彭卓穎,薛 婧,魏 強
(北京協和醫學院比較醫學中心,中國醫學科學院醫學實驗動物研究所,衛生部人類疾病比較醫學重點實驗室,國家中醫藥管理局人類疾病動物模型三級實驗室,新發再發傳染病動物模型研究北京市重點實驗室,北京 100021)
HIV-1病毒與漿細胞樣樹突狀細胞的相互作用
彭卓穎,薛 婧,魏 強
(北京協和醫學院比較醫學中心,中國醫學科學院醫學實驗動物研究所,衛生部人類疾病比較醫學重點實驗室,國家中醫藥管理局人類疾病動物模型三級實驗室,新發再發傳染病動物模型研究北京市重點實驗室,北京 100021)
漿細胞樣樹突狀細胞(plamcytoid dendritic cells,pDCs)是一類可以產生大量I型干擾素(interferon α,IFN-α)的固有免疫細胞。在人類免疫缺陷病毒(human immunodeficiency virus,HIV)急性感染期,pDCs通過分泌IFN-α抑制病毒復制并激活適應性免疫應答。在HIV慢性感染期,pDCs通過調節免疫細胞發揮免疫抑制的作用,不斷破壞淋巴細胞,從而造成免疫系統崩潰,促進疾病進程。本文將就HIV-1與pDCs之間的相互作用做一綜述。
漿細胞樣樹突狀細胞;人類免疫缺陷病毒;I型干擾素
獲得性免疫缺陷綜合征(acquired immunodeficiency syndrome,AIDS)是人類免疫缺陷病毒(human immunodeficiency virus,HIV)感染機體后引發的全身性疾病,其最大特點是破壞適應性免疫系統,這也是疾病治療過程中的難點所在。天然免疫系統是機體抵抗病原體入侵的首要屏障,在病原體感染的早期階段即可對其進行控制和清除。樹突狀細胞(dendritic cells,DCs)是一類特殊的固有免疫細胞,是HIV-1在粘膜感染途徑中首先接觸到的細胞,在HIV-1傳播過程中起關鍵作用[1]。近年來,漿細胞樣樹突狀細胞(plamcytoid dendritic cells,pDCs)的功能在艾滋病領域受到廣泛關注,在HIV-1感染過程中,pDCs可產生大量的IFN-α,IFN-α是重要的免疫調節因子,在抗感染和抗腫瘤免疫中發揮重要作用,對pDCs功能的進一步研究可能會給AIDS治療帶來新思路。
pDCs是1958年發現的一種具有漿細胞形態的細胞[2],大小介于淋巴細胞和單核細胞之間[3],主要來源于骨髓,可存在于血液循環中,也可通過趨化因子的作用遷移到淋巴組織(如扁桃體、脾臟、胸腺、粘膜相關淋巴組織等)及存在炎癥的部位,主要相關的趨化因子受體為CCR1、CCR5、CXCR3、CXCR4和CCR7[4]。pDCs在外周血單個核細胞中所占的比例較小(0.2%~0.8%),主要表面分子有血液樹突狀細胞抗原2(BDCA2)、血液樹突狀細胞抗原4(BDCA4)、IL-3Rα(CD123)、轉錄因子E2-2和免疫球蛋白樣轉錄本7(ILT-7),不表達T細胞(CD3)、B細胞(CD19、CD20)和骨髓細胞(CD13、CD14、CD33)等特有表面分子,所以pDCs的表型為CD4+CD45RA+CD123+CD11c,通過該表型可以將pDCs與骨髓來源的CD11c+DCs細胞區分開[5]。
pDCs的內體中選擇性高表達病原模式識別分子TLR7和TLR9,這兩種TLR可通過識別單鏈RNA或富含未甲基化CpG的DNA發揮作用[6,7];TLR7直接刺激pDCs分泌IFN-α的能力較弱,但它對pDCs表面分子的影響較大,尤其可以顯著降低BDCA2(CD303)的表達,BDCA2對IFN-α的產生具有抑制作用[8];TLR9主要與富含未甲基化CpG的DNA相互作用而發揮功能,但不同的CpG發揮的作用也有所不同,如CpG A可通過激活TLR9誘導pDCs大量釋放IFN-α,CpG B可促進pDCs的表面共刺激分子(CD80、CD86)及抗原提呈分子(CD83)的表達[5]。
pDCs被HIV-1感染后釋放出具有感染性的病毒顆粒[9],并且pDCs可將病毒傳遞給CD4 T細胞,從而促進HIV-1對機體的感染[10],但這一過程可被中和抗體阻斷[11]。HIV-1在pDCs內的復制能力較差,這主要與多種宿主限制因子有關,例如SAMHD1[12],當HIV-1感染pDCs后細胞內SAMHD1的表達量會有一定程度的降低,但是當pDCs與T細胞共培養時SAMHD1的表達量則出現顯著下降,因此增強了HIV-1的復制,促進pDCs成熟及IFN-α的釋放[13]。雖然HIV-1激活pDCs后可釋放大量IFN-α,但是HIV-1不能促使pDCs完全成熟,只是在一定程度上上調共刺激分子的表達和炎性細胞因子的分泌,使得pDCs的抗原提呈作用較弱[14,11],這可能與HIV-1通過初級內體進入pDCs有關,這種感染方式雖然可以介導較強的IFN-α分泌信號,但對pDCs的促成熟作用較弱,且導致NF-κB依賴性的炎性細胞因子的釋放相對較低[15]。
pDCs暴露于活的或是已滅活的HIV-1都可以釋放大量IFN-α[15],但是當其暴露于包膜有缺陷的HIV-1則無法被刺激產生大量IFN-α,這是因為IFN-α的產生有賴于gp160與pDCs表達的CD4分子相結合[16,17]。最近研究表明,HIV-1誘導pDCs激活的過程依賴于Env對CD4分子受體的高親和力,而HIV-1的Nef蛋白功能的異常可導致CD4分子的下調,這也可能與病毒膜表面gp160的表達相關[18]。
在HIV-1急性感染期,血液循環中pDCs的數量會顯著下降[19],這可能是細胞被刪除或遷移到淋巴組織的結果。研究發現,在HIV-1感染過程中,血液中pDCs的腸道歸巢標記分子(α4β7)表達上調,隨后pDCs會遷移到腸道粘膜[20,21],并且發現pDCs向腸道的遷移與循環中CD4 T和CD8 T細胞的Ki67與HLA-DR的表達上調有關,與病毒復制無關[22];pDCs可在此過程中遷移并積累于淋巴結(lymph nodes,LNs),通過釋放大量IFN-α調節免疫反應[23,24];pDCs還可遷移到脾,但此處的pDCs并不是主要的IFN-α產生細胞[25]。
目前有多種人源化小鼠模型應用于HIV-1感染的研究,如NOD-scid小鼠、NOG小鼠和DKO小鼠等[26,27],其中人源化DKO小鼠的使用更為普遍,HIV-1感染人源化DKO小鼠后,可有效的感染并激活骨髓和外周淋巴器官中的pDCs[27],用特異性單克隆抗體BDCA2(CD303)刪除人源化DKO小鼠體內的pDCs后,再用HIV-1對小鼠進行感染,發現無法誘導IFN-α的產生和I型干擾素刺激基因(type I interferon-stimulated genes,ISGs)的表達,并且淋巴器官中T細胞死亡率降低,HIV-1病毒的復制明顯增加[28],這說明pDCs所釋放的IFN-α在HIV-1感染中發揮重要作用。
3.1 IFN-α與艾滋病發病密切相關
猴免疫缺陷病毒(simian immunodeficiency virus,SIV)的天然宿主在急性感染期會快速產生大量IFN-α,但在慢性感染階段這種反應出現明顯下調,從而抑制了疾病進展[29]。同樣當SIV感染其它致病性宿主時,無論是疾病長期不進展者還是疾病進展者,在急性感染期同樣會有大量IFN-α的產生,但在疾病長期不進展者的慢性感染期其IFN-α分泌會得到控制,而在疾病進展者的慢性感染期其IFN-α依舊持續性產生,由此表明疾病進程與IFN-α的產生相關,IFN-α的持續性產生可導致慢性免疫的激活[30,31],進而促進CD4 T細胞消耗并破壞免疫系統,最終發展為AIDS[32]。還有研究證明,在HIV-1感染過程中不同性別患者的發病過程有顯著差異,與男性患者相比,女性患者的病毒載量普遍較低,但是疾病進程較快,這與女性患者在慢性感染期中較高水平的IFN-α呈正相關[33]。
3.2 IFN-α的雙重作用
3.2.1 抑制HIV-1的感染及復制:IFN-α一方面通過促進細胞抗病毒效應因子的產生而抑制HIV-1的感染和復制[34],另一方面它還可通過誘導靶細胞內具有抗病毒作用的干擾素效應基因家族(ISGs)的表達而增強細胞抵抗病毒感染的能力[35]。ISGs的上調既可限制感染細胞中病毒的復制,又可使未感染的旁觀者細胞進入抗病毒狀態,從而降低被感染的風險[36]。而且ISGs中的IP-10可預測CD4 T細胞數量的變化和T細胞的激活情況,并且與CD4 T細胞數量的變化和病毒血癥水平相比,血漿中IP-10的水平更能預測疾病的進展情況[37],在pDCs的抗病毒過程中起關鍵作用[38]。
3.2.2 促進對免疫系統的破壞:盡管pDCs的抗原提呈能力較弱,但它能通過TLR通路激活抗原提呈作用,產生獲得性免疫反應;它也可以通過IDO、ICOSL和PD-L1等激活抗原提呈作用誘導免疫耐受的產生[39]。在不同條件刺激下,pDCs會引起初始輔助性T細胞的不同極化。Th17主要通過分泌IL-17發揮維持粘膜屏障功能的完整,該細胞缺失會引發細菌移位和持續性的炎癥反應,促進免疫系統的激活[40];Treg具有抑制其它T細胞活化的功能,在維持免疫耐受、抑制過度炎癥反應和免疫病理方面發揮重要作用[41]。暴露于HIV-1的pDCs可抑制Th17的產生,但可促使初始CD4 T細胞向Treg細胞轉化,這個過程主要依賴于pDCs表達的吲哚-2,3-雙加氧酶(indolemine 2,3 dioxygenase,IDO)對色氨酸新陳代謝的調節作用[40,42,43]。HIV-1感染可促進pDCs對IDO的表達,使TH17與Treg的比率降低,這對HIV-1疾病進程中免疫系統的激活有抑制作用。pDCs可以通過對IFN-α的分泌和較弱的抗原提呈能力促進免疫系統的激活[42]。在上述兩種作用的平衡過程中機體進入慢性免疫激活狀態,使得免疫系統持續性被破壞,機體對機會性感染的防御能力降低,進而促進疾病的進展[40]。
IFN-α還可促使靶細胞釋放趨化因子,并在趨化因子的作用下使靶細胞向病毒復制的場所遷移,使得病毒趁機在機體內建立起系統性感染[44]。在感染過程中,pDCs可通過上調腫瘤壞死因子相關凋亡配體(TNF-related apoptosis-inducing ligand,TRAIL)和Bak的表達而促進CD4 T細胞的凋亡[45,46],而且高水平的IFN-α還會誘導胸腺內細胞缺陷并干擾T細胞選擇[47],并促進HIV-1誘導第三群固有淋巴細胞(group 3 innate lymphoid cell,ILC3)凋亡[48]。因此,IFN-α在HIV-1感染機體過程中可起到兩種截然不同的作用,既可抑制HIV-1病毒的感染和復制,又可促進HIV-1誘導的T細胞凋亡[28],給免疫系統帶來損害。
在HIV-1急性感染期,我們可以充分利用IFN-α的抗病毒作用,比如可將CpG作為接種疫苗時的輔助藥物,促進IFN-α的釋放,增強對HIV-1復制的抑制作用,誘導較強的T細胞免疫反應,這將有利于對疾病進展的控制[49]。在HIV-1慢性感染期,我們應抑制pDCs的持續性激活和IFN-α的產生,比如通過抑制gp120與CD4之間的相互作用[50,51],或者通過封閉TLR7和TLR9而抑制pDCs的激活,但是有研究發現TLR7和TLR9的封閉對血漿中IFN-α的分泌和ISGs的表達、病毒載量和T細胞激活都沒有明顯影響,這可能與封閉的效果有關,也可能是因為存在其它可以分泌IFN-α的細胞,或者在早期感染中pDCs的激活和IFN-α的釋放并不是促進免疫激活的主要因素[52]。
pDCs與HIV-1的相互作用過程十分復雜:一方面pDCs可通過分泌大量的IFN-α起到抗病毒作用;另一方面pDCs又會產生對機體不利的影響:pDCs既可通過分泌IFN-α激活機體免疫反應,又可通過分泌IDO誘導Treg產生和Th17降低,最終引起慢性免疫炎癥反應,破壞機體免疫系統,促進了疾病的進展。因此,我們應利用pDCs的特點,尋找既可以增強HIV-1病毒特異性的適應性免疫應答,又可以抑制慢性免疫反應激活的方法,從而發現抑制HIV-1傳播、調節適應性免疫的新途徑。
[1] Borrow P. Innate immunity in acute HIV-1 infection [J]. Curr Opin HIV AIDS, 2011, 6(5): 353-363.
[2] Lennert K, Remmele W. Karyometric research on lymph node cells in man. I. Germinoblasts, lymphoblasts & lymphocyte [J]. Acta Haematol, 1958, 19(2): 99-113.
[3] Soumelis V, Liu YJ. From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation [J]. Eur J Immunol, 2006, 36(9): 2286-2292.
[4] Yoneyama H, Matsuno K, Zhang Y, et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules [J]. Int Immunol, 2004, 16(7): 915-928.
[5] Zheng Z, Fu SW. Plasmacytoid dendritic cells act as the most competent cell type in linking antiviral innate and adaptive immune responses[J]. Cell Mol Imunol, 2005, 2(6): 411-417.
[6] Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 [J]. Science, 2004, 303(5663): 1526-1529.
[7] Wagner H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity [J]. Curr Opin Microbiol, 2002, 5(1): 62-69.
[8] Kaushik S, Teque F, Patel M, et al. Plasmacytoid dendritic cell number and responses to Toll-like receptor 7 and 9 agonists vary in HIV Type 1-infected individuals in relation to clinical state [J]. AIDS Res Hum Retroviruses, 2013, 29(3): 501-510.
[9] Patterson S, Rae A, Hockey N, et al. Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus [J]. J Virol, 2001, 75(14): 6710-6713.
[10] Groot F, van Capel T M, Kapsenberg M L, et al. Opposing roles of blood myeloid and plasmacytoid dendritic cells in HIV-1 infection of T cells: transmission facilitation versus replication inhibition [J]. Blood, 2006, 108(6): 1957-1964.
[11] Lederle A, Su B, Holl V, et al. Neutralizing antibodies inhibit HIV-1 infection of plasmacytoid dendritic cells by an FcγRIIa independent mechanism and do not diminish cytokines production [J]. Sci Rep, 2014, 4:5845-5845.
[12] Bloch N, O’Brien M, Norton T D, et al. HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx [J]. AIDS Res Hum Retroviruses, 2014, 30(2): 195-203.
[13] Su B, Lederle A, Laumond G, et al. Broadly neutralizing antibody VRC01 prevents HIV-1 transmission from plasmacytoid dendritic cells to CD4 T lymphocytes [J]. J Virol, 2014, 88(18): 10975-10981.
[14] Smed-S?rensen A, Loré K, Vasudevan J, et al. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells [J]. J Virol, 2005, 79(14): 8861-8869.
[15] O’Brien M, Manches O, Sabado R L, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-α-producing and partially matured phenotype [J]. J Clin Invest, 2011, 121(3): 1088-1101.
[16] Beignon AS, McKenna K, Skoberne M, et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions [J]. J Clin Invest, 2005, 115(11): 3265-3275.
[17] Haupt S, Donhauser N, Chaipan C, et al. CD4 binding affinity determines human immunodeficiency virus type 1-induced alpha interferon production in plasmacytoid dendritic cells [J]. J Virol, 2008, 82(17): 8900-8905.
[18] Reszka-Blanco N J, Sivaraman V, Zhang L, et al. HIV-1 env and nef cooperatively contribute to plasmacytoid dendritic cell activation via CD4-dependent mechanisms [J]. J Virol, 2015, 89(15): 7604-7611.
[19] Sabado RL, O’Brien M, Subedi A, et al. Evidence of dysregulation of dendritic cells in primary HIV infection [J]. Blood, 2010, 116(19): 3839-3852.
[20] Reeves RK, Evans TI, Gillis J, et al. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa [J]. J Infect Dis, 2012, 206(9): 1462-1468.
[21] Kwa S, Kannanganat S, Nigam P, et al. Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques [J]. Blood, 2011, 118(10): 2763-2773.
[22] Li H, Goepfert P, Reeves RK. Short communication: plasmacytoid dendritic cells from HIV-1 elite controllers maintain a gut-homing phenotype associated with immune activation [J]. AIDS Res Hum Retroviruses, 2014, 30(12): 1213-1215.
[23] Brown KN, Wijewardana V, Liu X, et al. Rapid influx and death of plasmacytoid dendritic cells in lymph nodes mediate depletion in acute simian immunodeficiency virus infection [J]. PLoS Pathogens, 2009, 5(5): 4713-4715.
[24] Lehmann C, Lafferty M, Garzinodemo A,etal. Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients [J]. PLoS One, 2010, 5(6): 600-603.
[25] Nascimbeni M, Perié L, Chorro L, et al. Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-αlpha expression [J]. Blood, 2009, 113(24): 6112-6119.
[26] Koyanagi Y. HIV-1感染的小動物模型 [C]. 中國實驗動物學報, 2005, 13(S1): 13-14.
[27] Zhang L, Jiang Q, Li G, et al. Efficient infection, activation, and impairment of pDCs in the BM and peripheral lymphoid organs during early HIV-1 infection in humanized rag2-/-γ C-/-mice in vivo [J]. Blood, 2011, 117(23): 6184-6192.
[28] Li G, Cheng M, Nunoya J, et al. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice[J]. PLoS Pathogens, 2014, 10(7): 295-295.
[29] Harris LD, Tabb B, Sodora DL, et al. Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques [J]. J Virol, 2010, 84(15): 7886-7891.
[30] Hyrcza MD, Kovacs C, Loutfy M, et al. Distinct transcriptional profiles in ex vivo CD4+and CD8+T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+T cells [J]. J Virol, 2007, 81(7): 3477-3486.
[31] Campillo-Gimenez L, Laforge M, Fay M, et al. Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase [J]. J Virol, 2010, 84(4): 1838-1846.
[32] Jacquelin B, Mayau V, Targat B, et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response [J]. J Clin Invest, 2009, 119(12): 3544-3555.
[33] Meier A, Chang JJ, Chan E S, et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1 [J]. Nat Med, 2009, 15(8): 955-959.
[34] Neff H, Bove FJ, Robinson EJ. Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes [J]. J Virol, 1994, 68(11): 7559-7565.
[35] Audigé A, Urosevic M, Schlaepfer E, et al. Anti-HIV state but not apoptosis depends on IFN signature in CD4+T cells[J]. J Immunol, 2006, 177(9): 6227-6237.
[36] Yan N, Chen ZJ. Intrinsic antiviral immunity [J]. Nat Immunol, 2012, 13(3): 214-222.
[37] Liovat AS, Rey-Cuillé MA, Lécuroux C, et al. Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection [J]. PLoS One, 2012, 7(10): e46143.
[38] Fentonmay AE, Dibben O, Emmerich T, et al. Relative resistance of HIV-1 founder viruses to control by interferon-alpha [J]. Retrovirology, 2013, 10(1): 1-18.
[39] Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells [J]. Nat Rev Immunol, 2015, 15(8): 471-485.
[40] Favre D, Mold J, Hunt PW, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease [J]. Sci Transl Med, 2010, 2(32): 32ra36.
[41] 何維. 醫學免疫學[M]. 北京,人民衛生出版社,2005: 190.
[42] Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection [J]. Immunol Rev, 2013, 254(1): 170-189.
[43] Manches O, Munn D, Fallahi A, et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism [J]. Retrovirology, 2009, 118(3): 3431-3439.
[44] Li Q, Estes JD, Schlievert PM, et al. Glycerol monolaurate prevents mucosal SIV transmission [J]. Nature, 2009, 458(7241): 1034-1038.
[45] Herbeuval JP, Nilsson J, Boasso A, et al. HAART reduces death ligand but not death receptors in lymphoid tissue of HIV-infected patients and simian immunodeficiency virus-infected macaques [J]. AIDS, 2009, 23(1): 35-40.
[46] Fraietta JA, Mueller YM, Yang G, et al. Type I interferon upregulates Bak and contributes to T cell loss during human immunodeficiency virus (HIV) infection [J]. PLoS Pathogens, 2013, 9(10): 623-626.
[47] Keir ME, Rosenberg MG, Sandberg JK, et al. Generation of CD3+CD8lowthymocytes in the HIV type 1-infected thymus [J]. J Immunol, 2002, 169(5): 2788-2796.
[48] Zhang Z, Cheng L, Zhao J, et al. Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion [J]. J Clin Invest, 2015, 125(9): 3692-3703.
[49] Gurney KB, Colantonio AD, Blom B, et al. Endogenous IFN-alpha production by plasmacytoid dendritic cells exerts an antiviral effect on thymic HIV-1 infection [J]. J Immunol, 2004, 173(12): 7269-7276.
[50] Herbeuval JP, Shearer GM. Are blockers of gp120/CD4 interaction effective inhibitors of HIV-1 immunopathogenesis? [J]. AIDS Rev, 2006, 8(1): 3-8.
[51] Herbeuval JP, Hardy AW, Boasso A, et al. Regulation of TNF-related apoptosis-inducing ligand on primary CD4+T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells [J]. Proc Natl Acad Sci U S A, 2005, 102(39): 13974-13979.
[52] Kader M, Smith A P, Guiducci C,etal. Blocking TLR7- and TLR9-mediated IFN-α production by plasmacytoid dendritic cells does not diminish immune activation in early SIV infection [J]. PLoS Pathogens, 2013, 9(7): e1003530.
Interaction of HIV-1 and plasmacytoid dendritic cells
PENG Zhuo-ying,XUE Jing,WEI Qiang
(Comparative Medicine Center, Peking Union College (PUMC) & Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Key Laboratory of Human Diseases Animal Models, State administration of Traditional Chinese medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing 100021, China)
Plasmacytoid dendritic cells (pDCs) as innate immune cells can produce a large amount of interferon-alpha (IFN-α). During the stage of acute human immunodeficiency virus (HIV) infection, pDCs can inhibit HIV replication by releasing IFN-α and activating adaptive immune responses. In the stage of chronic HIV infection, pDCs play a role in immune suppression by regulating immunocytes and damage of the immune system by depletion of the lymphocytes. Finally, pDCs have influence on the disease progression of acquired immune deficiency syndrome (AIDS).
plasmacytoid dendritic cells; HIV; type I interferon
國家自然科學基金(青年科學基金項目,81301437),科技部重大專項(2014ZX10001001-001-004,2014ZX10001001-002-006)。
彭卓穎,女,碩士研究生,從事實驗動物病毒學研究工作,E-mail:18810963239@163.com。
魏強,教授,博士導師,研究方向:實驗動物病毒學,E-mail:weiqiang@cnilas.pumc.edu.cn。
綜述與專論
R-33
A
1671-7856(2017) 06-0077-05
10.3969.j.issn.1671-7856. 2017.06.016
2016-11-09