999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

飼料及畜禽產品中霉菌毒素快速檢測技術研究進展

2016-11-01 11:27:31董國良彭大鵬韓肖亞劉振利袁宗輝
畜牧獸醫學報 2016年9期
關鍵詞:檢測

董國良,彭大鵬,韓肖亞,劉振利,袁宗輝

(1.國家獸藥殘留基準實驗室(華中農業大學)、農業部獸藥殘留檢測重點實驗室,武漢 430070;2.農業部畜禽產品質量安全風險評估實驗室(武漢),武漢 430070;3.華中農業大學動物醫學院,武漢 430070)

?

飼料及畜禽產品中霉菌毒素快速檢測技術研究進展

董國良1,3,彭大鵬1,2,3*,韓肖亞1,3,劉振利1,2,3,袁宗輝1,2,3

(1.國家獸藥殘留基準實驗室(華中農業大學)、農業部獸藥殘留檢測重點實驗室,武漢 430070;2.農業部畜禽產品質量安全風險評估實驗室(武漢),武漢 430070;3.華中農業大學動物醫學院,武漢 430070)

霉菌毒素是某些霉菌的次級代謝產物,在自然界中分布極為廣泛,可污染動物飼料及畜禽產品,對動物和人類健康造成巨大危害。作者介紹了飼料與畜禽產品中常見的霉菌毒素及其對動物和人類的危害,總結了近年來快速檢測技術在霉菌毒素檢測方面所取得的進展,分析了霉菌毒素抗體制備的主要影響因素,并對霉菌毒素快速檢測技術發展前景作出展望。

霉菌毒素;快速檢測技術;抗體

霉菌毒素(mycotoxins)是一類低分子量化合物,是某些小型絲狀真菌的次級代謝產物,在自然界中分布極為廣泛。霉菌毒素能導致動物和人發生疾病甚至死亡,某些霉菌毒素具有細胞毒性、致癌、致突變或免疫抑制等毒性反應,能夠對人或動物造成不同程度的毒害作用[1]。據聯合國糧農組織調查分析,全世界每年約有25.0%的作物受到霉菌毒素污染[2]。截至目前,已知的霉菌毒素有300~400種[3]。

微量的霉菌毒素便可產生巨大毒害作用,而混合污染又是其重要特點。因此,快速、精確檢測飼料及畜禽產品中霉菌毒素各組分,是保障動物和人類健康的重要手段。其分析程序通常包括三個使用標準:檢測速度、所需技術技能水平以及能否提供定性或定量的結果[4]。常規化學及儀器檢測技術耗時長、成本高、前處理復雜,難以滿足現場、快速、大批量的檢測需要。而目前殘留檢測技術的發展趨勢,要求試劑消耗少、樣品用量少、在線自動化、高通量地快速分析[5]。因此,快速檢測技術(rapid detection technology)必將成為霉菌毒素殘留檢測研究的重點。

1 幾種主要霉菌毒素及其危害

1.1黃曲霉毒素

黃曲霉毒素(aflatoxin,AFT)是一類二氫呋喃氧雜萘鄰酮的衍生物,主要由黃曲霉(Aspergillusflavus)和寄生曲霉(A.parasiticus)二次代謝產生,常見于霉變的玉米、花生、棉籽及某些干果中。該類毒素具有致癌[6]、致畸、致突變、基因毒性[7]及免疫抑制[8]等作用。黃曲霉毒素B1(AFB1,圖1A)是其最主要、毒性最強的組分[1],國際癌癥研究機構(International Agency for Research on Cancer,IARC)已將其列為人類致癌物[9]。AFB1在動物體內可代謝為黃曲霉毒素M1(AFM1,圖1A)[1,10],常見于牛奶中,對人類危害巨大。歐盟規定堅果及玉米中總AFT的最大殘留限量分別為4.00、10.0 μg·kg-1,谷類加工食品及嬰兒食品和玉米中AFB1為100 ng·kg-1、5.00 μg·kg-1,而牛奶和嬰兒奶粉中AFM1限量分別為50.0、25.0 ng·kg-1[11-12]。中國規定谷類加工食品及嬰兒食品中AFB1限量為5.00 μg·kg-1,牛奶及奶粉中AFM1限量為500 ng·kg-1[13]。

1.2赭曲霉毒素

赭曲霉毒素(ochratoxin,OT)是由曲霉菌和青霉菌產生的一類重要的霉菌毒素,其中毒性最大、分布最廣與人類健康關系最為密切的是赭曲霉毒素A(ochratoxin A,OTA,圖1B)。該毒素具有腎毒性、肝毒性、免疫毒性、基因毒性和致突變作用[14-16]。動物攝入OTA后,易在組織內蓄積殘留,對人類健康造成威脅。研究發現,丹麥曾經發生的由霉菌所引起的腎病以及巴爾干地方性腎病都與OTA有密切關系[17]。歐盟已制定OTA的最大殘留限量標準,谷物及其制品、葡萄酒和嬰兒食品中分別為5.00、2.00 μg·kg-1和500 ng·kg-1[12]。中國規定谷物及其制品和豆類中OTA限量為5.00 μg·kg-1[13]。

1.3玉米赤霉烯酮

玉米赤霉烯酮(zearalenone,ZEN,圖1C)又稱為F-2毒素,是黃色鐮刀菌(Fusariumculmorum)和禾谷鐮刀菌(F.graminearum)等鐮刀菌屬真菌的次級代謝產物。該毒素具有雌激素作用[18],主要作用于雌性動物生殖系統,引起繁殖機能異常甚至死亡,具有基因毒性和致癌性[18-19],免疫毒性[20]以及生殖毒性[21]。ZEN經動物攝入后,可代謝為玉米赤霉醇(zearalanol,ZAL)和玉米赤霉烯醇(zearalenol,ZEL)[22]。其中,α-ZAL曾廣泛用作家畜促生長劑[23],因其能引起乳腺癌,擾亂人體內分泌系統[24],被歐盟禁用于動物源食品,中國也禁止將其用于食品動物促生長[25]。歐盟規定未加工谷物(玉米除外)、面包以及嬰兒食品中ZEN的最大殘留限量分別為100、50.0、20.0 μg·kg-1[26]。中國則規定小麥及玉米中ZEN最大殘留限量為60.0 μg·kg-1[13]。

1.4T-2毒素

T-2毒素(圖1D)是一種單端孢霉烯族化合物(trichothecenes,TS),由擬分枝孢鐮刀菌(Fusariumsporotrichioides)和梨孢鐮刀菌(Fusarlumpoae)等鐮刀菌屬真菌代謝產生。T-2毒素能夠抑制DNA和蛋白質的合成[27-28],影響基因表達[29],具有生長抑制[30]和免疫抑制作用[10,31]。該毒素能導致蛋雞產蛋量下降,增加裂殼蛋和空腔病變發生率,還能引起豬的輕度腎病、甲狀腺縮小、胃黏膜增生及血液中白蛋白增加或其他血液指標變化[32]。有研究發現,T-2毒素可能與人類大骨節病所表現出的典型癥狀有關[33]。歐盟建議未加工燕麥、燕麥產品及嬰兒食品中T-2毒素的殘留限量分別為500、200、50.0 μg·kg-1[34]。

1.5脫氧雪腐鐮刀菌烯醇

脫氧雪腐鐮刀菌烯醇(deoxynivalenol,DON,圖1E)又稱嘔吐毒素(vomitoxin,VT),是一種單端孢霉烯族毒素,主要由禾谷鐮刀菌和粉紅鐮刀菌(Fusarlumroseum)代謝產生。人畜攝入過量被DON污染的食物后可引起中毒,表現出厭食和嘔吐等癥[35]。DON能抑制DNA和蛋白質的合成[36],具有生長抑制[37],免疫抑制[38],心臟毒性、致畸性[39]及神經毒性[40],對動物和人類危害巨大。歐盟規定未加工谷物、小麥和燕麥及嬰兒食品中,DON的最大殘留限量分別為1.25、1.75 mg·kg-1和200 μg·kg-1[26]。中國也對DON的最大殘留限量作了明確規定,玉米、小麥和大麥中DON最大殘留限量為1.00 mg·kg-1。

1.6伏馬菌素

伏馬菌素(fumonisin,FB,圖1F)是一類多氫醇和丙三羧酸的雙酯化合物,主要由串珠鐮刀菌(FusariummoniliformeSheld)和多育鐮刀菌(Fusariumproliferatum)代謝產生。FB與鞘脂類代謝過程中的神經鞘氨醇(sphingosine,So,圖1G)和二氫神經鞘氨醇(sphinganine,Sa,圖1H)的結構極為相似,是Sa N-酰基轉移酶(又稱神經酰胺合成酶)的有效抑制劑,能干擾鞘脂類代謝,引發疾病[41]。FB能引起馬腦軟化癥和豬肺水腫[42-43],具有肝毒性[44],而且與人類食管癌[45]和肝癌[46]有關,IARC將其列為人類可能的致癌物[47]。目前已發現的FB有15種以上,主要包括FA1、FA2、FB1、FB2、FB3、FB4和FC1,其中,FB1是最主要也是毒性最強的組分[48]。歐盟對某些食品中FB1和FB2總量的最大殘留限量作出規定,未加工玉米及嬰兒食品中分別為4.00 mg·kg-1和200 μg·kg-1[26]。

A.黃曲霉毒素;B.赭曲霉毒素;C.玉米赤霉烯酮;D.T-2毒素;E.脫氧雪腐鐮刀菌烯醇;F.伏馬菌素;G.神經鞘氨醇;H.二氫神經鞘氨醇A.Aflatoxin;B.Ochratoxins;C.Zearalenone;D.T-2 toxin;E.Deoxynivalenol;F.Fumonisin;G.Sphingosine;H.Sphinganine圖1 幾種主要霉菌毒素、神經鞘氨醇及二氫神經鞘氨醇的結構Fig.1 Structures of several main mycotoxins,sphingosine and sphinganine

2 霉菌毒素快速檢測技術

2.1生物傳感器法

生物傳感器(biosensor)是一種對生物物質具有選擇性和可逆性響應并能將其濃度轉換為電信號進行檢測的儀器(圖2A)。它主要由兩個元件組成:一個是生物學識別元件;另一個是與數據采集、處理系統相連接的信號轉換元件[49]。目前常用的生物識別元件主要有輔因子、酶、抗體、微生物、細胞器、組織和高等生物細胞等[50]。由于酶特有的靈敏性和特異性,應用最為廣泛[51],但其純化過程費時,且昂貴[52]。隨著抗體技術的應用,以抗體作為識別元件的生物傳感器(又稱免疫傳感器)逐漸興起。生物傳感器法具有選擇性好、響應快、靈敏度高、易于操作、高通量及適合現場檢測等優點[53]。此外,生物傳感器法的樣品前處理簡單易行,適合大批量樣品的多殘留快速分析檢測[54]。V.P.Nancy等[55]將多層碳納米管改良的玻璃碳電極與連續流動裝置相結合,設計成免疫傳感器,用于檢測玉米中ZEN,檢測過程僅需15.0 min,而且其檢測限和靈敏度都優于酶聯免疫吸附法(enzyme-linked immunosorbent assay,ELISA)。M.Mirasoli等[56]結合競爭的側流免疫測定法,建立了一種化學發光生物傳感器,對玉米中FB1和FB2進行檢測,LOD達到 2.50 μg·L-1,靈敏度較高,回收率為90.0%~115%,包括樣品前處理在內總耗時僅25.0 min。M.Masikini等[48]設計了一種基于多層碳納米管結合玻璃碳表面碲化鈀量子點的阻抗免疫傳感器,用于檢測玉米中FB1、FB2和FB3含量,LOD分別為14.0、11.0、11.0 μg·kg-1,滿足檢測需要。Z.Martina等[57]以AFB1和FB1偶聯BSA建立競爭性側流免疫測定法,結合便攜式電荷耦合元件,構建了一種多元化學發光生物傳感器,對玉米粉中AFB1及B族伏馬菌素進行檢測,LOD分別低于6.00和1.50 μg·kg-1,回收率為80.0%~115%,變異系數小于20.0%,檢測過程僅需30.0 min。

2.2酶聯免疫吸附法

酶聯免疫吸附法是利用酶(如HRP)標記抗原或抗體,與樣品中相應的抗體或抗原按不同的步驟與固相載體表面的抗原或抗體發生反應[58],如圖2B。以洗滌的方法使固相載體上形成的抗原抗體復合物與其他物質分開,最后結合在固相載體上的酶量與樣品中待測物的量成一定比例,然后利用復合物上標記的酶催化底物顯色,根據其顏色深淺對待測樣品中抗原或抗體的量進行判斷,是一種將酶的高效性與抗原抗體反應的特異性相結合的微量分析技術[59]。ELISA方法具有低成本、快速、操作簡單、便捷等優點,尤其適合現場檢測[60]。蔡齊超[61]采用肟化法在AFM1的分子結構上引入羧基,偶聯蛋白質后免疫小鼠,制備單克隆抗體并建立ELISA方法,IC50為3.68 ng·mL-1,奶粉中的添加回收率在89.0%~93.0%,變異系數均小于15.0%,準確度較高,但難以滿足多組分檢測需求。S.C.Pei等[62]以半抗原ZEN-CMO偶聯蛋白獲得單克隆抗體,建立了一種高通量篩選ELISA,IC50為1.79 ng·g-1,LOD達100 ng·kg-1,添加回收率為80.0%~128%,與β-ZEL、α-ZAL和β-ZAL的交叉反應率分別為24.1%、189%和43.9%,滿足多組分檢測需求。Y.Li等[63]合成了半抗原3-HS-T-2并與蛋白進行偶聯,制備單克隆抗體并建立了稻米中T-2毒素ELISA方法,LOD達5.80 μg·kg-1,回收率為72.0%~109%,但與其他毒素交叉反應率較低。H.M.Lee等[64]以DON-CDI作半抗原合成免疫原,經小鼠免疫獲得單克隆抗體,建立ELISA方法用于檢測豬飼料中DON,IC50為23.4 ng·mL-1,僅能用于DON檢測。S.Ling等[65]采用戊二醛法合成免疫原,免疫小鼠并制備單克隆抗體,建立了一種FB1ELISA 方法,IC50為32.0 ng·mL-1,LOD達1.00 ng·mL-1,平均回收率為 93.8% ± 6.90%,但與其他霉菌毒素交叉反應差。

2.3免疫層析法

免疫層析法(Immunochromatography)具有快速、簡便、成本低等優點,已被廣泛應用于臨床、食品、農業及環境等領域[66]。其原理是將抗體固定于硝化纖維素膜,當一端浸入樣品后,由于毛細管作用,樣品將向前移動,當移動至固定有抗體的區域時,樣品中相應抗原即與抗體發生特異性結合,根據顏色變化,實現對樣品的檢測分析[67],如圖2C。楊揚[68]采用活性酯法將OTA與BSA偶聯合成人工抗原,免疫小鼠制備單克隆抗體,并建立了一種OTA膠體金免疫層析法,LOD達到5.00 ng·mL-1,與其他毒素交叉反應率低。駱敏兒等[69]以人工抗原ZEN-CMO-OVA免疫小鼠,制備單克隆抗體并建立膠體金免疫層析法,對ZEN進行檢測,LOD為100 ng·mL-1,與β-ZEL和α-ZAL的交叉反應率僅為12.8%和1.30%,難以滿足多組分檢測需要。Y.Sun等[70]合成了半抗原ZEN-1,4-丁二醇縮水甘油醚,偶聯BSA免疫小鼠以獲得單克隆抗體,并建立了一種膠體金免疫層析法,用于檢測玉米中ZEN含量,LOD為20.0 μg·kg-1,與玉米赤霉酮的交叉反應率為53.1%,回收率達91.3%~97.1%。Z.Wang等[71]用熒光微球標記FB1單克隆抗體,以提高方法的靈敏度,建立了一種免疫層析法,用于玉米中FB1檢測,IC50為1.32 ng·mL-1,LOD達120 ng·L-1,與FB2和FB3的交叉反應率分別為1.50%和67.3%,回收率為91.4%~118%,滿足多組分檢測需要。

2.4熒光偏振免疫分析法

熒光偏振免疫分析法(fluorescence polarization immunoassay,FPIA)是一種均相、定量、競爭性免疫分析技術,其原理是基于熒光標記抗原(Tracer)在結合特異性抗體前后其熒光轉速及熒光偏振值(P值,1 P=1 000 mP)發生變化,用競爭性方法直接測定溶液中待測物含量[72]。FPIA的基本原理如圖2D所示。Tracer體積較小,在體系當中的布朗運動速度較快,產生的P值較小,一般為30~50 mP[73]。當樣品中不含待測物時,Tracer與抗體發生特異性結合,形成較大的抗原抗體復合物,運動速度變慢,P值升高,一般為150~300 mP[74]。若樣本中待測物濃度較高,待測物將與Tracer競爭有限的抗體結合位點,從而抑制Tracer與抗體的結合,多數Tracer將以游離的小分子形式存在于樣品中,P值便會降低,一般達到30~60 mP即認為達到完全抑制[75]。P值的大小與樣品中待測物濃度呈反比,通過測定待測物標準品后制作標準曲線,從標準曲線上可以精確地分析樣品中待測物的相應含量[76]。FPIA典型的標準曲線如圖3所示[77]。

A.生物傳感器;B.酶聯免疫吸附法;C.免疫層析法;D.熒光偏振免疫分析法A.Biosensor;B.Enzyme-linked immunosorbent assay;C.Immunochromatography;D.Fluorescence polarization immunoassay圖2 幾種基于抗體的免疫學快速檢測方法原理Fig.2 The principle of several antibody-based immunological rapid detection methods

圖3 熒光偏振免疫分析法的典型標準曲線Fig.3 The typical standard curve of fluorescence polarization immunoassay

FPIA操作過程簡單,僅僅是將特異性抗體、Tracer和樣品加入到反應體系中混勻,經過幾分鐘甚至是幾秒鐘的孵育便可測定熒光偏振光強度,從而快速獲得待測物濃度,適于大批量樣品分析[78]。即FPIA檢測時間僅取決于加樣過程和測定過程的時間,明顯縮短了檢測時間[75]。S.Y.Jie等[79]采用AFB1單克隆抗體,以熒光標記AFB1作為Tracer,建立了一種黃曲霉毒素類FPIA,對于AFB1的IC50和LOD分別是23.3、13.1 ng·mL-1,與AFB2、AFG1、AFG2、AFM1、AFM2的交叉反應率分別達到65.7%、143%、23.5%、111%、2.00%,檢測96個樣品總耗時少于5.00 min,適用于黃曲霉毒素類檢測。C.Li等[80]通過設計3種Tracer,與7種單克隆抗體組合篩選,建立了一種FPIA方法,用于檢測玉米中FB1和FB2,LOD分別為157、291 μg·kg-1,回收率為84.7%~93.6%,變異系數小于9.90%,是一種快速、高通量檢測方法。C.Li等[81]分別設計了3種Tracer,經TLC純化后與相應抗體組合,建立多路復用FPIA,對玉米中DON、T-2及FB1進行檢測,LOD分別為 242、17.8和332 μg·kg-1,回收率達76.5%~106%,變異系數小于21.7%。

2.5霉菌毒素混合污染免疫檢測技術

從霉菌毒素污染特點來看,傳統的單組分檢測技術已難以滿足檢測需求,快速、簡便、高靈敏度、高通量的多組分檢測技術將是今后霉菌毒素檢測技術發展的趨勢。李鑫[82]基于競爭性免疫層析反應原理,研制出具有三條檢測線的免疫層析試紙條,可同步檢測AFB1、OTA和ZEN,可視檢測限分別為0.250、0.500、1.00 ng·mL-1;首次建立了一種能同步檢測三種霉菌毒素的聚合物刷微陣列免疫芯片,對AFB1、OTA和ZEN的LOD分別為4.00、4.00、3.00 pg·mL-1,花生樣品的添加回收率達85.9%~109.2%。另外,基于混合抗體的免疫檢測技術,即在固相上包被混合或具有合適親和力的抗原,采用混合抗體對樣品中多種待測物進行定性和半定量檢測,已成功應用于小分子藥物的多殘留檢測。A.Strasser等[83]以葡萄糖氧化酶作載體蛋白,采用混合抗體酶免疫檢測法對牛奶中鏈霉素、磺胺嘧啶、磺胺甲嘧啶和氯唑西林進行檢測,LOD分別為14.0、20.0、13.0、1.70 ng·mL-1,低于最大殘留限量標準,能夠滿足檢測需要。謝煥龍等[84]基于孔雀石綠和隱孔雀石綠的高特異性單克隆抗體,采用混合抗體模式建立了可同時檢測兩種物質的ELISA方法,IC50為3.27 ng·mL-1,LOD達0.240 ng·mL-1,線性范圍為0.620~17.2 ng·mL-1。將該技術用于霉菌毒素多組分檢測是一種很好的發展方向。

3 影響霉菌毒素抗體質量的因素

抗體是指抗原刺激機體后,產生免疫反應,由機體漿細胞合成并分泌的能與抗原特異性結合的免疫球蛋白。抗原結構、動物免疫方法及免疫劑量均能對免疫反應造成影響。多克隆抗體是將抗原注射入實驗動物體內,免疫細胞會不同程度受到抗原刺激,產生不同類型的抗體,然后采集動物血清而獲得。單克隆抗體則需要提取針對特定抗原表位的B淋巴細胞,在體外與骨髓瘤細胞融合,然后對雜交瘤細胞進行培養,篩選出所需細胞群,通過體外或體內培養,從培養液或動物腹水中獲取抗體。

霉菌毒素為小分子化合物,不具備免疫原性,需要依靠分子中某些活性基團(如-COOH、-NH2)與相應載體連接構建人工抗原。因此,選擇適當的半抗原是制備理想抗體的關鍵。Y.Sun等[70]以ZEN-1,4-丁二醇縮水甘油醚作半抗原,偶聯BSA后免疫小鼠,所制備單克隆抗體IC50為1.12 ng·mL-1,與ZAL交叉反應率為53.1%,其他同類化合物小于4.00%;而李沐潔等[85]合成半抗原ZEN-CMO,以活潑酯法與BSA偶聯作免疫原,所得抗體IC50達22.9 pg·mL-1,與α-ZEL交叉反應率為95.0%,其他同類化合物也優于前者。半抗原設計中應盡量保留待測物的特征基團,還應具有一定的復雜性,如含苯環、雜環和支鏈或在待測物上連接二肽基團,可增強半抗原的特異性和免疫活性[78]。為突出待測物分子內特征基團,半抗原設計時常在特征結構和載之間引入一定長度的連接臂,目前認為以3~6 個碳原子的連接臂最佳[86]。連接臂太短,半抗原有可能被載體的空間位阻掩蓋而不利于其充分暴露,過長又會造成半抗原分子構型折疊[87],不利于產生特異性抗體。但Y.Sheng等[88]在制備FB1單克隆抗體過程中,設計合成了FB1-GA-BSA(5個C原子連接臂)、FB1-GA-OVA(5個C原子連接臂)、FB1-KLH(無連接臂)3種免疫原,其中以FB1-KLH免疫小鼠所得抗體效果最好,IC50為2.20 ng·mL-1,與FB2的交叉反應率154%。

載體的選擇在抗體生產過程中同樣至關重要,要綜合考慮分子量、活性基團、溶解度及來源、價格等因素。目前用于人工抗原合成的載體主要有蛋白質類,包括牛血清蛋白(BSA)、卵清蛋白(OVA)、鑰孔血藍蛋白(KLH)、人血清蛋白(HSA)、兔血清白蛋白(RSA)等;多肽聚合物,如多聚賴氨酸(PLL)等;大分子聚合物,主要有羧甲基纖維素、聚乙烯吡咯烷酮等[89]。最常用的為蛋白類載體。其中,BSA具有物化性質穩定、不易變性、價廉易得、結合為點較多等優點,最為常用;KLH分子上結合位點多,效果也好,但較昂貴;OVA與半抗原合成的免疫原,免疫后在動物體內易脫落,免疫效果不確實。此外,半抗原與載體蛋白的偶聯比等因素,同樣影響抗體生產[90]。

4 總結與展望

霉菌毒素是造成食品安全問題的重要因素,建立快速、準確測定飼料及畜禽產品中霉菌毒素的方法顯得至關重要。基于抗體的快速檢測方法簡單易行,具有檢測速度快、特異性強等優點,在飼料及畜禽產品中霉菌毒素快速檢測領域應用前景廣闊。由于霉菌毒素污染大多是幾種不同毒素同時存在,而目前市場上所應用的快速檢測技術多數難以滿足同時檢測多種霉菌毒素的要求。因此,未來霉菌毒素快速檢測技術將有兩個重要研究方向:一是制備可識別多種霉菌毒素的抗體;二是建立混合污染免疫檢測技術。

[1]RICHARD J L.Some major mycotoxins and their mycotoxicoses--an overview[J].IntJFoodMicrobiol,2007,119(1-2):3-10.

[2]AKANDE K E,ABUBAKAR M M,ADEGBOLA T A,et al.Nutritional and health implications of mycotoxins in animal feeds:a review[J].PakistanJNutr,2006,5(5):398-403.

[3]SULYOK M,BERTHILLER F,KRSKA R,et al.Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize[J].RapidCommunMassSpectrom,2006,20(18):2649-2659.

[4]CAST.Mycotoxins:risks in plant,animal and human Systems[S].TaskForceReportNo139,Ames,Iowa (USA),January,2003.

[5]KINSELLA B,O’MAHONY J,MALONE E,et al.Current trends in sample preparation for growth promoter and veterinary drug residue analysis[J].JChromatogrA,2009,1216(46):7977-8015.

[6]WANG Y,WENJUAN T,WANG C C,et al.Aflatoxin B1augments the synthesis of corticotropin releasing hormone in JEG-3 placental cells[J].ChemBiolInteract,2015,237:73-79.

[7]ZHANG J,ZHENG N,LIU J,et al.Aflatoxin B1and aflatoxin M1induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells[J].FoodChemToxicol,2015,83:54-60.

[8]LANYASUNYA T P,WAMAE L W,MUSA H H,et al.The risk of mycotoxins contamination of dairy feed and milk on smallholder dairy farms in Kenya[J].PakistanJNutr,2005,4(3):162-169.

[9]LIU B H,YU F Y,CHAN M H,et al.The effects of mycotoxins,fumonisin B1and aflatoxin B1,on primary swine alveolar macrophages[J].ToxicolApplPharmacol,2002,180(3):197-204.

[10]KANORA A,MAES D.The role of mycotoxins in pig reproduction:a review[J].VetMed,2009,54(12):565-576

[11]EC.Commission regulation (EU) No.165/2010 amending regulation (EC) No.1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins.[S].Off J Eur Union,2010,L 50:8-12.

[12]EC.Commission regulation (EU) No.1881/2006 of 19 december 2006 setting maximum levels for certain contaminants in foodstuffs[S].Off J Eur Union 2006,L 364:5-24.

[13]食品安全國家標準.GB 2761-2011 食品中真菌毒素限量[S].2011.

GB.GB 2761-2011 Standard of Mycotoxins in Food[S].2011.(in Chinese)

[14]SOLERI R,DEMEY H,TRIA S A,et al.Peptide conjugated chitosan foam as a novel approach for capture-purification and rapid detection of hapten——example of ochratoxin A[J].BiosensBioelectron,2015,67:634-641.

[15]MANTLE P G,FAUCET-MARQUIS V,MANDERVILLE R A,et al.Structures of covalent adducts between DNA and ochratoxin a:a new factor in debate about genotoxicity and human risk assessment[J].ChemResToxicol,2010,23(1):89-98.

[16]CARIDDI L N,SABINI M C,ESCOBAR F M,et al.Polyphenols as possible bioprotectors against cytotoxicity and DNA damage induced by ochratoxin A[J].EnvironToxicolPharmacol,2015,39(3):1008-1018.

[17]KROGH P.Role of ochratoxin in disease causation[J].FoodChemToxicol,1992,30(3):213-224.

[18]WANG Y K,ZOU Q,SUN J H,et al.Screening of single-stranded DNA (ssDNA) aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn[J].JAgrFoodChem,2015,63(1):136-141.

[19]OUANES Z,ABID S,AYED I,et al.Induction of micronuclei by zearalenone in Vero monkey kidney cells and in bone marrow cells of mice:protective effect of vitamin E[J].MutatRes,2003,538(1-2):63-70.

[20]VLATA Z,PORICHIS F,TZANAKAKIS G,et al.A study of zearalenone cytotoxicity on human peripheral blood mononuclear cells[J].ToxicolLett,2006,165(3):274-281.

[21]COLLINS T F,SPRANDO R L,BLACK T N,et al.Effects of zearalenone on in utero development in rats[J].FoodChemToxicol,2006,44(9):1455-1465.

[22]DONG M,HE X J,TULAYAKUL P,et al.The toxic effects and fate of intravenously administered zearalenone in goats[J].Toxicon,2010,55(2-3):523-530.

[23]VALENZUELA-GRIJALVA N V,GONZLEZ-RIOS H,ISLAVA T Y,et al.Changes in intramuscular fat,fatty acid profile and cholesterol content induced by zeranol implantation strategy in hair lambs[J].JSciFoodAgric,2012,92(7):1362-1367.

[24]MATRASZEK-ZUCHOWSKA I,WOZNIAK B,ZMUDZKI J.Determination of zeranol,taleranol,zearalanone,α-zearalenol,β-zearalenol and zearalenone in urine by LC-MS/MS[J].FoodAdditContamA,2013,30(6):987-994.

[25]劉媛,劉賢進,余向陽,等.玉米赤霉醇酶標抗原的制備及其直接和間接競爭ELISA檢測方法的建立與比較[J].分析科學學報,2008,24(2):141-144.

LIU Y,LIU X J,YU X Y,et al.Synthesis of enzyme labeled antigens and establishment of direct competitive ELISA and indirect competitive ELISA methods for zeranol[J].JournlofAnalyticlScience,2008,24(2):141-144.(in Chinese)

[26]EC.Commission regulation (EU) No.1126/2007 of 28 september 2007 amending regulation (EC) No.1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards fusarium toxins in maize and maize products[S].OffJEurUnion,2007,L 255:14-17.

[28]KALANTARI H,MOOSAVI M.Review on T-2 toxin[J].JundishapurJNatPharmPro,2010,5(1):26-38

[29]YANG J Y,ZHANG Y F,MENG X P,et al.T-2 toxin inhibits gene expression and activity of key steroidogenesis enzymes in mouse Leydig cells[J].ToxicolInVitro,2015,29(5):1166-1171.

[30]LI Y,WANG Z,BEIER R C,et al.T-2 toxin,a trichothecene mycotoxin:review of toxicity,metabolism,and analytical methods[J].JAgricFoodChem,2011,59(8):3441-3453.

[31]WAN Q,WU G,HE Q,et al.The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique[J].MolBiosyst,2015,11(3):882-891.

[32]JECFA.Safety evaluation of certain mycotoxins in food:fifty-sixth report of the Joint FAO/WHO Expert Committee on food additives[R].WorldHealthOrganTechRepSer906.Geneva, Switzerland,2002,1-62.

[33]LI Y,WANG Z,BEIER R C,et al.T-2 toxin,a trichothecene mycotoxin:review of toxicity,metabolism,and analytical methods[J].JAgrFoodChem,2011,59(8):3441-3453.

[34]EDWARDS S G,BARRIER-GUILLOT B,CLASEN P E,et al.Emerging issues of HT-2 and T-2 toxins in European cereal production[J].WorldMycotoxinJ,2009,2(2):173-179.

[35]NAEF A,SENATORE M,DéFAGO G.A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of fusarium graminearum DON production in the saprophytic competition with trichoderma atroviride in maize tissue microcosms[J].FemsMicrobiolEcol,2006,55(2):211-220.

[36]JI F,LI H,XU J,et al.Enzyme-linked immunosorbent-assay for deoxynivalenol (DON)[J].Toxins(Basel),2011,3(8):968-978.

[37]PESTKA J J.Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol[J].WorldMycotoxinJ,2010,3(3):323-347.

[38]SOBROVA P,ADAM V,VASATKOVA A,et al.Deoxynivalenol and its toxicity[J].InterdiscipToxicol,2010,3(3):94-99.

[39]LI Y,LIU G,FU X,et al.High-sensitive chemiluminescent ELISA method investigation for the determination of deoxynivalenol in rice[J].FoodAnalMethod,2015,8(3):656-660.

[40]ROTTER B A,PRELUSKY D B,PESTKA J J.Toxicology of deoxynivalenol (vomitoxin)[J].JToxicolEnvironHealth,1996,48(1):1-34.

[41]MERRILL A H J,SULLARDS M C,WANG E,et al.Sphingolipid metabolism:roles in signal transduction and disruption by fumonisins[J].EnvironHealthPerspect,2001,109(Suppl 2):283-289.

[42]SEGVIC M,PEPELJNJAK S.Fumonisins and their effects on animal health-a brief review[J].VetArhiv,2001,71(5):299-323.

[43]WANG J H,ZHANG J B,LI H P,et al.Molecular identification,mycotoxin production and comparative pathogenicity of fusarium temperatumIsolated from maize in China[J].JPhytopathol,2014,162(3):147-157.

[44]GELDERBLOM W C,ABEL S,SMUTS C M,et al.Fumonisin induced hepatocarcinogene-sis:mechanisms related to cancer initiation and promotion[J].EnvironHealthPerspect,2001,109(Suppl 2):291-300.

[45]SUN G,WANG S,HU X,et al.Fumonisin B1contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China[J].FoodAdditContam,2007,24(2):181-185.

[46]UENO Y,IIJIMA K,WANG S D,et al.Fumonisins as a possible contributory risk factor for primary liver cancer:a 3-year study of corn harvested in Haimen,China,by HPLC and ELISA[J].FoodChemToxicol,1997,35(12):1143-1150.

[47]IARC.Traditional herbal medicines,some mycotoxins,napthalene,and styrene[R].IARCMonographsontheEvaluationofCarcinogenicRiskstoHumans,2002,82-171.

[48]MASIKINI M,MAILU S N,TSEGAYE A,et al.A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots[J].Sensors(Basel),2015,15(1):529-546.

[49]PATEL P D.(Bio)sensors for measurement of analytes implicated in food safety:a review[J].TracTrendAnalChem,2002,21(2):96-115.

[50]LEI Y,CHEN W,MULCHANDANI A.Microbial biosensors[J].AnalChimActa,2006,568(1-2):200-210.

[51]D’SOUZA S F.Microbial biosensors[J].BiosensBioelectron,2001,16(6):337-353.

[52]SU L,JIA W,HOU C,et al.Microbial biosensors:a review[J].BiosensBioelectron,2011,26(5):1788-1799.

[53]TOLDRA F,REIG M.Methods for rapid detection of chemical and veterinary drug residues in animal foods[J].TrendsFoodSciTech,2006,17(9):482-489.

[54]REDER-CHRIST K,BENDAS G.Biosensor applications in the field of antibiotic research-a review of recent developments[J].Sensors(Basel),2011,11(12):9450-9466.

[55]NANCY V P,FRANCO A B,ELOY S.Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems[J].BiochemEngJ,2010,51(1-2):7-13.

[56]MIRASOLI M,BURAGINA A,DOLCI L S,et al.Chemiluminescence-based biosensor for fumonisins quantitative detection in maize samples[J].BiosensBioelectron,2012,32(1):283-287.

[57]MARTINA Z,FABIO D N,LAURA A,et al.A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1quantitative detection in maize flour[J].Analyst,2015,140(1):358-365.

[58]MU H,WANG B,XU Z,et al.Stereospecific recognition and quantitative structure-activity relationship between antibodies and enantiomers:ofloxacin as a model hapten[J].Analyst,2015,140(4):1037-1045.

[59]XU Z,ZHENG L,YIN Y,et al.A sensitive competitive enzyme immunoassay for detection of erythrosine in foodstuffs[J].FoodControl,2015,47:472-477.

[60]ZHANG B,DU D,MENG M,et al.Determination of amaranth in beverage by indirect competitive enzyme-linked immunosorbent assay (ELISA) based on anti-amaranth monoclonal antibody[J].FoodAnalMethod,2013,7(7):1498-1505.

[61]蔡齊超.黃曲霉毒素M1免疫學快速檢測方法的研究[D].鄭州:河南科技大學,2014.

CAI Q C.Study of aflatoxin M1immunological rapid detection method[D].Zhengzhou:Henan University of Science and Technology,2014.(in Chinese)

[62]PEI S C,LEE W J,ZHANG G P,et al.Development of anti-zearalenone monoclonal antibody and detection of zearalenone in corn products from China by ELISA[J].FoodControl,2013,31(1):65-70.

[63]LI Y,LUO X,YANG S,et al.High specific monoclonal antibody production and development of an ELISA method for monitoring T-2 toxin in rice[J].JAgricFoodChem,2014,62(7):1492-1497.

[64]LEE H M,SONG S O,CHA S H,et al.Development of a monoclonal antibody against deoxynivalenol for magnetic nanoparticle-based extraction and an enzyme-linked immunosorbent assay[J].JVetSci,2013,14(2):143-150.

[65]LING S,PANG J,YU J,et al.Preparation and identification of monoclonal antibody against fumonisin B1and development of detection by Ic-ELISA[J].Toxicon,2014,80(3):64-72.

[66]GIROTTI S,EREMIN S,MONTOYA A,et al.Development of a chemiluminescent ELISA and a colloidal gold-based LFIA for TNT detection[J].AnalBioanalChem,2009,396(2):687-695.

[67]NESTERENKO I S,NOKEL M A,EREMIN S A.Immunochemical methods for the detection of sulfanylamide drugs[J].JAnalChem,2009,64(5):435-444.

[68]楊揚.赭曲霉毒素A的單克隆抗體制備及膠體金檢測方法研究[D].北京:北京農學院,2012.

YANG Y.Preparation of monoclonal antibodies of ochratoxin A and research on colloidal gold detecting technology[D].Beijing:Beijing Agriculture College,2012.(in Chinese)

[69]駱敏兒,唐勇,向軍儉,等.玉米赤霉烯酮單克隆抗體的制備及膠體金免疫層析法的建立[J].細胞與分析免疫學雜志,2013,29(7):729-733.

LUO M E,TANG Y,XIANG J J,et al.Preparation of anti-zearalenone monoclonal antibody and preliminary establishment of colloidal gold immunochromatographic assay for zearalenone[J].XiBaoYuFenZiMianYiXueZaZhi,2013,29(7):729-733.(in Chinese)

[70]SUN Y,HU X,ZHANG Y,et al.Development of an immunochromatographic strip test for the rapid detection of zearalenone in corn[J].JAgricFoodChem,2014,62(46):11116-11121.

[71]WANG Z,LI H,LI C,et al.Development and application of a quantitative fluorescence-based immunochromatographic assay for fumonisin B1in maize[J].JAgricFoodChem,2014,62(27):6294-6298.

[72]OBERLEITNER L,EREMIN S A,LEHMANN A,et al.Fluorescence polarization immunoassays for carbamazepine-comparison of tracers and formats[J].AnalMethods,2015,7(14):5854-5861.

[73]米鐵軍.動物性食品中喹諾酮類藥物殘留的熒光偏振免疫分析研究[D].北京:中國農業大學,2013.

MI T J.Fluorescence polarization immunoassays for determination of quinolones residue in animal-origin foods[D].Beijing:China Agricultural University,2013.(in Chinese)

[74]王戰輝.動物性產品中磺胺類和喹諾酮類等獸藥殘留的免疫分析檢測技術研究[D].北京:中國農業大學,2007.

WANG Z H.Immunoassay techniques for determination of sulfonamides and fluoroquinolones residue in animal products[D].Beijing:China Agricultural University,2007.(in Chinese)

[75]王戰輝,張素霞,沈建忠,等.熒光偏振免疫分析在農藥和獸藥殘留檢測中的研究進展[J].光譜學與光譜分析,2007,27(11):2299-2306.

WANG Z H,ZHANG S X,SHEN J Z,et al.Development of fluorescence polarization immunoassay for determination of pesticides and veterinary drugs[J].SpectroscopyandSpectralAnalysis,2007,27(11):2299-2306.(in Chinese)

[76]袁利鵬,楊金易,徐振林,等.熒光偏振免疫分析法檢測沙丁胺醇[J].食品科學,2013,34(16):139-142.

YUAN L P,YANG J Y,Xu Z L,et al.Flurescence polarization immunoassay for the detection of salbutamol[J].FoodScience,2013,34(16):139-142.(in Chinese)

[77]SMITH D S,EREMIN S A.Fluorescence polarization immunoassays and related methods for simple,high-throughput screening of small molecules[J].AnalBioanalChem,2008,391(5):1499-1507.

[78]薛鋼,雷紅濤,吳青,等.熒光偏振免疫分析技術研究進展[J].食品工業科技,2008,29(3):289-292.

XUE G,LEI H T,WU Q,et al.Research progress of fluorescence polarization immunoassay[J].ScienceandTechnologyofFoodIndustry,2008,29(03):289-292.(in Chinese)

[79]JIE S Y,SERGEI E,JUN M T,et al.The Development of a fluorescence polarization immunoassay for aflatoxin detection[J].BiomedEnvironSci,2014,27(2):126-129.

[80]LI C,MI T,CONTI G O,et al.Development of a screening fluorescence polarization immunoassay for the simultaneous detection of fumonisins B1and B2in maize[J].JAgricFoodChem,2015,63(20):4940-4946.

[81]LI C,WEN K,MI T,et al.A universal multi-wavelength fluorescence polarization immunoassay for multiplexed detection of mycotoxins in maize[J].BiosensBioelectron,2015,79:258-265.

[82]李鑫.基于免疫分析的農產品真菌毒素混合污染同步檢測技術研究[D].武漢:中國農業科學院,2014.

LI X.Immunoanalysis based simultaneous detection of mycotoxins composite contamination in agro-products[D].Wuhan:Chinese Academy of Agricultural Sciences,2014.(in Chinese)

[83]STRASSER A,DIETRICH R,USLEBER E,et al.Immunochemical rapid test for multiresidue analysis of antimicrobial drugs in milk using monoclonal antibodies and hapten-glucose oxidase conjugates[J].AnalChimActa,2003,495(1-2):11-19.

[84]謝煥龍,王宇,徐振林,等.基于混合抗體的酶聯免疫分析方法同時檢測孔雀石綠和隱孔雀石綠[J].現代食品科技,2015,31(12):325-330.

XIE H L,WANG Y,XU Z L,et al.Simultaneous detection of malachite green and leucomalachite green based on hybrid antibody ELISA analysis method[J].ModernFoodScienceandTechnology,2015,31(12):325-330.(in Chinese)

[85]李沐潔,張明洲,奚茜,等.玉米赤霉烯酮單克隆抗體制備及免疫分析[J].中國食品學報,2013,13(1):145-152.

LI M J,ZHANG M Z,XI X,et al.Preparation of monoclonal antibody and detection of zearalenone by enzyme-linked immunosorbent assay[J].JournalofChineseInstituteofFoodScienceandTechnology,2013,13(1):145-152.(in Chinese)

[86]KIM Y J,CHO Y A,LEE H S,et al.Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion[J].AnalChimActa,2003,494(1-2):29-40.

[87]張澤英,袁宗輝.獸藥人工抗原合成的研究進展[J].中國獸藥雜志,2006,40(5):44-47.

ZHANG Z Y,YUAN Z H.Research progress on synthesis of artificial antigens for veterinary drugs[J].ChineseJournalofVeterinaryDrug,2006,40(5):44-47.(in Chinese)

[88]SHENG Y,JIANG W,DE SAEGER S,et al.Development of a sensitive enzyme-linked immunosorbent assay for the detection of fumonisin B1in maize[J].Toxicon,2012,60(7):1245-1250.

[89]徐加發,成義祥,沈萍萍.半抗原設計合成研究進展[J].江蘇農業學報,2009,25(5):1178-1182.

XU J F,CHENG Y X,SHEN P P.Research progress on dsign and synthesis of hapten[J].JiangsuJournalofAgriculturalSciences,2009,25(5):1178-1182.(in Chinese)

[90]宋娟,王榕妹,王悅秋,等.半抗原的設計、修飾及人工抗原的制備[J].分析化學,2010,38(8):1211-1218.

SONG J,WANG R M,WANG Y Q,et al.Hapten design,modification and preparation of atificial antigens[J].ChineseJournalofAnalyticalChemistry,2010,38(8):1211-1218.(in Chinese)

(編輯白永平)

Research Progress on the Rapid Detection Technology of Mycotoxins in Feeds and Animal Products

DONG Guo-liang1,3,PENG Da-peng1,2,3*,HAN Xiao-ya1,3,LIU Zhen-li1,2,3,YUAN Zong-hui1,2,3

(1.NationalReferenceLaboratoryofVeterinaryDrugResidues(HZAU),TheKeyLaboratoryfortheDetectionofVeterinaryDrugResiduesofMinistryofAgriculture,Wuhan430070,China;2.LaboratoryofQuality&SafetyRiskAssessmentforLivestockandPoultryProducts(Wuhan)ofMinistryofAgriculture,Wuhan430070,China;3.CollegeofVeterinaryMedicine,HuazhongAgriculturalUniversity,Wuhan430070,China)

Mycotoxins are secondary metabolites of some fungi that distributed widely in nature,especially in feedstuffs and animal products,with great harm to animals and humans.This review introduces several mycotoxins that commonly presents in feedstuffs and animal products and their risks to animals and humans,summarizes the research progress on the rapid detection technology of mycotoxins,analyzes the main influence factors of antibody preparation against mycotoxins,and prospects the further development of the rapid detection technology of mycotoxins as well.

mycotoxin;rapid detection technology;antibody

10.11843/j.issn.0366-6964.2016.09.003

2016-05-10

青年教師科技創新專項(2662015QC030)

董國良(1990-),男,山東莒縣人,碩士生,主要從事獸藥殘留與食品安全研究, E-mail:dgl@webmail.hzau.edu.cn

彭大鵬(1977-),男,副教授,碩導,主要從事獸藥殘留與食品安全研究,E-mail:pengdapeng@mail.hzau.edu.cn

S859.8

A

0366-6964(2016)09-1757-11

猜你喜歡
檢測
QC 檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
“幾何圖形”檢測題
“角”檢測題
“有理數的乘除法”檢測題
“有理數”檢測題
“角”檢測題
“幾何圖形”檢測題
主站蜘蛛池模板: 欧美区日韩区| 亚洲高清无在码在线无弹窗| 亚洲第一视频网| Jizz国产色系免费| 色丁丁毛片在线观看| 伊人久久大香线蕉成人综合网| 一级毛片免费观看久| 国产区在线观看视频| 午夜免费视频网站| 精品91在线| 国产视频资源在线观看| 欧美视频在线播放观看免费福利资源 | 中国成人在线视频| 色香蕉影院| 日本欧美成人免费| 国产91视频免费观看| 在线看AV天堂| 国产男女XX00免费观看| 亚洲永久色| 91亚洲免费视频| 欧美精品亚洲日韩a| 毛片a级毛片免费观看免下载| 精品亚洲欧美中文字幕在线看| 欧美日韩专区| 中文字幕在线播放不卡| 99无码熟妇丰满人妻啪啪 | 亚洲欧洲免费视频| 国产亚洲一区二区三区在线| 成人在线天堂| 亚洲无线视频| 精品国产三级在线观看| 秋霞午夜国产精品成人片| 欧美日韩激情在线| 热re99久久精品国99热| 在线欧美日韩| 日韩视频福利| 日韩一区精品视频一区二区| 国产综合精品日本亚洲777| 亚洲日本在线免费观看| 蜜芽一区二区国产精品| 伊人无码视屏| 欧美日本视频在线观看| 欧美三级日韩三级| 91美女视频在线| 真人免费一级毛片一区二区| 69av免费视频| 国产自在自线午夜精品视频| 91在线视频福利| 91精品人妻互换| 韩日无码在线不卡| 成人91在线| 国产爽爽视频| 亚洲精品在线影院| 国产小视频免费观看| 91热爆在线| 亚洲日韩AV无码精品| 免费高清a毛片| 2020国产精品视频| 亚洲综合色婷婷中文字幕| 爱色欧美亚洲综合图区| 亚洲视频四区| 国产精品女同一区三区五区| 日韩成人午夜| 欧美日韩亚洲综合在线观看| 国产精品美女免费视频大全| 粉嫩国产白浆在线观看| 99在线视频精品| 国产精品高清国产三级囯产AV| 国产一级毛片网站| 美女无遮挡免费视频网站| 亚洲一级无毛片无码在线免费视频| 免费在线一区| 她的性爱视频| 久久免费精品琪琪| 国产精品无码一区二区桃花视频| 欧美va亚洲va香蕉在线| 免费一级全黄少妇性色生活片| 国产福利微拍精品一区二区| 国模粉嫩小泬视频在线观看| 国产在线观看一区二区三区| 狠狠亚洲婷婷综合色香| 秘书高跟黑色丝袜国产91在线|