先天性心臟病非常類似[31].其原因主要是Wnt5a或Wnt11能夠通過JNK途徑影響流出道心肌及平滑肌成分的細(xì)胞骨架和細(xì)胞外基質(zhì)的沉積.此外,Wnt5a和纖連蛋白也是重要的心肌細(xì)胞遷移趨化信號[32].在ES細(xì)胞的誘導(dǎo)分化體系中,Wnt11的表達時相與心肌特異基因表達的時相高度匹配,均在生心中胚層后逐步高表達,至搏動心肌出現(xiàn),在所誘導(dǎo)的ES中持續(xù)表達Wnt11能夠提高分化效率[33].

Wnt5a和Wnt11引發(fā)的下游事件包括Dvl及JNK,PKC信號通路的活化,敲除Dvl、阻斷JNK或PKC通路能夠抑制非經(jīng)典Wnt激活引起的促心臟分化效應(yīng),而共激活JNK和PKC則能夠促進心臟分化[34].轉(zhuǎn)錄因子NFAT是Ca2+/PKC/CaN的下游效應(yīng)因子,在心肌分化中發(fā)揮著重要作用.不過,近期有研究發(fā)現(xiàn),在心肌分化早期通過環(huán)孢素A抑制NFAT活化,可以提高心肌分化效率[35].結(jié)合Wnt5a和Wnt11的特異性表達時相,提示W(wǎng)nt非經(jīng)典通路對心肌分化可能也存在雙時相性作用.

此外,Wnt5a和Wnt11對于第二生心區(qū)的形成至關(guān)重要,其主要機理可能是通過抑制Wnt經(jīng)典通路的活化,特別是β-catenin的表達[36].在小鼠胚胎中,Wnt5a和Wnt11在第二生心區(qū)協(xié)同表達,同時敲除二者導(dǎo)致經(jīng)典Wnt信號激活、心臟發(fā)育缺陷.Wnt11一方面通過激活JNK和PKC促進晚期心肌分化;另一方面可能通過激活Caspase-3,降解AKT及β-catenin以破壞經(jīng)典Wnt通路[33-37].因此,Wnt非經(jīng)典通路可能在經(jīng)典通路激活的生心中胚層分化基礎(chǔ)上接續(xù)促進晚期心肌分化進程.

4 基于Wnt信號通路的心肌誘導(dǎo)分化策略

綜上所述,Wnt信號通路在心肌分化中具有典型的階段特異性作用,經(jīng)典通路表現(xiàn)為“先促后抑”,而非經(jīng)典通路則在分化晚期通過抑制經(jīng)典通路發(fā)揮促心肌分化的作用.基于以上研究發(fā)現(xiàn),已衍生出不同的干細(xì)胞心肌誘導(dǎo)分化策略[38].例如:誘導(dǎo)早期加入GSK3β抑制劑(BIO,LiCl等)和CK1激酶抑制劑CHIR99021,通過抑制GSK3β和CK1以達到活化β-catenin介導(dǎo)的經(jīng)典Wnt通路的作用[39];或者,在誘導(dǎo)早期加入重組Wnt3和Wnt3a蛋白等經(jīng)典通路激活物[40].在誘導(dǎo)晚期可加入Wnt天然抑制物Cerberus,DKK1和SFRP分泌蛋白,或其他小分子化合物[41].Wnt小分子干擾物種類眾多,如:姜黃素和CHC001可抑制β-catenin活化;imatinib和apigenin可增加β-catenin的質(zhì)膜定位,抑制入核;ICG-001和FH535干擾β-catenin與Tcf/Lef1結(jié)合;IWP可抑制Wnt棕櫚酰化修飾而干擾其產(chǎn)生.IWR被認(rèn)為是Wnt通路的信號應(yīng)答抑制劑[38].除特異性小分子抑制劑外,硫酸軟骨素、維生素D3和DAPT等小分子也被發(fā)現(xiàn)可間接調(diào)控Wnt信號[42-43].這些小分子除可以增加心肌誘導(dǎo)效率外,KY02111等新型化合物還可提高終末分化細(xì)胞的成熟度,提高MLC2v+陽性心室肌細(xì)胞的產(chǎn)率[44-45].通過與BMP通路調(diào)制小分子的協(xié)同,Wnt調(diào)制物還可誘導(dǎo)特異的心外膜細(xì)胞[46].通過慢病毒轉(zhuǎn)染過表達Wnt11,甚至可以促進間充質(zhì)干細(xì)胞及骨骼肌衛(wèi)星細(xì)胞向心肌分化[47-48].有趣的是,通過物理性旋轉(zhuǎn)培養(yǎng)改變細(xì)胞間黏附,也可使ES細(xì)胞在形成擬胚體階段活化Wnt經(jīng)典通路,達到促進心肌分化的目的[49].除此之外,由于Wnt通路與BMP和Notch等其他通路存在復(fù)雜的交叉串話,其他通路的激動劑和抑制劑往往也會影響到Wnt分子的表達.此外,還可通過調(diào)制多條信號通路來誘導(dǎo)心肌分化.

5 小 結(jié)

Wnt信號通路分為經(jīng)典通路和非經(jīng)典通路,二者在心臟發(fā)育中發(fā)揮著重要作用.Wnt經(jīng)典通路在原腸形成以前促進早期多能干細(xì)胞分化為中胚層細(xì)胞,為后續(xù)心肌分化的重要步驟,而在生心中胚層形成后則抑制心肌分化;而非經(jīng)典通路在生心中胚層形成后抑制Wnt經(jīng)典通路,接力促進心肌分化,并通過調(diào)節(jié)細(xì)胞極性和細(xì)胞黏附遷移,參與心臟形態(tài)的建立.通過調(diào)制Wnt信號,可有效控制干細(xì)胞的分化方向,定向誘導(dǎo)干細(xì)胞向心肌或其他細(xì)胞方向分化.

[1]Flaherty M P,Kamerzell T J,Dawn B.Wnt signaling and cardiac differentiation[J].Progress in Molecular Biology and Translational Science,2012,111:153-174.

[2]Kikuchi A,Yamamoto H,Kishida S.Multiplicity of the interactions of Wnt proteins and their receptors[J].Cell Signal,2007,19(4):659-671.

[3]金雅瓊,賈竹青,周春燕.SFRP分子對心臟發(fā)育的影響[J].中國生物化學(xué)與分子生物學(xué)學(xué)報,2008,24(12):1103-1108.

[4]Luo Wen,Zhao Xia,Jin Hengwei,et al.Akt1 signaling coordinates BMP signaling andβ-catenin activity to regulate second heart field progenitor development[J].Development,2015,142(4):732-742.

[5]Ishitani T,Kishida S,Hyodomiura J,et al.The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling[J].Mol Cell Biol,2003,23(1):131-139.

[6]Gillers B S,Chiplunkar A,Aly H,et al.Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties[J].Circ Res,2015,116(3):398-406.

[7]Gessert S,Kühl M.The multiple phases and faces of wnt signaling during cardiac differentiation and development[J].Circ Res,2010,107(2):186-199.

[8]Marvin M J,Di Rocco G,Gardiner A,et al.Inhibition of Wnt activity induces heart formation from posterior mesoderm[J].Genes Dev,2001,15(3):316-327.

[9]Schneider V A,Mercola M.Wnt antagonism initiates cardiogenesis inXenopuslaevis[J].Genes Dev,2001,15(3):304-315.

[10]Lavery D L,Martin J,Turnbull Y D,et al.Wnt6 signaling regulates heart muscle development during organogenesis[J].Dev Biol,2008,323(2):177-188.

[11]Gibb N,Lavery D L,Hoppler S.sfrp1 promotes cardiomyocyte differentiation inXenopusvia negative-feedback regulation of Wnt signalling[J].Development,2013,140(7):1537-1549.

[12]Lickert H,Kutsch S,Kanzler B,et al.Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm[J].Dev Cell,2002,3(2):171-181.

[13]Nakamura T,Sano M,Zhou Songyang,et al.A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis[J].Proc Natl Acad Sci USA,2003,100(10):5834-5839.

[14]Naito A T,Shiojima I,Akazawa H,et al.Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis[J].Proc Natl Acad Sci USA,2006,103(52):19812-19817.

[15]Ueno S,Weidinger G,Osugi T,et al.Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells[J].Proc Natl Acad Sci USA,2007,104(23):9685-9690.

[16]Onizuka T,Yuasa S,Kusumoto D,et al.Wnt2 accelerates cardiac myocyte differentiation from ES-cell derived mesodermal cells via non-canonical pathway[J].J Mol Cell Cardiol,2012,52(3):650-659.

[17]Galceran J,Hsu S C,Grosschedl R.Rescue of aWntmutation by an activated form of LEF-1:regulation of maintenance but not initiation ofBrachyuryexpression[J].Proc Natl Acad Sci USA,2001,98(15):8668-8673.

[18]Yue Qiaoyun,Wagstaff L,Yang Xuesong,et al.Wnt3a-mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function[J].Development,2008,135(6):1029-1037.

[19]Klaus A,Saga Y,Taketo M M,et al.Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis[J].Proc Natl Acad Sci USA,2007,104(47):18531-18536.

[20]Klaus A,Müller M,Schulz H,et al.Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells[J].Proc Natl Acad Sci USA,2012,109(27):10921-10926.

[21]Lin Lizhu,Cui Li,Zhou Wenlai,et al.Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis[J].Proc Natl Acad Sci USA,2007,104(22):9313-9318.

[22]Cohen E D,Wang Zhishan,Lepore J J,et al.Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling[J].J Clin Invest,2007,117(7):1794-1804.

[23]Cambier L,Plate M,Sucov H M,et al.Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3[J].Development,2014,141(15):2959-2971.

[24]Cai Xiaoqiang,Zhang Weijia,Hu Jun,et al.Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis[J].Development,2013,140(15):3176-3187.

[25]Evans A L,Faial T,Gilchrist M J,et al.Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells[J].PLoS One,2012,7(3):e33346.

[26]Li Yongqing,Yu Wei,Cooney A J,et al.Brief report:Oct4 and canonical Wnt signaling regulate the cardiac lineage factor Mesp1 through a Tcf/Lef-Oct4 composite element[J].Stem Cells,2013,31(6):1213-1217.

[27]David R,Brenner C,Stieber J,et al.MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling[J].Nat Cell Biol,2008,10(3):338-345.

[28]Lu T Y,Lin Bo,Li Yang,et al.Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways[J].J Mol Cell Cardiol,2013,63:146-154.

[29]Pandur P,Lasche M,Eisenberg L M,et al.Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis[J].Nature,2002,418(6898):636-641.

[30]Garriock R J,D′Agostino S L,Pilcher K C,et al.Wnt11-R,a protein closely related to mammalian Wnt11,is required for heart morphogenesis inXenopus[J].Dev Biol,2005,279(1):179-192.

[31]Sinha T,Li D,Théveniau-Ruissy M,et al.Loss of Wnt5a disrupts second heart field cell deployment and may contribute to OFT malformations in DiGeorge syndrome[J].Hum Mol Genet,2015,24(6):1704-1716.

[32]Moyes K W,Sip C G,Obenza W,et al.Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a[J].Stem Cells Dev,2013,22(16):2315-2325.

[33]Abdul-Ghani M,Dufort D,Stiles R,et al.Wnt11 promotes cardiomyocyte development by caspase-mediated suppression of canonical Wnt signals[J].Mol Cell Biol,2011,31(1):163-178.

[34]Sinha T,Wang Bing,Evans S,et al.Disheveled mediated planar cell polarity signaling is required in the second heart field lineage for outflow tract morphogenesis[J].Dev Biol,2012,370(1):135-144.

[35]Choi S C,Lee H,Choi J H,et al.Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells[J].PLoS One,2015,10(1):e0117410.

[36]Cohen E D,Miller M F,Wang Zichao,et al.Wnt5a and Wnt11 are essential for second heart field progenitor development[J].Development,2012,139(11):1931-1940.

[37]Bisson J A,Mills B,Paul Helt J C,et al.Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT[J].Dev Biol,2015,398(1):80-96.

[38]Verma V,Purnamawati K,Manasi,et al.Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells:a review[J].Cell Signal,2013,25(5):1096-1107.

[39]Laco F,Low J L,Seow J,et al.Cardiomyocyte differentiation of pluripotent stem cells with SB203580 analogues correlates with Wnt pathway CK1 inhibition independent of p38 MAPK signaling[J].J Mol Cell Cardiol,2015,80:56-70.

[40]Mehta A,Ramachandra C J,Sequiera G L,et al.Phasic modulation of Wnt signaling enhances cardiac differentiation in human pluripotent stem cells by recapitulating developmental ontogeny[J].Biochim Biophys Acta,2014,1843(11):2394-2402.

[41]Rai M,Walthall J M,Hu Jianyong,et al.Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells[J].Stem Cells Dev,2012,21(1):54-66.

[42]Hlaing S M,Garcia L A,Contreras J R,et al.1,25-Vitamin D3 promotes cardiac differentiation through modulation of the WNT signaling pathway[J].J Mol Endocrinol,2014,53(3):303-317.

[43]Prinz R D,Willis C M,Van Kuppevelt T H,et al.Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling[J].PLoS One,2014,9(3):e92381.

[44]Minami I,Yamada K,Otsuji T G,et al.A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined,cytokine- and xeno-free conditions[J].Cell Rep,2012,2(5):1448-1460.

[45]Lian Xiaojun,Hsiao C,Wilson G,et al.Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling[J].Proc Natl Acad Sci USA,2012,109(27):E1848-E1857.

[46]Brenner C,Franz W M.Pluripotent-stem-cell-derived epicardial cells:a step toward artificial cardiac tissue[J].Cell Stem Cell,2014,15(5):533-534.

[47]Xiang Guosheng,Yang Qing,Wang Bing,et al.Lentivirus-mediated Wnt11 gene transfer enhances Cardiomyogenic differentiation of skeletal muscle-derived stem cells[J].Mol Ther,2011,19(4):790-796.

[48]He Zhisong,Li Hongxia,Zuo Shi,et al.Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes[J].Stem Cells Dev,2011,20(10):1771-1778.

[49]Kinney M A,Sargent C Y,McDevitt T C.Temporal modulation ofβ-catenin signaling by multicellular aggregation kinetics impacts embryonic stem cell cardiomyogenesis[J].Stem Cells Dev,2013,22(19):2665-2677.

(責(zé)任編輯薛榮)

The role of Wnt signaling pathway in cardiac development and cardiac differentiation

HUANG Qiaoli,ZHOU Hua,LI Tao

(CollegeofChemistryandLifeSciences,ZhejiangNormalUniversity,Jinhua321004,China)

Wnt proteins had been shown to play multiple roles during cardiac differentiation and development. Until now, 19 Wnt ligands, 10 Frizzled receptors and several endogenous antagonists had been identified in mammals, suggested that the effect of Wnt signaling was immensely complicated. Wnt signaling were categorized into theβ-catenin dependent (canonical), andβ-catenin independent (non-canonical) pathways. Both signaling pathways played key roles in cardiac development, including cell division, differentiation, adhesion, migration, and polarity. Specifically, Wnt signaling exhibited biphasic effects on cardiac differentiation, depending on the stage of cardiomyogenesis. Therefore, modulating Wnt signaling by small molecules or genetic manipulation would be a useful way to efficiently generate cardiomyocytes from pluripotent stem cells.

Wnt signaling pathway; cardiac development; cardiac differentiation; stem cell

10.16218/j.issn.1001-5051.2016.03.017

收文日期:2015-05-28;2015-06-23

國家自然科學(xué)基金資助項目(31101057;31470082);浙江省自然科學(xué)基金資助項目(LY14C120001);浙江省公共創(chuàng)新平臺實驗動物項目(2014C37126)

黃巧麗(1990-)女,浙江嵊州人,碩士研究生.研究方向:分子發(fā)育生物學(xué).

李濤.E-mail: litao@zjnu.cn

Q951

A

1001-5051(2016)03-0331-07

猜你喜歡
信號
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
7個信號,警惕寶寶要感冒
媽媽寶寶(2019年10期)2019-10-26 02:45:34
孩子停止長個的信號
《鐵道通信信號》訂閱單
基于FPGA的多功能信號發(fā)生器的設(shè)計
電子制作(2018年11期)2018-08-04 03:25:42
基于Arduino的聯(lián)鎖信號控制接口研究
《鐵道通信信號》訂閱單
基于LabVIEW的力加載信號采集與PID控制
Kisspeptin/GPR54信號通路促使性早熟形成的作用觀察
主站蜘蛛池模板: 精品国产中文一级毛片在线看 | 精品三级网站| 热这里只有精品国产热门精品| AV在线天堂进入| 欧美一级在线看| 国产激爽大片在线播放| 欧美成人怡春院在线激情| 四虎影视国产精品| 亚洲精品动漫| 国产亚洲欧美在线中文bt天堂 | 国产成人综合久久精品尤物| 四虎国产在线观看| 亚洲男人在线天堂| 在线播放国产一区| 久久久久亚洲精品成人网| 亚洲人成成无码网WWW| AV无码无在线观看免费| 伊人成人在线| 91在线一9|永久视频在线| 国产欧美高清| 99久久这里只精品麻豆| 毛片网站在线播放| 99精品国产自在现线观看| 永久在线精品免费视频观看| 国产精品亚洲精品爽爽| www亚洲精品| 99无码中文字幕视频| 99久久国产综合精品2023| 九九视频免费在线观看| 青青草原国产av福利网站| 亚洲 日韩 激情 无码 中出| 国产福利免费视频| 中文字幕在线观| 国产一区二区三区精品欧美日韩| 国产不卡网| 视频一区亚洲| 精品综合久久久久久97超人该| 婷婷综合在线观看丁香| av尤物免费在线观看| 欧美精品啪啪一区二区三区| 麻豆国产在线观看一区二区| 色综合中文字幕| 亚洲高清无在码在线无弹窗| 欧美黑人欧美精品刺激| 久久午夜夜伦鲁鲁片无码免费| 55夜色66夜色国产精品视频| 亚洲中文字幕久久精品无码一区| 国产无码高清视频不卡| 欧美日本在线| 久久精品中文字幕免费| 色噜噜久久| 亚洲综合色婷婷| 一本久道热中字伊人| 无码AV动漫| 国产精品尤物在线| 国产精品网址你懂的| 国产国产人成免费视频77777| 国产99精品视频| 在线国产资源| 亚洲IV视频免费在线光看| 亚洲天堂免费| 91精品视频播放| 欧美成一级| 久久中文无码精品| 国产黑丝一区| 成人无码一区二区三区视频在线观看 | 欧美专区日韩专区| 亚洲国产欧美中日韩成人综合视频| 国产黄在线观看| 国产在线一区视频| 色综合a怡红院怡红院首页| 日韩成人午夜| 亚洲综合精品香蕉久久网| 日韩无码视频网站| 成人午夜精品一级毛片| 亚洲国产欧美国产综合久久| 手机永久AV在线播放| 色综合手机在线| 日韩欧美国产成人| 国产国语一级毛片| 国产免费久久精品99re丫丫一| 欧美成人精品一级在线观看|