張 丹,王 玲,劉 曉,闞云超,李丹丹
(南陽(yáng)師范學(xué)院 河南省伏牛山昆蟲(chóng)生物學(xué)重點(diǎn)實(shí)驗(yàn)室,河南南陽(yáng) 473061)
?
玉米AGO基因在籽粒發(fā)育過(guò)程中的表達(dá)分析
張丹,王玲,劉曉,闞云超,李丹丹*
(南陽(yáng)師范學(xué)院 河南省伏牛山昆蟲(chóng)生物學(xué)重點(diǎn)實(shí)驗(yàn)室,河南南陽(yáng) 473061)
以玉米自交系‘昌7-2’授粉后4個(gè)時(shí)間點(diǎn)(授粉后7、10、14和20 d)的籽粒總RNA為研究對(duì)象,采用實(shí)時(shí)熒光定量PCR技術(shù),對(duì)玉米中5個(gè)Argonaute(AGO)蛋白家族基因(AGO1、AGO2、AGO4、AGO10和AGO18)在籽粒不同發(fā)育時(shí)期的表達(dá)譜進(jìn)行了研究。結(jié)果表明:AGO1和AGO2在籽粒發(fā)育過(guò)程中呈現(xiàn)一致的表達(dá)趨勢(shì),在授粉后7 d的籽粒中表達(dá)量最高,從授粉后7 d到20 d呈持續(xù)下降的趨勢(shì)。AGO4、AGO10和AGO18具有一致的表達(dá)趨勢(shì),均呈現(xiàn)先下降后上升的趨勢(shì),在授粉后10 d的籽粒中表達(dá)量最低。結(jié)合實(shí)驗(yàn)室前期獲得的miRNA在玉米籽粒不同發(fā)育階段的表達(dá)譜,發(fā)現(xiàn)不同AGO家族基因可協(xié)助其靶標(biāo)miRNA參與玉米籽粒發(fā)育調(diào)控。
玉米;籽粒;AGO基因;表達(dá)譜
miRNA可參與生物的生長(zhǎng)、分化、增殖和脅迫反應(yīng)等一系列生物學(xué)過(guò)程[1]。miRNA和Argonaute(AGO)蛋白家族形成RNA-induced silencing complex(RISC),從而調(diào)節(jié)序列特異性靶基因沉默或翻譯抑制[2-3]。AGO蛋白是RISC的功能核心,具有高度保守性。AGO蛋白由N末端、PAZ、MID和PIWI 4個(gè)結(jié)構(gòu)域組成。PAZ區(qū)能非序列特異性識(shí)別結(jié)合雙鏈小RNA 3′端2個(gè)核苷酸,MID與PIWI界面處的“保守口袋”識(shí)別結(jié)合小RNA 5′端第一位核苷酸,PIWI區(qū)具有切割mRNA的催化中心[4]。植物中AGO蛋白和miRNA共同參與維持基因組的穩(wěn)定、調(diào)控組織發(fā)育、響應(yīng)逆境適應(yīng)性應(yīng)答、在RNA層面對(duì)入侵核酸(轉(zhuǎn)基因質(zhì)粒和植物病毒)的免疫、對(duì)靶mRNA進(jìn)行切割或翻譯水平的抑制,以及在轉(zhuǎn)錄或轉(zhuǎn)錄后水平上控制轉(zhuǎn)座元件的移動(dòng)等[5-7]。目前,在擬南芥中發(fā)現(xiàn)AGO蛋白10個(gè)[8],大豆中發(fā)現(xiàn)22個(gè)[9],水稻中19個(gè)[10],玉米中18個(gè)[11-12]。所有的開(kāi)花植物的AGO蛋白家族可以歸為3個(gè)大類(lèi):AGO1/5/10家族、AGO2/3/7家族和AGO4/6/8/9家族,AGO18是與AGO1/5/10 大類(lèi)親緣關(guān)系較近的一個(gè)分支[8,13]。
在擬南芥中,AGO1主要參與植物的生長(zhǎng)發(fā)育調(diào)控和脅迫反應(yīng)[14],AGO2參與植物的抗菌和病毒防御活動(dòng)[15],AGO4調(diào)控RNA介導(dǎo)DNA甲基化信號(hào)通路以及與內(nèi)源的siRNAs結(jié)合導(dǎo)致基因沉默[16],AGO5調(diào)控雌配子體發(fā)生和RNA沉默[17],AGO6參與調(diào)控tasiRNA的甲基化、轉(zhuǎn)座子的轉(zhuǎn)錄活性和分生組織的根除[18],AGO7主要參與植物葉的發(fā)育以及維持分生組織以及植物從幼嫩到成熟生長(zhǎng)階段的過(guò)渡[19],AGO9和韌皮部生殖細(xì)胞的分化抑制和DNA修復(fù)有關(guān)[6],AGO10調(diào)控植物的頂端分生組織[20]。玉米18個(gè)AGO家族蛋白可歸屬在5個(gè)大類(lèi)中,AGO1、MEL1/AGO5、ZIPPY/AGO7、AGO4和AGO18[11]。AGO9歸在AGO4家族中,參與生殖細(xì)胞中體壁細(xì)胞的分化[21],AGO18參與生殖細(xì)胞的發(fā)展[12]。
玉米是世界上重要的糧食作物和飼料作物,目前在miRbase數(shù)據(jù)庫(kù)中收錄的玉米成熟miRNA序列有321條,它們參與到玉米的新陳代謝的各個(gè)過(guò)程中[22-28]。對(duì)miRNA功能的解析離不開(kāi)對(duì)AGO基因功能的探索。但是目前關(guān)于玉米AGO基因的表達(dá)譜及功能研究并不多。因此,我們?cè)谇捌趯?duì)玉米籽粒發(fā)育過(guò)程的miRNA深入研究的基礎(chǔ)上[29],選取河南省普遍種植的玉米自交系‘昌7-2’為研究對(duì)象,選取5個(gè)AGO蛋白大類(lèi)中的代表性AGO基因(AGO1、AGO2、AGO4、AGO10和AGO18),研究其在玉米授粉后不同天數(shù)(7、10、14和20 d)的表達(dá)譜,為探索AGO基因和miRNA協(xié)同調(diào)控玉米籽粒的形成機(jī)制奠定基礎(chǔ)。
1.1材料
以河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院提供的玉米自交系‘昌7-2’為試驗(yàn)材料,分別取授粉后7、10、14和20 d的籽粒,置于液氮中研磨,TRIzol(ThermoFisher Scientific)法提取總RNA。

表1 Real-time PCR所用引物Table 1 Primer sets for real-time PCR
1.2方法
1.2.1AGO基因的克隆與測(cè)序取玉米籽粒總RNA 2 μg,使用反轉(zhuǎn)錄試劑盒(Takara)進(jìn)行cDNA的合成。利用表1所列引物及高保真酶擴(kuò)增6個(gè)AGO基因。PCR產(chǎn)物采用DNA凝膠回收試劑盒(Axygen)回收,將回收的目的片段連接PMD-19 T easy載體(Takara),轉(zhuǎn)化大腸桿菌,挑取陽(yáng)性克隆,送北京奧科鼎盛生物技術(shù)有限公司進(jìn)行測(cè)序,測(cè)序結(jié)果用DNAMAN進(jìn)行序列比對(duì)。
1.2.2實(shí)時(shí)熒光定量PCR (Real-time PCR)取玉米授粉后不同時(shí)期籽粒的總RNA 2 μg,使用反轉(zhuǎn)錄試劑盒(Takara)進(jìn)行cDNA的合成。采用FastStart Universal SYBR Green熒光定量PCR試劑盒(Roche)進(jìn)行Real-time PCR。PCR 反應(yīng)條件為:95 ℃ 變性15 s,58 ℃ 退火30 s,72 ℃ 延伸30 s,40個(gè)循環(huán)。PCR引物如表1所示,tubulin為內(nèi)參基因,滅菌雙蒸水模板為陰性對(duì)照。PCR結(jié)果采用2-ΔΔCt法計(jì)算相對(duì)表達(dá)量。
選擇玉米自交系‘昌7-2’授粉后7、10、14和20 d的籽粒為研究對(duì)象,利用TRIzol法提取總RNA,通過(guò)瓊脂糖凝膠檢測(cè)RNA質(zhì)量(圖1)。結(jié)果顯示,所提RNA無(wú)基因組污染,28S和18S條帶清晰,OD260/OD280在1.8~2.0之間,表明RNA完整,蛋白污染較少,可用于后續(xù)實(shí)驗(yàn)。
利用玉米B73基因組數(shù)據(jù)庫(kù)中得到的5個(gè)AGO基因序列設(shè)計(jì)引物,通過(guò)高保真酶在玉米自交系‘昌7-2’中擴(kuò)增相應(yīng)的AGO基因,得到AGO1、AGO2、AGO4、AGO10和AGO18均有單一的擴(kuò)增產(chǎn)物,且無(wú)引物二聚體污染(圖2),通過(guò)測(cè)序鑒定發(fā)現(xiàn),‘昌7-2’中擴(kuò)增到的AGO2和AGO10基因片段與B73中對(duì)應(yīng)的基因序列完全相同,AGO4和AGO18與B73僅差別1個(gè)堿基,AGO1擴(kuò)到的為AGO1a-like基因AC199001.3_FG005,與AGO1一致性為88.8%,與B73中對(duì)應(yīng)的基因差別僅1個(gè)堿基(圖3)。表明在‘昌7-2’中擴(kuò)增的為真實(shí)的AGO家族目的基因。
為了獲得AGO基因在玉米授粉后籽粒中的表達(dá)譜,選取授粉后7、10、14和20 d的籽粒總RNA為研究對(duì)象,采用實(shí)時(shí)熒光定量PCR方法檢測(cè)不同AGO基因在籽粒發(fā)育過(guò)程中的表達(dá)水平。結(jié)果如圖4所示,AGO1、AGO2、AGO4、AGO10和AGO18在玉米籽粒形成過(guò)程中均有表達(dá)。AGO1和AGO2在籽粒發(fā)育過(guò)程中呈現(xiàn)一致的表達(dá)趨勢(shì),在授粉后7 d的籽粒中表達(dá)量最高,從授粉后7 d到20 d呈持續(xù)下降的趨勢(shì)。AGO4、AGO10和AGO18存在一致的表達(dá)趨勢(shì),均呈現(xiàn)先下降后上升的趨勢(shì),在授粉后10 d的籽粒中表達(dá)量最低。AGO4和AGO18在授粉后7 d的籽粒中表達(dá)量最高,到10 d降至最低,隨后逐漸上升。而AGO10在授粉后7 d的籽粒中表達(dá)量與14 d基本持平,10 d時(shí)最低,在籽粒發(fā)育后期,至20 d時(shí)表達(dá)量最高。表明不同的AGO基因可能在玉米籽粒發(fā)育的不同階段發(fā)揮作用。

M.DL2000;1~4分別為授粉后7、10、14和20 d的玉米籽粒RNA圖1 不同發(fā)育時(shí)間點(diǎn)玉米籽粒RNA電泳結(jié)果M. DL2000;1-4 represented RNAs of 7,10,14 and 20 dFig. 1 RNAs being extracted from different developmental stages of maize seed after pollination

M.DL2000;1~6分別為AGO1、AGO2、AGO4、AGO10、AGO18和tubulin圖2 5個(gè)AGO基因RT-PCR擴(kuò)增結(jié)果M. DL2000;1-6 represented the amplification results of AGO1,AGO2,AGO4,AGO10,AGO18 and tubulinFig. 2 RT-PCR results of amplification of five AGO genes

圖3 昌7-2和B73中AGO1(A)、AGO4(B)、AGO18(C)基因比對(duì)結(jié)果Fig. 3 Alignment results of AGO1(A),AGO4(B),AGO18(C)between Chang 7-2 and B73

圖4 AGO家族基因在玉米授粉后不同天數(shù)籽粒中的相對(duì)表達(dá)量Fig. 4 The relative expression of AGO genes in different developmental stages of maize seed after pollination
在RISC中,miRNA作為向?qū)б龑?dǎo)AGO蛋白在特定的部位發(fā)揮相應(yīng)的功能,AGO蛋白是RISC的核心元件[30]。本研究以河南省推廣種植的玉米自交系‘昌7-2’為研究對(duì)象,首次探索了玉米授粉后(7、10、14和20 d)不同時(shí)間點(diǎn)AGO基因的表達(dá)譜。結(jié)果顯示:AGO1和AGO2在授粉后7 d的籽粒中表達(dá)量最高,隨后呈持續(xù)下降的趨勢(shì)。而AGO4、AGO10和AGO18則呈現(xiàn)先下降后上升的趨勢(shì),在授粉后10 d的籽粒中表達(dá)量最低。表明這些不同的AGO基因可能在玉米籽粒形成的不同階段發(fā)揮各自特殊的功能。
在籽粒發(fā)育早期主要進(jìn)行細(xì)胞分裂、胚胎發(fā)生和組織器官形成等活動(dòng),該階段高表達(dá)的miRNA主要為miR159、miR165/166等家族[29,31],而AGO1可通過(guò)扣押miR165/166,促進(jìn)miRNA miR165/166靶基因Class Ⅲ homeodomain-leucine zipper(HD-ZIP Ⅲ)轉(zhuǎn)錄因子的表達(dá),HD-ZIP Ⅲ家族基因在莖頂端分生組織建立、維管發(fā)育和側(cè)生器官的極性形成過(guò)程中發(fā)揮重要作用,突變HD-ZIP Ⅲ家族基因?qū)⒃斐蓡吾樞巫尤~的形成[32-33]。玉米AGO1在授粉后7 d的籽粒中高表達(dá),隨后持續(xù)下降,這與其負(fù)向調(diào)控的miR165/166家族的表達(dá)趨勢(shì)是相符的,表明在籽粒發(fā)育早期的胚胎形成過(guò)程中,AGO1可通過(guò)miR165/166等小分子RNA發(fā)揮調(diào)控作用。與AGO1同家族的AGO10,可作為miR166/165的誘餌,阻止miR166/165進(jìn)入AGO1復(fù)合體,從而抑制HD-ZIP Ⅲ轉(zhuǎn)錄因子的表達(dá)[34]。擬南芥中研究也表明,AtZLL/AtAGO10在頂端分生組織的維持過(guò)程中發(fā)揮作用[35-36]。AGO10基因在玉米籽粒發(fā)育早期組織器官形成過(guò)程的低表達(dá)和營(yíng)養(yǎng)物質(zhì)積累時(shí)期的高表達(dá),可能與其功能的發(fā)揮密切相關(guān)。
玉米授粉后10~15 d為籽粒從細(xì)胞分裂和組織器官形成到營(yíng)養(yǎng)物質(zhì)積累的過(guò)渡階段,AGO4和AGO18均在授粉后10 d的籽粒中表達(dá)量最低,隨后在籽粒營(yíng)養(yǎng)物質(zhì)積累過(guò)程中持續(xù)升高。擬南芥中AtAGO4主要作用于siRNA,發(fā)揮表觀遺傳沉默作用[37-38]。而AGO18只存在于草本植物中,在植物繁殖生長(zhǎng)和病毒防御過(guò)程中發(fā)揮作用[12],玉米AGO18有兩個(gè)轉(zhuǎn)錄本,其中的一個(gè)ZmAGO18b在雄性減數(shù)分裂期間絨氈層和生殖細(xì)胞富集,這與24-nt phasiRNA表達(dá)趨勢(shì)一致,因此預(yù)測(cè)玉米ZmAGO18b可能結(jié)合24-nt phasiRNAs發(fā)揮作用[39],AGO4和AGO18在籽粒發(fā)育過(guò)渡期的低表達(dá)及營(yíng)養(yǎng)物質(zhì)累積期的高表達(dá)可能與其功能的實(shí)現(xiàn)密切相關(guān)。本結(jié)果為深入探索不同的AGO基因?qū)τ衩鬃蚜0l(fā)育的作用機(jī)制奠定了良好的基礎(chǔ)。
[1]IWAKAWA H,TOMARI Y.The functions of MicroRNAs:mRNA decay and translational repression[J].TrendsinCellBiology,2015,25(11):651-665.
[2]KOBAYASHI H,TOMARI Y.RISC assembly:Coordination between small RNAs and Argonaute proteins[J].BiochimicaetBiophysicaActa,2016,1 859(1):71-81.
[3]ARIYOSHI J,MOMOKAWA D,EIMORI N,etal.Development of novel antisense oligonucleotides for the functional regulation of RNA-Induced Silencing Complex (RISC) by promoting The release of microRNA from RISC[J].BioconjugateChemistry,2015,26(12):2 454-2 460.
[4]HUTVAGNER G,SIMARD M J.Argonaute proteins:key players in RNA silencing[J].NatureReviewsMolecularCellBiology,2008,9(1):22-32.
[5]MEISTER G.Argonaute proteins: functional insights and emerging roles[J].NatureReviewsGenetics,2013,14(7):447-459.
[6]OLIVER C,SANTOS J L,PRADILLO M.On the role of some ARGONAUTE proteins in meiosis and DNA repair inArabidopsisthaliana[J].FrontiersinPlantScience,2014,5:177.
[7]ZHAI J,ZHAO Y,SIMON S A,etal.Plant microRNAs display differential 3′truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species[J].PlantCell,2013,25(7) :2 417-2 428.
[8]VAUCHERET H.Plant ARGONAUTES[J].TrendsinPlantScience,2008,13(7):350-358.
[9]LIU X,LU T,etal.Identification of RNA silencing components in soybean and sorghum[J].BMCBioinformatics,2014,15:4.
[10]KAPOOR M,ARORA R,LAMA T,etal.Genome-wide identification, organization and phylogenetic analysis of Dicer-like,Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice[J].BMCGenomics,2008,9:451.
[11]QIAN Y,CHENG Y,CHENG X,etal.Identification and characterization of Dicer-like,Argonaute and RNA-dependent RNA polymerase gene families in maize[J].PlantCellReports,2011,30(7):1 347-1 363.
[12]ZHAI L,SUN W,ZHANG K,etal.Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize[J].JournalofIntegrativePlantBiology,2014,56(11):1 042-1 052.
[13]ZHANG H,XIA R,MEYERS B C,etal.Evolution,functions,and mysteries of plant ARGONAUTE proteins[J].CurrentOpinioninPlantBiology,2015,27:84-90.
[14]VAUCHERET H, VAZQUEZ F, CRéTé P,etal.The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development[J].Genes&Development,2004,18(10):1 187-1 197.
[15]JAUBERT M,BHATTACHARJEE S,MELLO A F,etal.RGONAUTE2 mediates RNA-silencing antiviral defenses against potato virus X inArabidopsis[J].PlantPhysiology,2011,156(3):1 556-1 564.
[16]HAVECKER E R,WALLBRIDGE L M,etal.TheArabidopsisRNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci[J].PlantCell,2010,22(2):321-334.
[17]BROSSEAU C,MOFFETT P.Functional and genetic analysis identify a role for arabidopsis ARGONAUTE5 in antiviral RNA silencing[J].PlantCell,2015,27(6):1 742-1 754.
[18]MCCUE A D,PANDA K,etal. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation[J].TheEMBOJournal,2015,34(1):20-35.
[19]HUNTER C,SUN H,POETHIG R S,etal. TheArabidopsisheterochronic gene ZIPPY is an ARGONAUTE family member[J].CurrentBiology,2003,13(19):1 734-1 739.
[20]JI L,LIU X,YAN J,etal. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs inArabidopsis[J].PLoSGenetics,2011,7(3):e1001358.
[21]SINGH M,GOEL S,MEELEY R B,etal. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein[J].PlantCell,2011,23(2):443-458.
[22]ZHANG B,PAN X,ANDERSON T A.Identification of 188 conserved maize microRNAs and their targets[J].FEBSLetters,2006,580(15):3 753-3 762.
[23]ZHANG L,CHIA J M,KUMARI S,etal.A genome-wide characterization of microRNA genes in maize[J].PLoSGenetics,2009,5(11):e1000716.
[24]KANG M,ZHAO Q,ZHU D,etal.Characterization of microRNAs expression during maize seed development[J].BMCGenomics,2012,13:360.
[25]LIU P,YAN K,etal.Transcript profiling of microRNAs during the early development of the maize brace root via Solexa sequencing[J].Genomics,2013,101(2):149-156.
[26]DING D,LI W,HAN M,etal.Identification and characterisation of maize microRNAs involved in developing ears[J].PlantBiology,2014,16(1):9-15.
[27]LI X M,SANG Y L,ZHAO X Y,etal.High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions inmaize[J].2013,PLoSOne,8(8):e72852.
[28]GU Y,LIU Y,ZHANG J,etal.Identification and characterization of microRNAs in the developing maize endosperm[J].Genomics,2013,102(5-6):472-478.
[29]LI D,LIU Z,GAO L,etal.Genome-wide identification and characterization of microRNAs in developing grains ofZeamaysL.[J].PLoSOne,2016,11(4):e0153168.
[31]LIU X,F(xiàn)U J,GU D,etal.Genome-wide analysis of gene expression profiles during the kernel development of maize (ZeamaysL.)[J].Genomics,2008,91(4):378-387.
[32]PRIGGE M J,OTSUGA D,ALONSO J M,etal.Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles inArabidopsisdevelopment[J].PlantCell,2005,17(1):61-76.
[33]TALBERT P B,ADLER H T,etal.The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems ofArabidopsisthaliana[J].Development,1995,121(9):2 723-2 735.
[34]ZHU H,HU F,WANG R,etal.ArabidopsisArgonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J].Cell,2011,145(2):242-256.
[35]MOUSSIAN B,SCHOOF H,HAECKER A,etal.Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis[J].EMBOJournal,1998,17(6):1 799-1 809.
[36]LYNN K,F(xiàn)ERNANDEZ A,AIDA M,etal.The PINHEAD/ZWILLE gene acts pleiotropically inArabidopsisdevelopment and has overlapping functions with the ARGONAUTE1 gene[J].Development,1999,126(3):469-481.
[37]ZILBERMAN D,CAO X,JACOBSEN S E.ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation[J].Science,2003,299(5 607):716-719.
[38]ZILBERMAN D,CAO X,etal.Role ofArabidopsisARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats[J].CurrentBiology,2004,14(13):1 214-1 220.
[39]ZHAI J,ZHANG H,etal.Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2015,112(10):3 146-3 151.
(編輯:宋亞珍)
Cloning and Expression Analysis ofAGOGenes during Maize Seed Development
ZHANG Dan,WANG Ling,LIU Xiao,KAN Yunchao,LI Dandan*
(Henan Key Laboratory of Insect Biology in Funiu Mountain,Nanyang Normal University, Nanyang Henan 473061,China)
The expression profiles of 5AGOgenes(AGO1,AGO2,AGO4,AGO10 andAGO18)in different developmental stages of maize seed(ZeamaysL.inbred line,‘Chang 7-2’)after pollination were analyzed by the method of real-time quantitative PCR.Results showed that, the expression pattern ofAGO1 andAGO2 were similar during maize seed development, showing a decline trend from the 7thday after pollination (DAP) to the 20thDAP, with much more accumulation at the 7thDAP.The expression pattern ofAGO4,AGO10 andAGO18 were similar, with a trend of being decreased first then increased, with the lowest expression at the 10thDAP.With our previous results of expression pattern of miRNAs during maize seed development, we found that differentAGOgene families together with their target miRNAs, can involved in the regulation of maize seed development.
ZeamaysL.;seed;AGOgene;expression pattern
1000-4025(2016)09-1752-05doi:10.7606/j.issn.1000-4025.2016.09.1752
2016-05-03;修改稿收到日期:2016-07-06
河南省科技廳農(nóng)業(yè)重點(diǎn)攻關(guān)項(xiàng)目(112102110158)
張 丹(1990-),女,在讀碩士研究生,主要從事植物與昆蟲(chóng)互作研究。E-mail:15514180175@163.com
李丹丹,博士,副教授,主要從事植物與昆蟲(chóng)互作研究。E-mail:lidannytc@126.com
Q789; Q946
A