Multi-site spinal stimulation strategies to enhance locomotion aTher paralysis
With the advent of spinal cord epidural stimulation techniques, i.e., electrically enabled motor control (eEmc) in combination with activity dependent locomotor training, humans with traumatic complete sensori-motor paralysis are able to initiate voluntary leg movements and achieve gains in postural control, and bladder and sexual function (Angeli et al., 2014). However, there are yet some technological barriers of eEmc for therapeutic purposes in humans that prevent weight bearing stepping. In this perspective, we highlight novel features of eEmc techniques based of our recent work in spinalized rats and suggest their implementation in patients with a SCI for more meaningful functional motor outcomes.
In rodents, step-like locomotor movements are generated when the spinal cord is stimulated at the rostral lumbar (L2) or sacral (S1) spinal segments (monopolar stimulation, with the reference electrode placed elsewhere in the body) (Ichiyama et al., 2005). Bipolar stimulation strategies that involve passing current between L2and S1(where electrodes implanted over one of these segments is used as the reference electrode) have been most successful in eliciting robust stepping patterns in the rodent (Shah et al., 2012). Frequencies of 40 Hz and pulse width of 0.2 ms have been widely adopted in almost all rodent studies. Similar to the rodent, in persons with a functionally complete SCI too, eEmc of the rostral or caudal spinal segments using bipolar configuration strategies and frequencies ranging from 30-40 Hz, pulse width of 0.2-0.5 ms has resulted in generating voluntary joint movements in the supine position.
These data collectively suggest that although the entire lumbosacral cord possesses rhythmogenic properties, the rostral lumbar and sacral cords are more robust in generating a motor output. The uniqueness of lumbar cord is most likely attributable to its greater potential in generating bursting rhythm and pattern of movement (McCrea and Rybak, 2008). The sacral cord, in contrast maintains its rhythmogenic capacity by direct activation of aferent fbers and motor axons due to the common course of ascending aferent fbers (nerve roots) around sacral segments_ENREF_10. Additionally, ascending propriospinal circuits within the sacral cord terminate into and have an excitatory efect on rostral lumbar locomotor networks (Etlin et al., 2010). Given these unique features of the lumbosacral cord, an obvious scientifc inquiry is - what is the potential significance of the interactions of this input between the lumbar and sacral neuronal circuitries in defning locomotor success? Will eEmc strategies that adopt spatio-temporal neuromodulation of the lumbar and sacral cords lead to more meaningful functional motor outcomes?
Given the relative preferential activation of rostral and caudal motor pools based on their topographical distribution along the spinal cord, the scientifc goal of multi-site eEmc stimulation strategies is to spatially and functionally activate a wide and discrete neuronal populations to synergistically infuence and modulate the excitability of sensorimotor pathways for an efective motor output. For example, in non-injured human subjects, addition of stimulation at L1and/or at C5to an existing stimulation at T11immediately results in enhanced kinematics, interlimb coordination as well as EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5and then at L1results in progressive degradation of the stepping pattern (Gerasimenko et al., 2015). Similarly, a stronger patterned EMG response from multiple leg muscles is observed with eEmc applied at multiple segments of the lumbosacral enlargement in contrast to localized individual segments in persons with a complete SCI (Angeli et al., 2014).
However, one of the limitations of multi-site stimulation programs employed thus far, consists of stereotyped high-frequency trains of electrical pulses simultaneously delivered through multiple electrodes in the array. The efects of alterations in parameters such as frequency of stimulation or the relative timing of stimulation pulses at distinct electrode sites using independent monopolar confgurations on locomotor output have not been adequately explored. Because spinal locomotor related neural networks have varied functional and anatomical characteristics, it seems reasonable to suggest that their selective activation using unique spatial and temporal stimulation confgurations will yield signifcant interactive efects for locomotion regulation; thereby rendering multi-site eEmc more conducive for translation to humans.
Recently, we tested the interactive efects of diferent stimulation frequencies and pulse intervals delivered at multiple spinal cord sites (independent monopolar stimulation at each stimulation site) in facilitating locomotion in spinal rats (Shah et al., 2016). We kept the frequency of stimulation at L2constant at 40 Hz and varied the frequency of stimulation at S1(fve diferent frequencies) to allow rats spinalized at T10to step bipedally on a moving treadmill. Our goal was to target the rostral lumbar spinal cord and the sacral spinal cord for their unique capacities to generate bursting rhythmic patterns. Our data demonstrate that at 20 and 40 Hz frequencies of S1stimulation, and when stimulating the L2(40 Hz) and S1spinal segments independently, but with specifc inter stimulation time intervals, an obviously more robust stepping performance is observed in comparison to stimulation of lumbar or sacral segments alone. Noteworthily too, the stepping is achievable as early as three weeks aTher the injury, with only six training sessions and without the use of a pharmacological agent (Shah et al., 2016). Stepping kinematics and coordinated locomotor EMG patterns of muscle activation throughout a step cycle are closer to pre-injury levels when the independent source multi-segmental stimulation is used.
Although use of specific frequencies to elicit a locomotor response from independent eEmc at L2or S1has been previously reported; our data specifcally reveal that with the combined L240 Hz - S140 Hz and L240 Hz - S120 Hz sequences, a greater number of evoked responses are generated in a given time (Figure 1A-D); suggesting the need to activate an optimal population of interneuronal networks or activate the same interneuronal pools more frequently for robust stepping to occur. Additionally, at the higher frequency, the presynaptic cell’s repeated and persistent stimulation of the postsynaptic cell most likely enhances synaptic efficacy to allow for consistent motor output (Hebbian learning).
Noticeably too, different interpulse intervals between the onset of L2and S1pulses elicit unique interactions in spinal evoked response in the muscle and this directly coincides with stepping ability [Figure 6 in (Shah et al., 2016)]. Specifically, near-normal stepping is best attained when 1) the L2pulse is applied at 3-10 ms aTher the onset of the S1 pulse, [relative timing between stimulation pulses- condition 1] or when 2) the S1 pulse is applied 0-7 msec aTher the L2pulse, [condition 2] (Figure 1E, F). Our neurophysiology data demonstrate that in condition 1, the L2pulse modulates evoked response by S1 pulse to result in a robust polysynaptic response; whereas in condition 2, the S1pulse signifcantly amplifes the evoked response elicited at L2. These fndings lead us to suggest that the rostral lumbar segments play a greater role in generating stepping patterns; while sacral segments strongly facilitate the activity induced by L2. Specifcally, for condition 1, eEmc at S1excites a larger pool of both lumbar and sacral neurons through the common course of ascending aferent fbers (nerve roots) around sacral segments; while the L2pulse retains these excitability features of the evoked middle response (by S1) and engages a wider pool of neuronal networks (refected in a polysynaptic response) that are crucial in generating an efective locomotor pattern. For condition 2, eEmc at L2excites aferent nerves entering the cord and cord dorsum to initiate a rhythm and stepping pattern (Kiehn, 2006). Subsequent eEmc at S1retrogradely activates spinal interneuronal pools, and through the propriospinal pathways that reside in the VII lamina of the sacral cord, can activate the lumbar locomotor related networks (see details in Shah et al., 2016). As such, the physiological mechanisms by which neural networks at lumbar and sacral interact are unique for the two segments. And depending on whether one segment is stimulated prior to the other, motor output is also altered.

Figure 1 Multi-site stimulation that utilizes spatio-temporal independent monopolar stimulation strategies at L2and S1reveal unique efects of change in frequency of stimulation and relative timing between stimulation pulses.
That the timing between stimulation pulses is critical in generating stepping response is also supported by experiments that demonstrate the existence of fully alternating locomotor-like cycles when multiple dorsal roots of the neonatal rat spinal cord are electrically stimulated in a staggered manner. In contrast, pulse trains delivered synchronously to multiple dorsal roots (without time intervals) failed to elicit the locomotor rhythm (Dose et al., 2016). Similarly, in a transcutaneous electrical spinal cord stimulation protocol, paired electrical stimulation delivered over the L2 and/or S1 spinal segments with diferent delays produced considerable post-stimulation modulatory efects in spinally evoked motor potentials in the leg muscles of non-injured humans. Modulation in amplitudes of the evoked responses depended on time intervals between stimulation pulses, as well as on whether the paired stimuli were delivered at a single or dual locations (Sayenko et al., 2015).
Collectively, in this brief perspective, we highlight herein the importance of incorporating a unique set of spatial, and temporal variables delivered through multi-site epidural stimulation to modulate spinal locomotor networks. An approach that capitalizes on 1) stimulation frequencies, 2) the site of stimulation, and 3) the relative timing between stimulation pulses, will eventually permit the complex interaction between excitatory and inhibitory circuits that are important for the generation of smooth locomotor output. Fabrication of multi-electrode arrays that will allow such fexibility might prove most efective in regaining meaningful sensorimotor function aTher a SCI in humans.
This study was supported by Russian Foundation for Fundamental Research No. 16-29-08173-of-m (YG). Partial support for data analysis and interpretation of the results was provided from the Russian Science Foundation No. 14-45-00024 (YG) and the Craig H. Neilsen Foundation #72940 (PKS).
Prithvi K. Shah*, Yury Gerasimenko
Division of Rehabilitation Sciences, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology, Life Science Building, Stony Brook University, Stony Brook, NY, USA (Shah PK)
Department of Integrative Biology and Physiology, Charles E Young Dr, University of California, Los Angeles, CA, USA; Pavlov Institute of Physiology, St. Petersburg, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia (Gerasimenko Y)
*Correspondence to:Prithvi K. Shah, Ph.D., Prithvi.Shah@stonybrook.edu.
Accepted:2016-12-03
Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ (2014) Altering spinal cord excitability enables voluntary movements aTher chronic complete paralysis in humans. Brain 137:1394-1409.
Dose F, Deumens R, Forget P, Taccola G (2016) Staggered multi-site low-frequency electrostimulation efectively induces locomotor patterns in the isolated rat spinal cord. Spinal Cord 54:93-101.
Etlin A, Blivis D, Ben-Zwi M, Lev-Tov A (2010) Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J Neurosci 30:10324-10336.
Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, Roy RR, Lu DC, Edgerton VR (2015) Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol 113:834-842.
Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR (2005) Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 383:339-344.
Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279-306.
McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134-146.
Sayenko DG, Atkinson DA, Floyd TC, Gorodnichev RM, Moshonkina TR, Harkema SJ, Edgerton VR, Gerasimenko YP (2015) Efects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neurosci Lett 609:229-234.
Shah P, Sureddi S, Alam M, Zhong H, Roy RR, Edgerton VRPD, Gerasimenko Y (2016) Unique spatiotemporal neuromodulation of the lumbosacral circuitry shapes locomotor success aTher spinal cord injury. J Neurotrauma 33:1709-1723.
Shah PK, Gerasimenko Y, Shyu A, Lavrov I, Zhong H, Roy RR, Edgerton VR (2012) Variability in step training enhances locomotor recovery aTher a spinal cord injury. Eur J Neurosci 36:2054-2062.
10.4103/1673-5374.197131
How to cite this article:Shah PK, Gerasimenko Y (2016) Multi-site spinal stimulation strategies to enhance locomotion aTher paralysis. Neural Regen Res 11(12):1926-1927.
Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.