999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于詞典與機器學習的中文微博情感分析

2016-12-26 21:36:42劉開元
電子技術與軟件工程 2016年22期
關鍵詞:機器學習

劉開元

摘 要

目前,社會正處于一個微博崛起的時代,一切有關于微博的問題都被社會廣泛關注,并得到了工業界和學術界的高度重視。微博從出現以來,取得了良好的發展,并擁有大眾的普遍關注和應用。微博的超大信息量和高速度的更新等,都是值得研究的話題。同時,微博處理自然語言已經成為當前最新型和熱門的研究課題,而其中最值的探討的熱點課題就是中文微博情感分析。

【關鍵詞】詞典 機器學習 中文微博 情感分析

在當前眾多社交網絡平臺中,微博以新型的信息發布手段具有重要的社會影響力。根據我國相關數據統計可以發現,我國微博用戶使用量已經高達3.5億,并處于逐年上升的趨勢,占全國網絡居民中的百分之五十。微博情感分析是按照主觀傾向性將微博文本分為三類:第一是正向;第二是負向;第三是中性。

1 情感的分析方法

目前,主要通過兩種技術來對情感進行分析。第一類是根據情感詞典來進行,微博文本中所包含的正向情感詞和負向情感詞都通過情感詞典來進行統計分析,而文本的情感極性則依靠所取得的差值來決定。第二類是機器學習的使用方法,對測試預料和訓練詞進行相關的標注,再使用分類器對情感進行分析,其中分類器包括有:

(1)KNN;

(2)最大熵;

(3)支持向量機等。

另外,Wang與相關研究人員對Twitter情感分析系統進行了構建,其能對相關評論信息的情感傾向性進行較為實時的分析。Agarwal與相關人員通過對極性詞語的特征研究,對微博文本通過樹內核模進行了情感分類研究,其也獲得了一定的成績。Jiang及其成員對微博文本的情感分析使用了主題無關和主題相關的方式進行了分類,一種是正向情感,一種是負向情感。

與英文微博相比,中文微博具有很大差異,其中主題較為發散是中文微博的主要特點,且內容十分繁雜豐富,并與英文微博的行文習慣也有很大區別。因此,部分研究人員通過多種計算方法對微博的情感分析進行了全方位的分析,其中所包括的算法有:

(1)三種特征選擇方法;

(2)三種及其學習算法;

(3)三種特征權重計算方法,但該方法對微博文本的行文特點并沒有考慮到位,導致在整條微博中,微博表情符號直接影響了文本的情感極性。

同時,其他研究人員提出了微博情感分析的層次結構分析方法,但由于表情符號的規則原因,其有了提高分類效果的作用,但卻使微博文本中的極性信息被忽視。由于中文微博主題發散和內容簡短,以及不規范的用語和未登錄詞較多等問題,使中文微博文本目前的情感分析效果未取得一定的進展。由于詞典方法和及其學習方法都存在各自的問題,針對中文微博的文本內容簡短、口語化國多和主題不集中等特點,提出了有關于結合詞典和機器學習的方法,以對中文微博情感進行更為準確的研究。

2 基于詞典與機器學習的中文微博情感分析

基于中文微博的特點研究,采用詞典與機器學習相結合的方式,進一步分析研究中文微博文本的情感傾向性。

2.1 特征降維

經過分析微博文本可以看出,其中的形容詞和動詞是最主要的情感詞語,也能夠準確反映文本情感的傾向性,所以特征的選擇應當主要以形容詞和動詞為主。微博文本中所包含的所有形容詞和動詞都被特征空間所集合包含,當產生較大訓練文本集時,則具有非常高維數的特征空間。同時,中文微博中還較頻繁出現表情符號,并還含有多個詞或是十多個詞,使絕大多數維上的值在特征向量中顯示為0,導致數據稀疏性的問題出現在特征空間中,所以,必須使用降維來對特征空間進行緩解。

常用的特征降維方法有兩種:

(1)特征選擇;

(2)特征抽取。

但特征抽取具有大計算量和儲存方面的問題,對于處理文本具有一定的局限。特征選擇在性能方面十分良好,通過特征降維的統計法后,依然出現特征空間的嚴重數據稀疏性問題,則需進一步對特征空間進行降維操作。在聚類詞語方面,層次聚類算法具有明顯的作用。所以,可以采取統計法融合層次聚類算法的層次結構來實現降維。特征選擇在進行統計法后,可以對特征空間進行初步的維數降低,并依靠層次聚類算法實現特征空間的有效降維,保證特征空間維數的進一步降低,最終實現特征降維的有效目的。

2.2 特征極性值

中文微博中的修飾詞和情感詞所構成的極性值短語為極性特征的極性值。絕對值越大的極性值,具有越強的情感極性,反之越小的絕對值,其情感極性越弱。在微博文本中可以出現很多次同一個極性特征,每出現一次,則極性副詞彼此之間都有不同的順序,也導致每次的極性值計算都有所差異。所以,該極性特征可以通過極性值的平均算數值來作為最終極性值。中文微博中的評論性所使用的符號表情,對于本人的立場和情感都有真實的反應和重要作用,能使該條文本的情感極性進一步增強。如果在微博文本中,正向極性特征的極性值在微博文本中得到加強,那其正向表情符號肯定超過負向表情符號的有效數目。相反,如果負向極性特征的極性值出現減弱,則微博文本中的負向表情符號肯定大于正向表情符號的有效數目。中性特征的極性值在正常情況下應當為0,但為了實現和出現次數為0的特征項目進行區別,可以對中性特征的極性值設置一個小的公式設計。

3 結束語

總之,本文對詞典與機器學習的中文微博情感分析方法進行了探討,并根據中文微博的相關特點,對層次結構的降維方法進行理論探討。同時,隨著網絡信息的逐步發展,中文微博中還在不斷產生一些新鮮的詞匯,導致其無法被當前的分詞系統進行有效識別,對分類中文微博情感造成了一定的阻礙,所以,未來還應不斷嘗試新的分類方法來對其進行識別匹配。

參考文獻

[1]孫建旺,呂學強,張雷瀚.基于詞典與機器學習的中文微博情感分析研究[J].計算機應用與軟件,2014(07):177-181.

[2]孫曉,葉嘉麒,龍潤田,任福繼.基于情感語義詞典與PAD模型的中文微博情感分析[J].山西大學學報(自然科學版),2014(04):580-587.

[3]張慶慶,劉西林.基于機器學習的中文微博情感分類研究[J].未來與發展,2015(04):59-63.

作者單位

廣州大學計算機學院 廣東省廣州市 510006

猜你喜歡
機器學習
基于網絡搜索數據的平遙旅游客流量預測分析
時代金融(2016年27期)2016-11-25 17:51:36
前綴字母為特征在維吾爾語文本情感分類中的研究
科教導刊(2016年26期)2016-11-15 20:19:33
下一代廣播電視網中“人工智能”的應用
活力(2016年8期)2016-11-12 17:30:08
基于支持向量機的金融數據分析研究
基于Spark的大數據計算模型
基于樸素貝葉斯算法的垃圾短信智能識別系統
基于圖的半監督學習方法綜述
機器學習理論在高中自主學習中的應用
極限學習機在圖像分割中的應用
一種基于遷移極速學習機的人體行為識別模型
物聯網技術(2015年9期)2015-09-22 09:23:43
主站蜘蛛池模板: 欧美专区在线观看| 99re精彩视频| 911亚洲精品| 成年看免费观看视频拍拍| 免费无码AV片在线观看中文| 伊人婷婷色香五月综合缴缴情| 久久天天躁狠狠躁夜夜2020一| 亚洲国产精品无码久久一线| 老司机午夜精品网站在线观看| 亚洲精品天堂自在久久77| 国产成人综合网| 黄色国产在线| 99爱在线| 88av在线| 国内精品久久久久久久久久影视| 国产精品无码制服丝袜| 97综合久久| 天堂va亚洲va欧美va国产| 午夜老司机永久免费看片| 亚洲精品成人片在线观看| 中文精品久久久久国产网址| 九色综合视频网| 国产精品久久久免费视频| 欧美精品伊人久久| 国产91久久久久久| 欧美一级夜夜爽www| 午夜精品久久久久久久无码软件| 97久久精品人人做人人爽| 国产资源站| 亚洲第一精品福利| 亚洲无码精品在线播放| 九月婷婷亚洲综合在线| 久草视频精品| 亚洲午夜福利在线| 国产成人综合日韩精品无码不卡| 东京热一区二区三区无码视频| 欧美日韩成人在线观看| 97国产成人无码精品久久久| 欧美特黄一级大黄录像| 欧美日韩亚洲综合在线观看| 欧美精品v欧洲精品| 亚洲不卡av中文在线| 婷婷综合缴情亚洲五月伊| 日韩午夜伦| 亚洲国产黄色| 亚洲乱码在线播放| 国产精品成人观看视频国产 | 国产精品三级专区| 97青草最新免费精品视频| A级全黄试看30分钟小视频| 亚洲狼网站狼狼鲁亚洲下载| 欧美国产另类| 国产欧美日韩在线一区| 免费激情网站| 色一情一乱一伦一区二区三区小说| 日韩天堂网| 91色在线观看| 免费毛片a| 伊人丁香五月天久久综合| 制服丝袜国产精品| 国内精品久久九九国产精品| 曰AV在线无码| 欧美精品亚洲日韩a| 欧美精品影院| 国产毛片网站| 国禁国产you女视频网站| 中文国产成人久久精品小说| 日本精品影院| 国产成年女人特黄特色毛片免 | 免费国产一级 片内射老| 亚洲精品综合一二三区在线| 男女猛烈无遮挡午夜视频| 青青草综合网| 五月婷婷综合色| 免费一级无码在线网站| 国产青青草视频| 色婷婷天天综合在线| 国产污视频在线观看| 亚洲第一区精品日韩在线播放| 三上悠亚精品二区在线观看| 国产成人一区在线播放| 日韩精品少妇无码受不了|