999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Aclass of extended ishikawa iterative processes in Banachspaces for nonexpansive mappings

2016-11-30 01:29:39,

,

(School of Mathematics and Systems Science, Shenyang Normal University, Shenyang, 110034, China)

?

Aclass of extended ishikawa iterative processes in Banachspaces for nonexpansive mappings

CHENGCongdian,GUANHongyan

(School of Mathematics and Systems Science, Shenyang Normal University, Shenyang, 110034, China)

The problem whether a iterative process of nonexpansive mappingTin real Banach Spaces converges to its fixed point(IPNMCFP)has be extensively studied. Particularly, in 2004, Xu H K constructed a kind of extended Mann iterative process for nonexpansive mapping T, and by the so called viscosity approximation methods, he proved that the iterative process converges strongly to a fixed point of Tunder the uniformly smooth Banach Spaces. In 2007, Zhang S S developed the work of Xu H K. This paper further studies the problem IPNMCFP. By replacing constants with operators, the Ishikawa iterative process is generalized as a class of extended Ishikowa iterative process. Under some conditions, the strong convergence of the iterative process is proved in the viscosity approximation methods, using the theory of duality mapping and variational inequality. And in a special case the iterative process converges strongly to a fixed point ofTis also proved. For the introduced iterative process involves many kinds of Mann and Ishikawa iterative processes, the main conclusion of the present work extends and generalizes some recent results of this research area.

nonexpansive mapping; fixed point; sequence; Mann iterative process; Ishikawa iterative process

0 Introduction and preliminaries

Throughout the present work, we always assume thatEis a real Banach space,E*is the duality space of E, 〈·,·〉 is the dual pair betweenEandE*, andJ:E→2E*is the normalized duality mapping defined by

(1)

We also assume thatDis a nonempty closed convex subset ofE,T:D→Dis a mapping, andF(T) denotes the set of all the fixed points ofT. In addition, we useΠDrepresenting all the contractions onD, i.e.ΠD={f|f:D→D, and there existsα∈(0,1) such that ‖f(x)-f(y)‖≤α‖x-y‖ for allx,y∈D}.

The following result is well known (see Goebel and Reich[1]).

Proposition Let E be uniformly smooth. Then the duality mappingJdefined by (1) is single valued, and it is uniformly continuous on the bounded subset ofEwith the norm topologies ofEandE*.

Recall that the sequences

(2)

(3)

(4)

(5)

are respectively called Mann iterative process, Ishikawa iterative process, modified Mann iterative process with error and modified Ishikawa iterative process with error ofT, wherex0,u∈Dandn≥0. The problem for these iterative sequences converging to the fixed point ofTwas studied by lots of authors, e.g., Halpern[2], Reich[3], Zhang and Tian[4], Chidume[5], Liu[6], Liu Q H and Liu Y[7], Zhao and Zhang[8]. In particular, Xu[9]generalized (2) to the iterative process

(6)

Under a certain conditions, he proved that {xn} converges strongly to a fixed point ofTand other related results. In 2007, Zhang[10]extended and improved the work of Xu.

Motivated and inspired by the contributions above, the present work addresses the following iterative process.

(7)

Lemma 1[9]LetXbe a uniformly smooth Banach space,Cbe a closed convex subset ofX,T:C→Cbe a nonexpansive withF(T)≠φ, andf∈ΠC. Then {xt} defined byxt=tf(xt)+(1-t)Txtconverges strongly to a point inF(T). If we defineQ:ΠC→F(T) by

(8)

thenQ(f) solves the variational inequality

In particular, iff=u∈Cis a constant, then (8) is reduced to the sunny nonexpansive retraction of Reich fromContoF(T),

Lemma 2[11]LetXbe a real Banach space andJp:X→2X*,1

Lemma 3[6]Let {an},{bn} and {cn} be three nonnegative real sequences satisfying

1 Main results

In this section, we address the strong convergence of the iterative sequence (7).

Lemma 4 Letf,fn∈ΠD,tn∈(0,1), letTbe a nonexpansive mapping, and letznbe the unique solution of the equationz=tnfn(z)+(1-tn)Tzfor alln≥0. Thenzn→Q(f)(defined by (8) ) astn→0 (strongly) if {fn(x)} converges uniformly tof(x) onD.

This leads to

Proof Since ‖Txn-xn‖→0, we can choose {tn} such that ‖Txn-xn‖=o(tn). Letznbe the unique solution of the fixed point of equationz=tnfn(z)+(1-tn)Tz. Then {zn} converges strongly toQ(f) by Lemma 4. Letz=Q(f). Then we have

(9)

(10)

On the other hand, we have

(11)

(12)

(Note:zn→zand {xn} is bounded.) and

Substitute in (11) the (12), (13) and (14), we obtain

(15)

(Note: In terms of Proposition 1,jis uniformly continuous on bounded subset.) Combining (10), (11) and (15), we also obtain

This further leads to

By Lemma 2,xn+1→z. This completes the proof.

2 Special cases

Whenβn=1,gn(x)=xandfn(x)=f(x), (7) reduces to (6), and that {fn(x)} converges uniformly tofholds obviously. By Theorem 1, we can immediately obtain the following conclusion, which is the major conclusion of [10, Theorem 1].

In addition,Yao[12]also studied the sequence

(16)

which can be transformed as

Thus, we can easily know the following conclusion holds from Theorem 1, which can be taken as a complementary result of [12, Theorem 3.1].

3 Conclusion

A class of extended Ishikowa iterative process for a nonexpansive mappingTin real Banach Spaces, which involves many kinds of Mann and Ishikawa iterative processes, is introduced and studied. Under some conditions, the strong convergence of the iterative process is proved by the viscosity approximation methods. And in a special case, the iterative process converges strongly to a fixed point ofTis also proved. The main conclusion of the present work extends and generalizes some recent results of this research area.

[ 1 ]GOEBEL K, REICH S. Uniform convexity nonexpansive mappings and hyperbolic geometry [J]. M Dekker, 1984.

[ 2 ]HALPERN B. Fixed points of nonexpansive maps[J]. Bull Amer Math Soc, 1967,73(6):957-961.

[ 3 ]REICH S. Weak convergence theorems for nonexpansive mappings in Banach spaces[J]. J Math Anal Appl, 1979,67(2):274-276.

[ 4 ]ZHANG S S, TIAN Y X. On Halpern’s open question [J]. Acta Mathematica Sinica, Chinese Series, 2005,48(5):979-984.

[ 5 ]CHIDUME C E. Approximation of fixed points of strongly pseudocontractive mappings[J]. Proc Amer Math Soc, 1994,120(2):545-551.

[ 6 ]LIU L S. Ishikawa and Mann iterative processes with errors for nonlinear strongly Accretive mappings in Banach spaces[J]. J Math Anal Appl, 1995,194(1):114-125.

[ 7 ]LIU Q H, LIU Y. Ishikawa iterative sequences for hemi-contractive mappings with error member[J]. Acta Mathematica Sinica, Chinese series, 2006,49(6):1213-1216.

[ 8 ]ZHAO L C, ZHANG S S. Strong convergence theorem for asymptotically nonexpansive mappings with errors in Banach spaces[J]. Acta Mathematica Sinica, Chinese Series, 2008,51(1):99-108.

[ 9 ]XU H K. Viscosity approximation methods for nonexpansive mappings[J]. J Math Anal Appl, 2004,298(1):279-291.

[10]ZHANG S S. Viscosity approximation methods for nonexpansive mappings in Banach spaces[J]. Acta mathematica sinica, Chinese Series, 2007,50(3):485-492.

[11]ZHANG S S. Some problems and results in the study of nonlinear analysis[J]. Nonliear Anal TMA, 1997,30(7):4197-4208.

[12]YAO Y H, CHEN R D , ZHOU H Y. Iterative algorithms to fixed point of nonexpansive mapping[J]. Acta mathematica sinica, Chinese Series, 2007,50(1):139-144.

[13]ZHANG S S, YANG L, LIU J A. Strong convergence theorems for nonexpansive semi-groups in Banach spaces[J]. Applied Mathematics and Mechanics (English Edition), 2007,28(10):1287-1297.

[14]ZHANG S S, LI X R, CHEN Z J. On the problem of nearest common fixed point of nonexpansive mappings[J]. Acta mathematica sinica, Chinese Series, 2006,49(6):1297-1302.

[15]ZHAO L C, ZHANG S S. A viscosity approximation method for generalized equilibrium problems and fixed point problems[J]. Acta Mathematicae Applicatae Sinica, Chinese Series, 2012,35(2):330-345.

1673-5862(2016)02-0201-05

關于巴拿赫空間中非膨脹映射的一類擴展的石川迭代序列

程叢電, 關洪巖

(沈陽師范大學 數學與系統科學學院, 沈陽 110034)

關于巴拿赫空間中非膨脹映射的迭代序列是否收斂到該映射的不動點問題已有許多研究工作;2004年,徐洪坤建立了一種擴展的曼恩迭代序列,并用黏性逼近方法在一致光滑巴拿赫空間的框架下證明了其收斂到該映射的不動點;2007年,張石生推廣與改進了徐洪坤的工作。基于以往有關工作,進一步探討巴拿赫空間中非膨脹映射的迭代序列的收斂性與非膨脹映射的不動點問題。利用算子替換常數值與向量給出了一類擴展的石川迭代序列;基于對偶映射與變分不等式理論,采用黏性逼近方法,證明了該迭代序列的某種強收斂性及一個有關不動點定理。由于所建立的迭代序列概括了多種類型的曼恩和石川迭代序列,此項工作發展與推廣了該領域的許多近期研究成果。

非膨脹映射; 序列; 曼恩(Mann)迭代; 石川(Ishikawa)迭代; 不動點

O177 Document code: A

10.3969/ j.issn.1673-5862.2016.02.016

理論與應用研究

主站蜘蛛池模板: 国产午夜一级毛片| 全色黄大色大片免费久久老太| 免费A∨中文乱码专区| 国国产a国产片免费麻豆| 国产视频久久久久| 黄片一区二区三区| 亚洲综合中文字幕国产精品欧美| 日韩午夜片| 手机在线免费不卡一区二| 国产一区二区精品福利| 欧美精品1区2区| 日韩精品中文字幕一区三区| 国产成人精品第一区二区| 中文字幕va| 一级毛片免费高清视频| 青青草国产在线视频| 日韩123欧美字幕| 久久精品无码专区免费| 国产成人精品视频一区视频二区| 国产鲁鲁视频在线观看| 亚洲精品少妇熟女| 亚洲人成网站观看在线观看| 午夜精品久久久久久久无码软件| 最近最新中文字幕免费的一页| 国产18在线播放| 欧美精品一二三区| 亚洲成综合人影院在院播放| 欧美成人第一页| 性做久久久久久久免费看| 日本高清免费一本在线观看| 天天爽免费视频| 麻豆精选在线| 国产精品成人久久| 国产成人精品综合| 欧美亚洲一区二区三区在线| 亚洲最黄视频| 欧美不卡二区| 99热这里只有精品久久免费| 亚洲一欧洲中文字幕在线| 国产无码高清视频不卡| 国产一级毛片网站| 中字无码av在线电影| 在线欧美日韩| 国产成人亚洲毛片| 国产xx在线观看| 无码电影在线观看| 无码福利日韩神码福利片| 久久国产精品电影| 午夜限制老子影院888| 久久这里只有精品23| 国产成人亚洲无吗淙合青草| 国产成人在线无码免费视频| 久久这里只有精品免费| 免费无码一区二区| 奇米影视狠狠精品7777| 国产成人久视频免费| 亚洲精品卡2卡3卡4卡5卡区| 亚洲天堂视频在线观看| 国产丝袜无码一区二区视频| a级毛片免费看| 国产精品第一区在线观看| 国产毛片高清一级国语 | 色综合久久久久8天国| 国产精品久久自在自线观看| 亚洲V日韩V无码一区二区| 欧美v在线| 欧美日韩精品综合在线一区| 色综合热无码热国产| 福利一区三区| 波多野结衣一级毛片| 亚洲视频免费在线看| 中文字幕 91| 色综合手机在线| 久热99这里只有精品视频6| av在线5g无码天天| 国产在线八区| 一级毛片免费的| 欧美视频在线播放观看免费福利资源| 欧美一区二区三区不卡免费| 亚洲日产2021三区在线| 国产青青操| 国产一级小视频|