李廷軒,葉代樺,張錫洲,郭靜怡
(四川農業大學資源學院,四川成都 611130)
植物對不同形態磷響應特征研究進展
李廷軒,葉代樺,張錫洲,郭靜怡
(四川農業大學資源學院,四川成都 611130)
磷是植物生長發育所必需的大量營養元素之一,參與植物體內許多重要化合物的合成與代謝。土壤中磷素具有多種形態,且不同形態磷的植物有效性差異較大;植物在不同形態磷環境下,體內會形成相應的適應性機制。植物吸收積累磷通常與根形態、根系分泌物、體內磷轉運等因素有關,受到特異基因表達的調控。了解植物對磷的吸收積累特性是篩選磷高效植物或磷富集植物的前提,也是充分利用土壤磷素資源、修復磷過剩環境的關鍵。根據國內外研究現狀,本文從磷素吸收積累、根系形態特征、磷酸酶與植酸酶的變化以及磷營養高效的分子機制,綜述了植物對不同形態磷的響應特征,并對未來該領域的研究進行了展望。
磷形態;磷高效;磷富集;植物響應機制
土壤中絕大部分磷以難溶性的無機態和有機態形式存在,其中僅有1%左右的磷可被植物直接吸收利用[1]。與植物其他必需礦質元素相比,土壤中磷的有效性低、遷移性差,導致部分土壤有效磷供應不足。全國農田土壤從南到北全磷含量變幅為0.31~1.72 g/kg,有效磷的平均含量僅為12.89 mg/kg[2]。研究表明,25 mg/kg左右的土壤有效磷是保障作物高產的前提[3]。農田土壤磷的有效性過低已成為作物生產的主要限制因素之一,施用磷肥可有效緩解這種現狀。然而,大量施用磷肥不僅直接造成磷礦資源的逐漸耗竭,而且導致大量農田土壤中磷素過剩,進而引發一系列高風險的環境問題。中國與許多畜牧業發達國家常將土壤作為畜禽糞便的負載場所[4]。營養成分豐富的有機肥 (雞糞、豬糞、山羊糞等) 施入土壤后,使得土壤中的磷含量超過了作物所需[5],造成土壤可溶性磷含量增加,地表徑流中的磷流失量也增加[6]。當土壤有效磷含量超過60 mg/kg時,磷素易通過淋溶損失[7]。據統計,我國的磷肥施用量已占全球施用總量的52%,集約化耕作土壤的磷累積現象嚴重,平均磷素累積量高達242 kg/hm2[8–9],磷引起的面源污染對我國水體總污染的貢獻高達93%[10]。因此,如何提高磷肥利用率、降低磷肥投入、減少土壤磷的流失以及提取環境中過剩的磷已成為資源環境領域研究的熱點問題。
篩選干物質量大、磷含量低的磷高效植物 (牧草或谷物) 是降低磷肥施用量、緩解農田土壤有效磷含量過低的有效途徑之一[11–12];利用磷高效植物作為動物飼料能從源頭上防控大量磷隨畜禽糞便排出帶來的環境污染風險。此外,利用磷富集植物從磷豐富土壤中提取過剩的磷是一種有效的治理方法[13]。植物修復具有成本低、不破壞土壤和水體生態環境、不引起二次污染等優點。磷富集植物收獲后又可作為綠肥資源,從而降低化肥施用量,減緩施用化肥對資源環境的污染與破壞。土壤中不同形態磷的有效性差異較大[14–17],不同植物對各形態磷的吸收利用各異[18],從而直接影響植物吸收積累磷素的能力。了解土壤中不同形態磷的有效性并從生理生化特征和分子水平變化角度闡明磷高效作物和磷富集植物對不同形態磷的吸收積累機制,可為充分利用磷資源,降低磷肥施用量,亦或有效提取土壤過剩磷提供依據。近年來,國內外關于植物對不同形態磷的吸收積累機制研究取得了較多進展。因此,本文總結了不同形態磷環境下,磷高效作物和磷富集植物對磷的吸收積累特征及其根系形態、磷酸酶、植酸酶和磷營養高效相關的特異基因在該過程中的作用。
磷分為無機態和有機態。無機態磷主要包括原生礦物和次生礦物中的無機磷酸鹽[19]。土壤無機態磷除少量的水溶態外,大部分以吸附態和礦物態存在于土壤中。有機態磷分為小分子有機態磷和大分子有機態磷,許多小分子有機態磷易溶于水、含量較低,但容量大、持續供應能力強,因此其對植物磷營養的貢獻不容低估。
土壤無機態磷約有99%以礦物態存在,根據其在不同化學提取劑中的選擇溶解性差異可分為磷酸鋁類 (Al-P)、磷酸鐵類 (Fe-P)、磷酸鈣 (鎂) 類 (Ca-P)和閉蓄態磷 (O-P)。蔣柏藩和顧益初將石灰性土壤的Ca-P分為磷酸二鈣型 (Ca2-P)、磷酸八鈣型 (Ca8-P) 和磷灰石型 (Ca10-P)[14–15]。各形態磷有效性差異較大,具體表現為Ca2-P有效性較高、持續性好,Ca8-P為緩效性磷源,Ca10-P是一種潛在性磷源。閉蓄態磷溶解度小,難以被植物利用。
土壤中的水溶態磷是植物吸收利用的最有效形態,但其含量極低,變化范圍在0.003~0.3 mg/L之間[22]。土壤水溶性磷含量主要受土壤pH、施肥方式及土壤固相磷的濃度和結合狀態影響,其補給主要源于磷酸鹽礦物的溶解和吸附固定態磷的釋放。
有機態磷在土壤磷庫中占較大的比例,為土壤全磷的20%~50%[23–24],包括植素類 (如肌醇磷酸鹽),核酸類 (如核酸、核苷酸),磷脂類 (如磷脂) 和其他有機磷化合物 (如微生物磷)。植素類的肌醇磷酸鹽占比最大,約為有機態磷總量的一半[25]。肌醇磷酸鹽包括一磷酸鹽到六磷酸鹽的系列磷酸鹽,并以肌醇六磷酸鹽 (植酸) 為主[24]。磷脂、核酸、核苷酸和磷酸糖類約占5%。土壤微生物磷含量僅占微生物干物質量的1.4%~4.7%[23],其周轉速率快,能釋放出活性較高的磷,被視為植物有效磷供應的重要來源。研究表明,已鑒別出來的土壤有機態磷含量大小為肌醇磷酸鹽>多聚糖磷酸鹽>核酸>磷脂>磷糖[19]。除上述有機態磷外,至今仍有近一半的成分沒有鑒別出來。有機態磷需在酶的作用下分解成無機態磷后才能發揮其植物有效性[17]。有研究認為,小分子有機態磷能被某些植物直接吸收利用[26–28]。土壤有機態磷的年礦化率較小 (2%~4%),但可逐漸礦化,從而增加土壤有效態磷含量,滿足植物對磷的吸收需求[24]。
植物根系從土壤中吸收的磷主要為通過擴散形式到達根系表面的磷常與土壤中的陽離子和有機物緊密結合,形成不同形態的磷,影響著植物對磷的吸收積累。不同磷效率植物對各形態磷的吸收利用差異較大,磷高效基因型植物對環境中有機態磷的吸收利用能力強于磷低效基因型。在Al-P條件下,大豆生物量及磷含量均高于Fe-P和Ca-P處理,且高效基因型對Al-P和Fe-P的吸收利用能力更強[29]。在控釋肥和KH2PO4條件下,磷高效基因型白羽扇豆生物量和體內磷含量無明顯差異,均顯著高于Al-P和Ca-P處理[30];磷高效基因型小麥的吸磷量和磷吸收效率也顯著高于磷低效基因型[31]。水稻在Ca-P處理下能正常生長,且磷高效基因型Pembe對根際碳酸氫鈉提取態和氫氧化鈉提取態有機磷的吸收利用能力強于磷低效基因型Zhongbu51[32]。牧草 (Trifolium subterraneum L.) 能高效吸收利用有機態磷α-D-葡萄糖-1-磷酸二鈉鹽(G1P) 和Na2HPO4,但對于植酸態磷 (IHP) 的吸收利用能力卻較弱[33],在G1P和Na2HPO4條件下植株體內磷含量是IHP處理下的4~7倍。小麥 (Triticum aestivum L.) 對不同形態磷的響應各異,與IHP處理相比,在 G1P、腺苷-5′-三磷酸二鈉 (ATP) 和Na2HPO4條件下磷積累量更高,地上部生物量更大[34]。IHP處理對植物生長具有明顯的抑制作用,與無機態磷處理相比,兩種基因型水稻“中部51”、“Azucena”和野生型煙草的生物量和磷含量均降低[35–36]。對磷富集植物水蓼 (Polygonum hydropiper) 的研究發現,礦山生態型在不同形態磷條件下吸收積累磷的能力均強于非礦山生態型,其對KH2PO4和IHP中磷的吸收積累能力顯著高于AMP、ATP和G1P處理[37–39]。礦山生態型粗齒冷水花 (Pilea sinofasciata) 對KH2PO4的吸收積累能力強于非礦山生態型,體內磷含量可達16.23 g/kg DW[37,40]。在高磷條件下,磷富集植物Duo festulolium體內磷含量高達12 g/kg DW,具有較強的磷積累特性,能吸收利用不同形態的磷,在ATP條件下地上部磷含量最高[16]。Sharma等[17]發現Gulf和Marshall黑麥草 (Lolium multiflorum L.)對IHP的吸收積累能力與對磷酸鹽的吸收積累能力相當,且遠高于對其他有機態磷的吸收積累。底物有效性較低可能是限制植物利用IHP能力的因素之一,高濃度IHP處理下植株地上部干物質量、磷含量等均顯著高于低濃度IHP處理[17,36,41]。浮游植物可以利用溶解態磷,包括正磷酸鹽無機縮聚磷酸鹽 (焦磷酸鹽、偏磷酸鹽和多聚磷酸鹽) 和有機結合磷 (氨基磷酸、磷核苷酸類化合物、磷蛋白、核蛋白、磷脂和糖類磷酸酯等)。正磷酸鹽是最有效的磷形態,能被浮游植物直接吸收利用。亞磷酸鹽[42]和多磷酸鹽[43]等溶解態無機磷也能被某些浮游植物直接吸收。溶解態有機磷(磷酸酯和膦酸酯) 也是浮游植物極其重要的磷源[44],但不同種類的浮游植物會選擇性吸收磷酸酯和膦酸酯,如聚球藻、原綠球藻[45]、束毛藻[46]等固氮藍藻可以利用膦酸酯。浮游植物能否高效利用大分子有機態磷 (如卵磷脂) 因物種不同存在明顯差異[47–48]。個別浮游植物在有機態磷條件下的生長情況好于正磷酸鹽[47, 49]。
土壤中磷素的擴散速率低且易被固定,導致其有效性較低,植物獲取磷素有賴于根系生長和根系形態的改變。根系的發育狀況直接決定根土界面的大小,影響根系可接觸的土壤體積和植物有效吸收礦質養分的面積[50–51]。植物根系形態不僅受到供磷水平的影響,也受到供磷形態的影響。關于植物根系形態對供磷水平的響應,尤其是以增大根長、根表面積、側根數目等的研究報道較多[52–56];關于其對供磷形態的響應還鮮見報道。Shu等[57]研究發現難溶性磷可刺激根系的生長,植物通過改變根系形態以增大根系與環境接觸的機會,從而提高根系對不同形態難溶性磷的適應能力。與Ca-P和KH2PO4處理相比,在Fe-P和IHP處理下白羽扇豆的排根形成比例更大,促進了白羽扇豆對低有效性磷源的吸收利用,緩解低有效性磷源對其生長的限制,其吸磷量可達4 mg/plant以上。施用Fe-P時小麥 (小偃54) 僅出現根系伸長的適應性反應,而施用IHP時小偃54則表現為根系伸長、根尖數增加、酸性磷酸酶分泌量增加的適應性反應,導致其磷吸收量由0.14 mg/pot增加至0.52 mg/pot[58]。大豆通過改變根系形態來提高對各形態磷濃度變化的適應能力,其根長和根表面積在Al-P處理下最高,而Ca-P和Fe-P次之,KH2PO4處理下最低[59]。油茶幼苗的根系生長受供磷形態的影響較為顯著,Ca-P、Al-P和Fe-P處理均顯著促進了油茶主根生長,減小了側根數和根冠比,且Ca-P的影響作用最大[60]。磷富集植物礦山生態型水蓼豐富的細根為其吸收利用不同形態磷源提供了優越的條件,其總根長、根表面積、根體積均在IHP和KH2PO4處理下顯著高于其他有機態磷處理,在IHP和KH2PO4處理下的吸磷量分別達到32.85和40.02 mg/plant[61]。IHP處理下,磷高效野生大麥磷含量急劇下降,刺激其通過增加根長、根系吸收面積等擴大對水分和養分的接觸空間,以保證正常生長[62]??梢?,磷高效植物根系形態對不同形態磷的適應性變化能提高其對磷素的獲取。
磷酸酶的水解能促進植物吸收利用有機態磷,但其活性在不同形態磷條件下表現出較大的差異。對磷富集植物Lolium multiflorum的研究表明,IHP和KH2PO4促進其根系磷酸酶活性升高,且顯著高于腺苷-3′,5′-環狀單磷酸鈉 (AMP) 和 ATP 處理,而與G1P和無磷 (對照) 間差異不顯著[17]。在IHP和Na2HPO4處理下,擬南芥根系酸性磷酸酶活性高于G1P處理[34]。磷酸酶根據其催化反應的最適pH不同分為堿性磷酸酶、中性磷酸酶和酸性磷酸酶。堿性磷酸酶和酸性磷酸酶活性對不同形態磷的響應研究報道較為集中。
4.1.1 堿性磷酸酶 堿性磷酸酶是一種正磷酸單酯水解酶,主要參與浮游植物細胞磷代謝和信號肽傳導,催化水解磷酸單酯化合物以釋放正磷酸根,對磷酸單酯鍵具有高度專一性。目前,堿性磷酸酶的研究主要集中于藍藻、甲藻、金藻等浮游植物。堿性磷酸酶在水體中主要以溶解態和細胞結合態存在,能指示磷缺乏,補充磷營養和影響磷循環[63]。當水體中無機磷酸鹽濃度很低時,堿性磷酸酶能水解水體中的溶解態有機磷,釋放無機磷酸鹽供藻類利用[64]。不同形態磷條件下,浮游植物體內堿性磷酸酶活性差異較大。環境中無機態磷的濃度影響著浮游植物體內的堿性磷酸酶活性,溶解態無機磷充足條件下浮游植物堿性磷酸酶活性通常較低。無機態磷條件下,中肋骨條藻和東海原甲藻的堿性磷酸酶活性在培養4天內不斷下降[28],球形棕囊藻[65]和米氏凱倫藻[48]的堿性磷酸酶活性變化不明顯。在低濃度無機態磷處理下,藻類的堿性磷酸酶活性通常較高。然而,一些藻類生長所需的無機態磷濃度較低,且其細胞內磷濃度較高,導致其即使在磷脅迫條件下也不產生堿性磷酸酶[65,67]。不同種類及同一種類的不同個體存在磷生理狀態差異,即使在相同的環境條件下,并非每一種浮游植物都會誘導產生堿性磷酸酶[68–69]。藻類對溶解態有機磷的吸收利用途徑存在差異,導致體內堿性磷酸酶的響應不同。中肋骨條藻和東海原甲藻在小分子溶解態有機磷β甘油磷酸鈉(G-P) 處理下其堿性磷酸酶活性最高,在6-磷酸葡萄糖 (G-6-P) 和ATP處理下次之,三種藻類對G-P、G-6-P和ATP具有相似的吸收利用機制[27–28]。然而,龐勇等[48]發現G-P、ATP和卵磷脂 (LEC) 處理均抑制了米氏凱倫藻堿性磷酸酶的表達。在G-P處理下,球形棕囊藻堿性磷酸酶活性變化不明顯,而在LEC作為磷源時,其堿性磷酸酶活性迅速提高[65]。因此,浮游植物對溶解態有機磷的利用主要包括兩種途徑:1) 細胞直接吸收;2) 通過相關酶 (如堿性磷酸酶) 降解后再吸收利用。浮游植物 (如藻類) 產生的堿性磷酸酶可礦化有機態磷,是促進其對磷吸收積累的一種重要機制。有機態磷種類繁多、結構復雜,浮游植物對不同形態有機磷的吸收利用機理有待進一步深入研究。
4.1.2 酸性磷酸酶 酸性磷酸酶是存在于土壤和植物體中的一種誘導酶,在植物碳水化合物轉化和蛋白質合成中起著重要作用,能促使有機磷的磷酯鍵水解,釋放相應的醇和無機態磷,從而提高土壤磷的有效性。植物根系分泌的磷酸酶在調控植物磷營養、有機磷代謝及再利用方面有著非常重要的作用,其活性影響有機態磷有效性的高低。目前,根系酸性磷酸酶活性對不同形態磷響應機理的研究集中于磷高效作物 (如小麥等) 和磷富集植物 (如黑麥草等)。低磷條件可誘導磷高效植物分泌酸性磷酸酶[70]。低濃度無機態磷處理和正常濃度植酸態磷處理可誘導磷高效基因型小麥 (3-2917) 根系產生酸性磷酸酶,酶活性顯著高于正常濃度無機態磷處理[71]。在植酸和核糖核酸作磷源時,不同基因型白羽扇豆 (Lupinus angustifolius L.和L. albus L.) 根系分泌的酸性磷酸酶活性表現為核糖核酸>植酸>無機磷[72]。與無機態磷處理相比,植酸態磷促進了豆科植物根系分泌酸性磷酸酶,使其能有效利用植酸[73]。小麥 (T. aestivum L.) 根系酸性磷酸酶活性在IHP處理下顯著高于Na2HPO4和G1P處理[74];在以無機態磷和有機態磷為混合磷源的處理下,種植9天的小麥體內酸性磷酸酶活性顯著高于Ca-P處理[75]。Yadav和Tarafdar[76]認為酸性磷酸酶活性的高低與有機態磷的水解難易有關,植酸鈣鎂處理下植物酶活性大于卵磷脂和甘油磷酸處理。因此,磷高效植物根系酸性磷酸酶活性的增加能促進有機態磷礦化為無機態磷,增強體內磷素再利用,是植株響應低磷脅迫的重要機制之一。具有磷富集能力的黃南瓜 (Cucurbita pepo var.melopepo)、黃瓜 (Cucumis sativus) 在高濃度KH2PO4條件下根系能產生更多的酸性磷酸酶[77]。在高濃度無機態磷條件下,一年生黑麥草Gulf和Marshall體內磷酸酶活性高于不施磷處理,且不同形態磷培養下植物體內酸性磷酸酶活性差異極大[78]。在不同形態磷培養下,牧草 (D. festulolium) 根系酸性磷酸酶活性表現為 G1P > IHP > AMP > ATP >KH2PO4處理[16]。磷富集植物礦山生態型水蓼根系在高濃度KH2PO4、畜禽廢水 (無機態磷和有機態磷)、豬糞 (無機態磷和有機態磷) 或IHP培養下酸性磷酸酶活性較高,均顯著高于對照[38–39,79–81];在不同形態有機磷處理下,IHP處理的水蓼根系酸性磷酸酶活性顯著高于AMP、ATP和G1P處理[39]??梢姡参锼嵝粤姿崦覆粌H能被低磷脅迫誘導,在不同形態的高磷環境下也可誘導產生 (如磷富集植物)。植物體通過其酶合成機制,對不同形態磷作出相應的響應,以促進其對磷的吸收積累。此外,植物對各形態磷的吸收積累能力大小不僅與根系酸性磷酸酶活性的高低相關,也取決于植物本身的遺傳特性。
土壤全磷的20%~50%以有機態存在[23–24],植酸及其鹽類約占有機態磷的50%[25],是植物生長重要的磷源。植酸酶可將植酸及其鹽類催化水解為肌醇與磷酸 (鹽),屬磷酸單酯水解酶[16,78],對植酸態磷具有高度的專一性。植酸酶通常分為3-植酸酶和6-植酸酶,來源于植物的植酸酶多屬于6-植酸酶,植物體內含量低。多數植物不能直接吸收利用植酸態磷,植酸酶水解礦化后方能被植物利用。野生型煙草不能吸收利用植酸磷的根本原因在于根部不能分泌植酸酶[36],野生型擬南芥也缺乏直接利用植酸磷的能力[34]。磷富集植物Gulf和Marshall根系植酸酶活性在高濃度KH2PO4處理下顯著增加,且顯著高于畜禽糞便處理 (無機態磷和有機態磷)[78];不同形態磷條件下,牧草根系植酸酶活性、生物量和磷含量在IHP條件下均顯著高于其他有機態磷處理,且隨著IHP處理濃度的提高而增加[17]。Priya等[16]認為AMP促進了一年生牧草 (D. festulolium) 根系植酸酶活性的增強,且在IHP處理下根系植酸酶活性較高。因此,IHP能提高一年生根系分泌植酸酶以促進其吸收利用植酸鹽類有機磷,相對于許多野生型植物而言,牧草利用植酸磷的能力較強。酶活性和底物有效性是影響環境中有機態磷水解釋放無機態磷速率的因素。Richardson等[34]將曲霉中的植酸酶基因轉入擬南芥,轉基因株系在IHP處理下植酸酶活性高于其他形態磷處理。以IHP為唯一磷源時,牧草 (T. subterraneum) 較低的根系植酸酶活性是限制其利用IHP的重要原因之一,當添加外源植酸酶 (源于Aspergillus niger) 后,牧草的長勢與無機態磷處理相當[32]。此外,植物根系植酸酶對不同形態磷的響應受磷濃度、各形態磷比例及生長期等因素的影響。具有磷富集能力的水蓼在KH2PO4處理下生長良好,根系植酸酶活性隨著處理濃度的增加而顯著提高,且隨生長期的增加兩種生態型間差異較大[38,79]。Ye等[81]研究表明,在不同濃度畜禽廢水條件下,兩種生態型水蓼根系植酸酶活性隨生長期的延長不斷降低,且在高濃度畜禽廢水處理下的酶活性高于低濃度處理,但均低于無機態磷處理。在以豬糞作為磷源的土培試驗中發現,水蓼根系植酸酶活性隨著豬糞處理濃度的增加而增加[80]。
植物對磷吸收積累的高效機制主要涉及根形態、根分泌、膜轉運、體內轉運等的適應性變化,有的在植物生長發育中必然產生 (結構性的),有的需要經過低磷條件誘導才能產生 (誘導性的),但都受遺傳控制[82]。植物磷高效基因的識別與克隆,尤其是基因表達及其調控機制的逐步清楚,使通過基因工程技術培育磷營養高效型作物新品種和高效提取過剩磷的修復植物成為可能。植物在不同磷營養條件下會發生形態、生理、生化等方面的變化,這一系列適應性變化是相關響應基因協調表達的結果。磷脅迫下,在植物根和莖中發現了許多特異性表達的基因,包括高親和力磷轉運子、分泌有機酸的相關基因、植酸酶相關基因、酸性磷酸酶相關基因、TPSI1/Mt4基因家族等[83],磷脅迫特異性基因的表達對植物吸收利用磷起到重要作用。Mitsukawa等[84]研究報道,擬南芥的高親和磷轉運蛋白基因AtPT1在煙草的懸浮細胞中高效表達,轉基因細胞生物量增加,對磷 (KH2PO4) 的吸收能力也明顯提高。與對照相比,超表達水稻高親和磷轉運蛋白基因OsPT1的轉基因植株其磷素吸收能力更強,低濃度KH2PO4條件下植株的長勢明顯得到改善[85]。在低濃度無機態磷脅迫下,與磷轉運蛋白PHT3和PT2高度同源的兩個基因 (ULF14和ULF15) 在小麥 (石新828) 體內特異增強表達,其在應答低磷脅迫和改善植株對低磷脅迫的適應能力中具有重要作用[86]。轉基因擬南芥中檸檬酸合成酶基因的表達水平和活性均顯著高于野生型植株[87]。Tesfaye等[88]發現,與對照相比,超量表達根瘤增強型蘋果酸脫氫酶 (neMDH) 基因的苜蓿根尖蘋果酸脫氫酶的活性增強了1.6倍,根部有機酸含量增加了4.2倍,同時根系分泌的蘋果酸、檸檬酸、草酸、琥珀酸和乙酸的量也增加,其對磷的吸收能力也相應提高。當前,對植酸酶基因工程的研究主要集中于降低種子中的植酸含量,提高單胃動物對植酸的吸收積累和根系植酸酶的分泌量,從而促進根際有機態磷的活化和對土壤有機態磷的吸收利用。在玉米胚中特異表達A.niger phyA2基因,測得轉基因種子中植酸酶活性顯著提高,植酸含量與對照相比明顯降低,并且轉基因株系的種子萌發率和產量并沒有受到影響[89]。轉酸性磷酸酶和植酸酶基因可以提高植物吸收利用植酸鹽或其他有機態磷的能力。在以IHP為唯一磷源的條件下,與對照相比,超量表達MtPAP1的轉基因擬南芥中,根系細胞間隙中的酸性磷酸酶活性明顯提高。液體培養基中的有機態磷可被轉基因擬南芥分泌的酸性磷酸酶快速降解,且擬南芥轉基因植株的生物學產量、植株無機磷含量和全磷含量明顯高于野生物種[90]。植酸態磷處理下,轉紫色酸性磷酸酶基因擬南芥根系GUS表達和GUS活性分別比KH2PO4處理提高了1.3倍和1.9倍[91];轉M. truncatula紫色酸性磷酸酶基因的表達提高了擬南芥獲取磷的能力,使得其生物量也顯著增加[92]。在以植酸為磷源的條件下,轉紫色酸性磷酸酶 (MtPAP1) 基因的表達,使得轉基因苜蓿(Medicago sativa L.) 生物量和磷獲取量均顯著高于對照植株[93]。菜豆 (Phaseolus vulgaris) 葉片和根系紫色酸性磷酸酶 (PvPAP3) 受低磷誘導,參與利用外源ATP,以維系植物以ATP為唯一磷源時正常生長[94]。在充足的K2HPO4處理下,Gulf黑麥草長勢明顯優于磷缺乏處理,其體內超量表達紫色酸性磷酸酶基因LmPAP1是磷積累量增加的根本原因之一[95]。表達了轉胞外植酸酶基因的小麥、擬南芥等從IHP中獲取的磷是在磷酸鹽培養下的7倍左右[73,96]。在植酸態磷培養下,轉M. truncatula植酸酶基因的擬南芥生物量及體內磷含量均顯著高于對照[97],在擬南芥體內表達轉曲霉植酸酶基因的研究中也有類似發現[34]。利用根癌農桿菌菌株LBA4404,通過兩步再生方法將植物表達載體pBINPR-phyI中含有的帶胞外分泌信號肽序列的植酸酶基因轉入油菜 (中雙6號),轉基因油菜能以植酸為唯一磷源正常生長,根系分泌大量高活性植酸酶有助于土壤有機態磷轉化為有效態磷供植物利用,非轉基因植株則不能[98];在轉枯草芽孢桿菌植酸酶基因煙草的研究中也有類似現象[36]。而TPSI1/Mt4基因家族則被認為是新的磷缺乏誘導基因家族,其在低磷條件的早期上調,在植物適應低磷脅迫的初期具有十分重要的作用。與低濃度Ca-P處理相比,當Ca-P供給充足時,番茄葉片和根系中磷饑餓誘導表達基因TPSI1的轉錄顯著降低,表明TPSI1基因可能是番茄磷饑餓的早期反應之一[99]。在未受VAM侵染且處于磷饑餓狀態時,Mt4在根系中正常表達,自侵染早期開始,Mt4的表達明顯減弱,環境中高濃度的KH2PO4抑制Mt4的表達[100]。Burleigh和Harrison[101]發現Mt4基因在紫花苜蓿中的表達并非受根內磷含量的影響,而是受莖中磷狀態的調節。Martín等[102]在擬南芥突變體中發現了TPSI1/Mt4的同源基因At4,At4在莖內組成型表達,無論無機態磷供應充足與否,擬南芥pho1突變體均不能將磷轉移至木質部,說明早期反應相關基因TPSI1/Mt4家族可能是受莖內磷狀態的調節。水稻體內發現了TPSI1/Mt4的同源基因OsPI1,它受低濃度的NaH2PO4快速誘導,能對低磷環境產生特異性響應[103]。小麥 (小偃54) 的IPS基因屬于典型的受缺磷條件特異誘導的TPSI1/MT4小基因家族,該基因家族在正常營養條件下表達量很低,而缺磷顯著增加了根系中TaIPS1.1、TaIPS1.2和TaIPS1.3基因與地上部TaIPS2.1和TaIPS2.2基因的表達,通過比較其對缺磷的響應,認為TaIPS1.1是相對理想的用于診斷小麥植株磷素豐缺的基因[104]。
近年來,為挖掘磷高效植物充分利用土壤磷素的能力,探討磷富集植物對磷過剩土壤的修復潛力,展開了植物對不同形態磷吸收積累及生理生化特征的研究,但其內在機制不夠深入,缺乏系統性研究。為了深入揭示和弄清植物對不同形態磷的響應機理,尚有以下方面需要進一步深入研究。
篩選能吸收利用土壤中大量的潛在磷源以提高干物量與籽粒產量的磷高效植物,充分利用土壤儲備態磷以緩解土壤有效態磷不足的問題;篩選用于修復磷過剩土壤及富營養化水體的理想磷富集植物,其應具備地上部生物量大、磷積累量高和生物安全等特點。其次,建立一套磷高效植物和磷富集植物篩選的評價指標也十分必要。
為何植物能適應多種形態磷環境,是否與根系構型、根系分泌物、根系次生代謝物以及細胞組分有一定關系,這一理論尚不清楚,應加強根系對不同形態磷的形態學及生理生化響應特征研究。其次,根際特殊的物理、化學及生物學特性決定磷的植物有效性,從而影響植物的生長及對磷的吸收積累。土壤化學成分的組成及根際特性的變化將改變磷素形態及其生物有效性,微生物活動及其產酶、產酸特性在這一過程中起著重要作用,應深入研究植物的磷高效吸收積累與根際磷組分、微生物特性的關系。
雖然轉基因植株在適應不同形態磷和吸收積累磷方面有明顯的優勢,但特異基因所調控的生理生化特性及相關基因在不同植物中的作用仍需深入探究。因此,深入研究基因的分離克隆,將不同形態磷下特異性表達的基因分離出來,使其在生物量大的植株體內表達,并將其與根吸收利用磷的研究相結合,為更深入地探討植物吸收利用不同形態磷的內在機理,為充分利用土壤中大量的磷,防治土壤磷素過剩或水體富營養化等問題作出更大的貢獻。
[1]Raghothama K G. Phosphorus and plant nutrition: an overview [A].Sims J T, Sharpley A N. Phosphorus: Agriculture and the environment [C]. Madison: American Society of Agronomy, 2005,355–378.
[2]王永壯, 陳欣, 史奕. 農田土壤中磷素有效性及影響因素[J]. 應用生態學報, 2013, 24(1): 260–268.Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260–268.
[3]Higgs B, Johnston A E, Salter J L, et al. Some aspects of achieving sustainable phosphorus use in agriculture[J]. Journal of Environmental Quality, 2000, 29(1): 80–87.
[4]王方浩, 馬文奇, 竇爭霞, 等. 中國畜禽糞便產生量估算及環境效應[J]. 中國環境科學, 2006, 26(5): 614–617.Wang F H, Ma W Q, Dou Z X, et al. The estimation of the production amount of animal manure and its environmental effect in China[J]. China Environmental Science, 2006, 26(5): 614–617.
[5]Guo Y, Li G. Nitrogen leaching and phosphorus accumulation in a perennial pasture after composted goat manure was top dressed and incorporated in the Three Gorges region[J]. Journal of Soils and Sediments, 2012, 12(5): 674–682.
[6]Wang W, Liang T, Wang L, et al. The effects of fertilizer applications on runoff loss of phosphorus[J]. Environmental Earth Sciences, 2013, 68(5): 1313–1319.
[7]Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the broad balk experiment[J]. Journal of Environmental Quality, 1995,24(5): 904–910.
[8]FAO. Fertilizer consumption in nutrients per ha of arable land (2002 and 2009)[EB/OL]. http://faostat.fao.org/site/405/default.aspx,2009.
[9]Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China: a review[J]. Plant and Soil, 2011, 349(1–2): 157–167.
[ 10 ]Ongley E D, Zhang X L, Yu T. Current status of agricultural and rural non-point source pollution assessment in China[J].Environmental Pollution, 2010, 158(5): 1159–1168.
[ 11 ]James R A, Weligama C, Verbyla K, et al. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control[J]. Journal of Experimental Botany, 2016, 67(12):3709–3718.
[ 12 ]Wang X, Shen J, Liao H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?[J].Plant Science, 2010, 179(4): 302–306.
[ 13 ]Pant H K, Mislevy P, Rechcigl J E. Effects of phosphorus and potassium on forage nutritive value and quantity: environmental implications[J]. Agronomy Journal, 2004, 96(5): 1299–1305.
[ 14 ]蔣柏藩, 顧益初. 石灰性土壤無機磷分級體系的研究[J]. 中國農業科學, 1989, 22(3): 58–66.Jiang B F, Gu Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989,22(3): 58–66.
[ 15 ]顧益初, 蔣柏藩. 石灰性土壤無機磷分級的測定方法[J]. 土壤,1990, 22(2): 101–102.Gu Y C, Jiang B F. Methods of determination of inorganic phosphorus fractionation in calcareous soil[J]. Soils, 1990, 22(2):101–102.
[ 16 ]Priya P, Sahi S V. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium)[J]. Plant Physiology and Biochemistry, 2009, 47(1): 31–36.
[ 17 ]Sharma N C, Sahi S V. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions[J]. Environmental Science Technology, 2011, 45(24): 10531–10537.
[ 18 ]Xue A O, Guo X, Qian Z H U, et al. Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies[J]. Journal of Integrative Agriculture,2014, 13(2): 326–334.
[ 19 ]孫桂芳, 金繼運, 石元亮. 土壤磷素形態及其生物有效性研究進展[J]. 中國土壤與肥料, 2011, (2): 1–9.Sun G F, Jin J Y, Shi Y L, et al. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil and Fertilizer Sciences in China, 2011, (2): 1–9.
[ 20 ]尹遜霄, 華珞, 張振賢, 等. 土壤中磷素的有效性及其循環轉化機制研究[J]. 首都師范大學學報 (自然科學版), 2005, 26(3): 95–101.Yin X X, Hua L, Zhang Z X, et al. Study on the effectiveness of phosphorus and mechanism of its circle in soil[J]. Journal of Capital Normal University (Natural Science Edition), 2005, 26(3): 95–101.
[ 21 ]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: A review[J]. Plant and Soil, 2001, 237(2): 173–195.
[ 22 ]黃昌勇. 土壤學[M]. 北京: 中國農業出版社, 2000.Huang C Y. Soil science [M]. Beijing: China Agriculture Press,2000.
[ 23 ]魯如坤. 土壤-植物營養學原理和施肥[M]. 北京: 化學工業出版社, 1998.Lu R K. Theory of soil-plant nutrition and fertilization [M]. Beijing:Chemical Industry Press, 1998.
[ 24 ]趙少華, 宇萬太, 張璐, 等. 土壤有機磷研究進展[J]. 應用生態學報, 2004, 15(11): 2189–2194.Zhao S H, Yu W T, Zhang L, et al. Research advance in soil organic phosphorus[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2189–2194.
[ 25 ]Hayes J E, Richardson A E, Simpson R J. Components of organic phosphorus in soil extracts that are hydrolyzed by phytase and acid phosphates[J]. Biology and Fertility of Soils, 2000, 32(4): 279–286.
[ 26 ]來璐, 郝明德, 彭令發. 黃土旱塬長期施肥條件下土壤磷素變化及管理[J]. 水土保持研究, 2003, 10(1): 68–70.Lai L, Hao M D, Peng L F. The variation of soil phosphorus of long–term continuous cropping and management in the Loess Plateau [J]. Research of Soil and Water Conservation, 2003, 10(1):68–70.
[ 27 ]李英, 呂頌輝, 徐寧, 等. 東海原甲藻對不同磷源的利用特征[J].生態科學, 2005, 24(4): 314–317.Li Y, Lü S H, Xu N, et al. The utilization of Prorocentrum donghaiense to four different types of phosphorus[J]. Ecologic Science, 2005, 24(4): 314–317.
[ 28 ]趙艷芳, 俞志明, 宋秀賢, 等. 不同磷源形態對中肋骨條藻和東海原甲藻生長及磷酸酶活性的影響[J]. 環境科學, 2009, 30(3):693–699.Zhao Y F, Yu Z M, Song X X, et al. Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense[J]. Environmental Science, 2009, 30(3): 693–699.
[ 29 ]喬云發, 韓曉增, 苗淑杰. 大豆利用難溶磷源基因型差異[J]. 大豆科學, 2007, 26(4): 571–277.Qiao Y F, Han X Z, Miao S J. Genotypic variation in P utilization of soybean (Glycine max L.) grown in various insoluble P sources[J].Soybean Science, 2007, 26(4): 571–277.
[ 30 ]Erro J, Zamarre?o A M, García-Mina J M. Ability of various waterinsoluble fertilizers to supply available phosphorus in hydroponics to plant species with diverse phosphorus-acquisition efficiency:Involvement of organic acid accumulation in plant tissues and root exudates[J]. Journal of Plant Nutrition and Soil Science, 2010,173(5): 772–777.
[ 31 ]侯焱焱, 展曉瑩, 劉璇, 等. 不同形態無機磷對兩種磷效率小麥根際特征的影響[J]. 中國土壤與肥料, 2011, (1): 30–43.Hou Y Y, Zhan X Y, Liu X, et al. Effects of different forms of inorganic P on rhizosphere in different P–efficiency wheat[J]. Soil and Fertilizer Sciences in China, 2011, (1): 30–43.
[ 32 ]Li Y F, Luo A C, Wei X H, et al. Changes in phosphorus fractions,pH, and phosphatase activity in rhizosphere of two rice genotypes[J]. Pedosphere, 2008, 18(6): 785–794.
[ 33 ]Hayes J E, Simpson R J, Richardson A E. The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate[J]. Plant and Soil, 2000, 220(1–2): 165–174.
[ 34 ]Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J]. Plant Journal, 2001, 25(6): 641–649.
[ 35 ]孔凡利, 林文量, 嚴小龍, 等. 轉枯草芽孢桿菌植酸酶基因煙草對不同介質中植酸磷的吸收利用[J]. 應用生態學報, 2005, 16(12):2389–2393.Kong F L, Lin W L, Yan X L, et al. Phytate-phosphorus uptake and utilization by transgenic tobacco carrying Bacillus subtilis phytase gene[J]. Chinese Journal of Applied Ecology, 2005, 16(12):2389–2393.
[ 36 ]李永夫, 羅安程, 吳良歡, 等. 兩個基因型水稻利用有機磷的差異及其與根系分泌酸性磷酸酶活性的關系[J]. 應用生態學報, 2009,20(5): 1072–1078.Li Y F, Luo A C, Wu L H, et al. Difference in P utilization from organic phosphate between two rice genotypes and its relations with root-secreted acid phosphatase activity[J]. Chinese Journal of Applied Ecology, 2009, 20(5): 1072–1078.
[ 37 ]Xiao G L, Li T X, Zhang X Z, et al. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area[J]. Journal of Hazardous Materials, 2009, 171(1–3):542–550.
[ 38 ]Huang X, Li T X, Zhang X Z, et al. Growth, P accumulation, and physiological characteristics of two ecotypes of Polygonum hydropiper as affected by excess P supply[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(2): 290–302.
[ 39 ]Ye D H, Li T X, Liu D, et al. P accumulation and physiological responses to different high P regimes in Polygonum hydropiper for understanding a P-phytoremediation strategy[J]. Scientific Reports,2015, 5: 17835.
[ 40 ]Zheng Z C, Li T X, Zhang X Z, et al. Phosphorous accumulation and distribution of two ecotypes of Pilea sinofasciata grown in phosphorous-enriched soils[J]. Applied Soil Ecology, 2014, 84:54–61.
[ 41 ]蔡秋燕, 張錫洲, 李廷軒, 等. 磷高效野生大麥拔節期對植酸態有機磷的利用[J]. 中國農業科學, 2015, 48(16): 3146–3155.Cai Q Y, Zhang X Z, Li T X, et al. Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency[J]. Scientia Agricultura Sinica, 2015, 48(16): 3146–3155.
[ 42 ]Martínez A, Osburne M S, Sharma A K, et al. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301[J].Environmental Microbiology, 2012, 14(6): 1363–1377.
[ 43 ]Oh S J, Yamamoto T, Kataoka Y, et al. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae)[J].Fisheries Science, 2002, 68(2): 416–424.
[ 44 ]金杰, 劉素梅. 海洋浮游植物對磷的響應研究進展[J]. 地球科學進展, 2013, 28(2): 253–261.Jin J, Liu S M. Advances in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28(2):253–261.
[ 45 ]Ilikchyan I N, McKay R M L, Kutovaya O A, et al. Seasonal expression of the picocyanobacterial phosphonate transporter gene phnD in the Sargasso Sea[J]. Frontiers in Microbiology, 2010, 1(1):135.
[ 46 ]Beversdorf L J, White A E, Bj?rkman K M, et al. Phosphonate metabolism of Trichodesmium IMS101 and the production of greenhouse gases[J]. Limnology and Oceanography, 2010, 55(4):1755–1767.
[ 47 ]岳濤, 張德祿, 胡春香. 太湖3種優勢微囊藻對不同形態磷的吸收利用[J]. 湖泊科學, 2014, 26(3): 379–384.Yue T, Zhang D L, Hu C X. Utilization of phosphorus in four forms of the three dominant Microcystis morphospecies in Lake Taihu[J].Journal of Lake Sciences, 2014, 26(3): 379–384.
[ 48 ]龐勇, 聶瑞, 呂頌輝. 不同磷源對米氏凱倫藻生長和堿性磷酸酶活性的影響[J]. 海洋科學, 2016, 40(4): 59–64.Pang Y, Nie R, Lü S H. Effects of the different kinds of phosphorus sources on growth and alkaline phosphatase activity (APA) of Karenia mikimotoi Hansen[J]. Marine Sciences, 2016, 40(4): 59–64.
[ 49 ]Wang Z H, Liang Y, Kang W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa[J]. Harmful Algae, 2011, 12(4): 113–118.
[ 50 ]Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology and Evolution,2008, 23(2): 95–103.
[ 51 ]Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops[J]. Plant Physiology,2011, 156(3): 1041–1049.
[ 52 ]林雅茹, 唐宏亮, 申建波. 野生大豆根系形態對局部磷供應的響應及其對磷吸收的貢獻[J]. 植物營養與肥料學報, 2013, 19(1):162–169.Lin Y R, Tang H L, Shen J B. Effect of localized phosphorus supply on root morphological traits and their contribution to phosphorus uptake in wild soybean[J]. Journal of Plant Nutrition and Fertilizer,2013, 19(1): 162–169.
[ 53 ]Shah S R U, Agback P, Lundquist P O. Root morphology and cluster root formation by seabuckthorn (Hippopha? rhamnoides L.)in response to nitrogen, phosphorus and iron deficiency[J]. Plant and Soil, 2015, 397(1–2): 1–17.
[ 54 ]Jeffery R P, Simpson R J, Lambers H, et al. Root morphology acclimation to phosphorus supply by six cultivars of Trifolium subterraneum L[J]. Plant and Soil, 2017, 412(1–2): 21–34.
[ 55 ]Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass)[J]. Plant and Soil, 2017,412(1–2): 7–19.
[ 56 ]Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997–1005.
[ 57 ]Shu L, Shen J, Rengel Z, et al. Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources[J]. Plant Science, 2007, 172(5):1017–1024.
[ 58 ]展曉瑩, 候焱焱, 張淑香. 不同磷形態對兩種磷效率小麥根系指標與根際特征差異的影響[J]. 核農學報, 2013, 27(7): 1012–1019.Zhan X Y, Hou Y Y, Zhang S X. Response of rhizosphere characteristics of two different P-efficiency wheat genotypes(Tritium aestivum L.) to the inorganic and organic phosphorus sources[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(7):1012–1019.
[ 59 ]谷思玉, 閆琰, 張彥麗. 難溶性無機磷酸鹽對大豆苗期根系生長的影響[J]. 大豆科學, 2012, 31(1): 92–95.Gu S Y, Yan Y, Zhang Y L. Effect of insoluble inorganic phosphate on root growth of soybean seedlings[J]. Soybean Science, 2012,31(1): 92–95.
[ 60 ]王金路, 陳永忠, 張黨權, 等. 不同磷源對油茶幼苗生長的影響[J].中南林業科技大學學報, 2014, 34(5): 47–50.Wang J L, Chen Y Z, Zhang D Q, et al. Effects of different phosphates on growth of Camellia olerifera seedling[J]. Journal of Central South University of Forestry Technology, 2014, 34(5):47–50.
[ 61 ]葉代樺. 有機磷源對水蓼磷吸收積累特性的影響[D]. 四川農業大學碩士學位論文, 2015.Ye D H. Effect of organic P sources on characteristics of P assimilation and accumulation in Polygonum hydropiper [D]. MS Thesis of Sichuan Agricultural University, 2015.
[ 62 ]劉濤, 蔡秋燕, 張錫洲, 等. 磷高效型野生大麥根系形態和根系分泌物對低水平植酸態有機磷的響應特征[J]. 植物營養與肥料學報, 2016, 22(6): 1538–1547.Liu T, Cai Q Y, Zhang X Z, et al. Response characteristics in root morphology and root excretion of P-efficient wild barley exposured to low level of phytate-phosphorus[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1538–1547.
[ 63 ]張勝花, 常軍軍, 孫珮石. 水體藻類磷代謝及藻體磷礦化研究進展[J]. 生態環境學報, 2013, 22(7): 1250–1254.Zhang S H, Chang J J, Sun P S. Phosphorus cycle of algae during its growth and death process: phosphorus uptake and release[J].Ecology and Environmental Sciences, 2013, 22(7): 1250–1254.
[ 64 ]Huang B, Ou L, Hong H, et al. Bioavailability of dissolved organic phosphorus compounds to typical harmful dinoflagellate Prorocentrum donghaiense Lu[J]. Marine Pollution Bulletin, 2005,51(8–12): 838–844.
[ 65 ]王艷, 唐海溶. 不同形態的磷源對球形棕囊藻生長及堿性磷酸酶的影響[J]. 生態科學, 2006, 25(1): 38–40.Wang Y, Tang H R. Effects of different phosphorus on the growth and alkaline phospohatase activity in Phaeocystis Globosa[J].Ecologic Science, 2006, 25(1): 38–40.
[ 66 ]Hernández I, Niell F X, Whitton B A. Phosphatase activity of benthic marine algae. An overview[J]. Journal of Applied Phycology, 2002, 14(6): 475–487.
[ 67 ]Wu Z, Zeng B, Li R, et al. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation[J]. Harmful Algae,2012, 15: 53–58.
[ 68 ]Rengefors K, Pettersson K, Blenckner T, et al. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton:application of a novel method[J]. Journal of Plankton Research,2001, 23(4): 435–443.
[ 69 ]Rengefors K, Ruttenberg K C, Haupert C L, et al. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton[J]. Limnology and Oceanography, 2003, 48(3): 1167–1175.
[ 70 ]孫海國, 張福鎖. 缺磷條件下的小麥根系酸性磷酸酶活性研究[J].應用生態學報, 2002, 13(3): 379–381.Sun H G, Zhang F S. Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots[J]. Chinese Journal of Applied Ecology, 2002, 13(3): 379–381.
[ 71 ]吳沂珀, 張錫洲, 李廷軒, 等. 小麥不同磷效率品種對不同磷源的利用差異及酸性磷酸酶的作用[J]. 核農學報, 2013, 27(3):351–357.Wu Y P, Zhang X Z, Li T X, et al. Difference in P utilization from organic phosphate between two wheat varieties and its relations with acid phosphatase activity[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 351–357.
[ 72 ]Adams M A, Pate J S. Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.)[J]. Plant and Soil, 1992,145(1): 107–113.
[ 73 ]Rao I M, Borrero V, Ricaurte J, et al. Adaptive attributes of tropical forage species to acid soils. V. Differences in phosphorus acquisition from less available inorganic and organic sources of phosphate[J]. Journal of Plant Nutrition, 1999, 22(7): 1175–1196.
[ 74 ]Richardson A E, Hadobas P A, Hayes J E. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture[J]. Plant Cell and Environment,2000, 23(4): 397–405.
[ 75 ]Tarafdar J C, Claassen N. Organic phosphorus utilization by wheat plants under sterile conditions[J]. Biology and Fertility of Soils,2003, 39(1): 25–29.
[ 76 ]Yadav R S, Tarafdar J C. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants[J]. Biology and Fertility of Soils, 2001, 34(3): 140–143.
[ 77 ]Sharma N C, Starnes D L, Sahi S V. Phytoextraction of excess soil phosphorus[J]. Environmental Pollution, 2007, 146(1): 120–127.
[ 78 ]Starnes D L, Padmanabhan P, Sahi S V. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass (Lolium multiflorum L.)[J]. Plant Physiology and Biochemistry, 2008,46(5–6): 580–589.
[ 79 ]葉代樺, 李廷軒, 張錫洲, 等. 高磷對礦山生態型水蓼磷富集特性的影響[J]. 植物營養與肥料學報, 2014, 20(1): 186–194.Ye D H, Li T X, Zhang X Z, et al. Effect of high phosphate supply on the P accumulation characteristics of the mining ecotype of Polygonum hydropiper[J]. Journal of Plant Nutrition and Fertilizer,2014, 20(1): 186–194.
[ 80 ]Ye D H, Li T X, Chen G D, et al. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper[J]. Chemosphere, 2015, 105(3): 139–145.
[ 81 ]Ye D, Li T, Huang X, et al. P accumulation potential of Polygonum hydropiper grown in high P media[J]. Clean–Soil Air Water, 2015,43(2): 279–286.
[ 82 ]周志高, 汪金舫, 周健民. 植物磷營養高效的分子生物學研究進展[J]. 植物學通報, 2005, 22(1): 82–91.Zhou Z G, Wang J F, Zhou J M. Current advances in the molecular biology of high efficient phosphorus nutrition in plants[J]. Chinese Bulletin of Botany, 2005, 22(1): 82–91.
[ 83 ]黃沆, 付崇允, 周德貴, 等. 植物磷吸收的分子機理研究進展[J].分子植物育種, 2008, 6(1): 117–122.Huang H, Fu C Y, Zhou D G, et al. Progress in research of molecular mechanism of phosphorus absorption in plants[J].Molecular Plant Breeding, 2008, 6(1): 117–122.
[ 84 ]Mitsukawa N, Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7098–7102.
[ 85 ]Seo H M, Jung Y, Song S. Increased expression of OsPT1, a highaffinity phosphate transporter, enhances phosphate acquisition in rice[J]. Biotechnology Letters, 2008, 30(10): 1833–1838.
[ 86 ]谷俊濤, 鮑金香, 王效穎, 等. 利用cDNA-AFLP技術分析小麥應答低磷脅迫的特異表達基因[J]. 作物學報, 2009, 35(9):1597–1605.Gu J T, Bao J X, Wang X Y, et al. Investigation based on cDNAAFLP approach for differential expressed genes responding to deficient-Pi in wheat[J]. Acta Agronomica Sinica, 2009, 35(9):1597–1605.
[ 87 ]Anoop V M, Basu U, Mc Cammon M T, et al. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing amitochondrial citrate synthase[J]. Plant Physiology,2003, 132(4): 2205–2217.
[ 88 ]Tesfaye M, Temple S J, Allan D L, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiology, 2001,127(4): 1836–1844.
[ 89 ]Chen R, Xue G, Chen P, et al. Transgenic maize plants expressing a fungal phytase gene[J]. Transgenic Research, 2008, 17(4): 633–643.
[ 90 ]肖凱, 谷俊濤, Maria Harrison, 等. MtPAP1表達特性及異源表達對擬南芥有機態磷吸收的影響[J]. 植物生理與分子生物學學報,2006, 32(1): 99–106.Xiao K, Gu J T, Maria H, et al. Expression characteristics of MtPAP1 and its exotic expression in Arabidopsis affecting organic phosphorus absorption of plants[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 99–106.
[ 91 ]孔佑賓, 李喜煥, 張彩英. 大豆紫色酸性磷酸酶基因GmPAP4啟動子結構與活性分析[J]. 中國農業科學, 2017, 50(3): 582–590.Kong Y B, Li X H, Zhang C Y. Construction and activity analysis of the promoter of purple acid phosphatase gene GmPAP4 in soybean[J]. Scientia Agricultura Sinica, 2017, 50(3): 582–590.
[ 92 ]Xiao K, Katagi H, Harrison M, et al. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatases gene from M.truncatula[J]. Plant Science, 2006, 170(2): 191–202.
[ 93 ]Ma X F, Tudor S, Butler T, et al. Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils[J]. Molecular Breeding,2012, 30(1): 377–391.
[ 94 ]Liang C, Tian J, Lam H M, et al. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant Physiology, 2010, 152(2): 854–865.
[ 95 ]Venkatachalam P, Jain A, Sahi S, et al. Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass(Lolium multiflorum L.): a Pi hyperaccumulator[J]. Plant Molecular Biology, 2009, 69(1–2): 1–21.
[ 96 ]Mudge S R, Smith F W, Richardson A E. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source[J]. Plant Science, 2003, 165(4): 871–878.
[ 97 ]Xiao K, Harrison M J, Wang Z. Transgenic expression of a novel M.truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis[J]. Planta, 2005, 222(1): 27–36.
[ 98 ]方小平, 王轉, 陳茹梅, 等. 能以植酸磷為唯一磷源生長的轉基因甘藍型油菜[J]. 作物學報, 2010, 36(2): 228–232.Fang X P, Wang Z, Chen R M, et al. Transgenic Brassica napus growing with phytate as a sole phosphorus source[J]. Acta Agronomica Sinica, 2010, 36(2): 228–232.
[ 99 ]Liu C, Muchhal U S, Uthappa M, et al. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus[J]. Plant Physiology, 1998, 116(1): 91–99.
[100]Burleigh S H, Harrison M J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition[J]. Plant Molecular Biology, 1997, 34(2): 199–208.
[101]Burleigh S H, Harrison M J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots[J]. Plant Physiology, 1999,119(1): 241–248.
[102]Martín A C, del Pozo J C, Iglesias J, et al. Infuence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. Plant Journal, 2000, 24(5): 559–567.
[103]Wasaki J, Shinano T, Onishi K, et al. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves[J]. Journal of Experimental Botany, 2006, 57(9): 2049–2059.
[104]李彥龍, 童依平, 李濱, 等. 氮磷虧缺對小麥TaIPS基因表達的影響[J]. 西北植物學報, 2008, 28(7): 1303–1307.Li Y L, Tong Y P, Li B, et al. Expression of TaIPS genes in wheat seedlings with nitrogen and phosphorus starvation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(7): 1303–1307.
Research advances on response characteristics of plants to different forms of phosphorus
LI Ting-xuan, YE Dai-hua, ZHANG Xi-zhou, GUO Jing-yi
( College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China )
Phosphorus (P) is one of the essential macronutrients that participates in many important compound synthesis and metabolism of plants. P exists in many forms in soil and gives different phytoavailability. Plants have developed specific mechanisms to adapt the dominant P sources in soil. It has been proved that the efficient P uptake and accumulation of plants are closely related with root morphology, rhizosphere secretion and phosphate transporter. Comprehending P accumulation characteristics of plants is important for breeding high P efficient crops or P-accumulators, excavating the ability of high P efficiency crops in the utilization of the potential P sources, and the key of using plants to extract excess P from P-enriched environments. According to the research achievements at home and abroad, this paper summarized the characteristics of P uptake, root morphology, root activities of phosphatase and phytase of plants when grown in different forms of P, and reviewed the progress in the research of molecular mechanism of high P efficiency. Meanwhile, the future researches in this field were forecasted.
phosphorus forms; phosphorus-efficient; phosphorus accumulation; plant response mechanisms
2017–08–04 接受日期:2017–10–30
國家自然科學基金(41671323);四川省科技支撐項目(2013NZ0044)資助。
李廷軒(1966—),男,四川宣漢人,博士,教授,主要從事土壤環境質量演變與養分資源管理研究。E-mail:litinx@263.net