999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

AlphaGo: Using Machine Learning to Master the Ancient Game of Go阿爾法圍棋:機器學習掌握圍棋這項古老技藝

2017-02-08 23:37:56德米什哈薩比斯莊曉旭閆冉審訂
英語世界 2017年9期
關鍵詞:程序人工智能游戲

文/德米什·哈薩比斯 譯/莊曉旭 閆冉/審訂

By Demis Hassabis1

圍棋起源于中國,至今已有2500多年的歷史。孔子曾為圍棋作文,它也是中國文人騷客必需掌握的四藝之一。全世界的圍棋手總數超過4000萬,圍棋的規則簡單:棋手在棋盤上行白子或黑子,努力吃掉對方的棋子或在棋盤上圍地。下圍棋主要靠個人的直覺與感覺,其美妙、精微與蘊含的智慧,讓幾千年來的人們為之神往。

[2]雖然圍棋規則簡單,下起來卻極其復雜。可能的棋位多達1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000種,這比宇宙中的原子數量都要多,比國際象棋大10的100次方倍。

The game of Go originated in China more than 2,500 years ago.Confucius wrote about the game, and it is considered one of the four essential arts required of any true Chinese scholar. Played by more than 40 million people worldwide, the rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture the opponent’s stones or surround empty space to make points of territory. The game is played primarily through intuition and feel, and because of its beauty, subtlety and intellectual depth it has captured the human imagination for centuries.

[2] But as simple as the rules are,Go is a game of profound complexity.There are1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 possible positions—that’s more than the number of atoms in the universe,and more than a googol times larger than chess.

[3]圍棋的復雜性使其對計算機有很大難度,也正因此圍棋成為人工智能研究者渴望征服的挑戰。這些研究者們以各類游戲為實驗,以發明出可以解決問題的智能、靈活的計算程序,有時解決的方式與人類相似。電腦可以勝任的第一個游戲是“井字游戲”(又叫作“一字棋”),時間是1952年。1994年,掌握了跳棋。1997年,電腦“深藍”因戰勝棋王加里·卡斯帕羅夫而聞名。計算機的戰績并不局限于棋牌游戲——2011年IBM的沃森在《危險邊緣》節目中,擊敗該節目的兩位冠軍;2014年,我們通過原始像素輸入開發出掌握雅麗達游戲幾十種玩法的計算機程序。但到現在為止,人工智能工程師依舊不能開發出百戰百勝的圍棋計算機程序。

[4]傳統的人工智能方法是構建覆蓋所有可能位置的搜索樹,而這并能不在圍棋中實現。因而當我們著手征服圍棋的時候,采取了不同的方法。我們建立了名為“阿爾法圍棋”(A l p h a G o)的體系。該體系結合了高級樹形檢索與深度神經網絡,我們給這些神經網絡中輸入棋局并用含有數百萬類神經元連接的1 2個不同的網絡層對其處理。一個神經網絡,即“策略網絡”,可以選擇下一步棋的走法;另一個神經網絡,即“價值網絡”,則可預測棋局的贏家。

[3] This complexity is what makes Go hard for computers to play, and therefore an irresistible challenge to artificial intelligence (AI) researchers,who use games as a testing ground to invent smart, flexible algorithms that can tackle problems, sometimes in ways similar to humans. The fi rst game mastered by a computer was noughts and crosses2noughts and crosses是一種在3×3格子上進行的連珠游戲,由于棋盤一般不畫邊框,格線排成井字故得名。兩個玩家,一個打圈(○),一個打叉(×),輪流在3乘3的格上打自己的符號,最先以橫、直、斜連成一線則為勝。因而又叫“一字棋”。(also known as tic-tac-toe)in 1952. Then fell checkers in 1994. In 1997 Deep Blue famously beat Garry Kasparov at chess. It’s not limited to board games either—IBM’s Watson bested two champions at Jeopardy3美國一檔智力競賽電視節目。in 2011, and in 2014 our own algorithms learned to play dozens of Atari games just from the raw pixel inputs. But to date, Go has thwarted AI researchers.

[4] Traditional AI methods—which construct a search tree over all possible positions—don’t have a chance in Go.So when we set out to crack Go, we took a different approach. We built a system, AlphaGo, that combines an advanced tree search with deep neural networks. These neural networks take a description of the Go board as an input and process it through 12 different network layers containing millions of neuron-like connections. One neural network, the “policy network,” selects the next move to play. The other neural network, the “value network,” predicts the winner of the game.

[5]我們用人類專家圍棋比賽中的3000萬個走法強化這套神經網絡系統,直到它可以預測57%的人類落子(在阿爾法圍棋之前,這個紀錄是44%)。但我們的目標不是模仿人類選手,而是要戰勝他們。要實現這個目標,阿爾法圍棋掌握了如何為自身發現新戰略,即在神經網絡中對棋局進行成千上萬次計算,并運用試差法調整系統間的連接(這一過程又叫強化學習)。當然,上文種種都要求強大的運算能力,所以我們也大量使用了谷歌云平臺。

[6]在種種強化之后,我們開始讓阿爾法圍棋參與實戰。首先,我們舉辦了阿爾法圍棋與其他頂級計算機圍棋程序間的錦標賽。阿爾法圍棋在5 0 0場競賽中只輸了一場。接著我們邀請了蟬聯三屆歐洲圍棋冠軍的樊麾——他從1 2歲起就投身圍棋,是職業選手中的精英。我們邀請他到倫敦的工作室來參加挑戰賽。在2 0 1 5年1 0月的閉門比賽中,阿爾法圍棋5∶0贏得了比賽。這是電腦程序第一次戰勝職業圍棋手。

[5] We trained the neural networks on 30 million moves from games played by human experts, until it could predict the human move 57 percent of the time (the previous record before AlphaGo was 44 percent). But our goal is to beat the best human players, not just mimic them. To do this, AlphaGo learned to discover new strategies for itself, by playing thousands of games between its neural networks, and adjusting the connections using a trial-and-error process known as reinforcement learning. Of course,all of this requires a huge amount of computing power, so we made extensive use of Google Cloud Platform.

[6] After all that training it was time to put AlphaGo to the test. First, we held a tournament between AlphaGo and the other top programs at the forefront of computer Go. AlphaGo won all but one of its 500 games against these programs. So the next step was to invite the reigning three-time European Go champion Fan Hui—an elite professional player who has devoted his life to Go since the age of 12—to our London office for a challenge match.In a closed-doors match last October,AlphaGo won by 5 games to 0. It was the first time a computer program has ever beaten a professional Go player.

[7] We are thrilled to have mastered Go and thus achieved one of the grand challenges of AI. However, the most significant aspect of all this for us is that AlphaGoisn’t just an“expert”system built with hand-crafted rules;instead it uses general machine learning techniques to fi gure out for itself how to win at Go. While games are the perfect platform for developing and testing AI algorithms quickly and efficiently,ultimately we want to apply these techniques to important real-world problems. Because the methods we’ve used are general-purpose4general-purpose 通用的。, our hope is that one day they could be extended to help us address some of society’s toughest and most pressing problems,from climate modelling to complex disease analysis. We’re excited to see what we can use this technology to tackle next! ■

[7]我們很開心能夠掌握圍棋訣竅,攻破人工智能眾多難點中的一個。但是,對我們來說最大的亮點在于,阿爾法圍棋不是靠人工建立的“專家”系統,而是運用一般的機器學習技巧,自己贏得圍棋比賽。雖然各類游戲是迅速高效地開發和檢測人工智能計算程序的完美平臺,但我們最終的目標是把這些技巧用于解決重要的現實問題。我們使用的方法是通用的,因而我們希望有一天能拓展這些方法來解決社會中一些最艱難、最緊迫的問題,比如氣候模型和復雜疾病分析等。我們很希望看到,接下來我們可以用這項技術解決哪些問題。 □

猜你喜歡
程序人工智能游戲
試論我國未決羈押程序的立法完善
人大建設(2019年12期)2019-05-21 02:55:44
2019:人工智能
商界(2019年12期)2019-01-03 06:59:05
人工智能與就業
IT經理世界(2018年20期)2018-10-24 02:38:24
“程序猿”的生活什么樣
數讀人工智能
小康(2017年16期)2017-06-07 09:00:59
英國與歐盟正式啟動“離婚”程序程序
環球時報(2017-03-30)2017-03-30 06:44:45
數獨游戲
瘋狂的游戲
飛碟探索(2016年11期)2016-11-14 19:34:47
下一幕,人工智能!
南風窗(2016年19期)2016-09-21 16:51:29
爆笑游戲
主站蜘蛛池模板: 99热这里只有精品在线播放| 熟妇丰满人妻| 国产精品30p| 成人在线观看不卡| 亚洲综合18p| 日韩人妻精品一区| 久久伊伊香蕉综合精品| a天堂视频| 波多野结衣无码视频在线观看| 国产精女同一区二区三区久| 欧美日韩成人在线观看| 亚洲欧美不卡中文字幕| 成AV人片一区二区三区久久| 色有码无码视频| 午夜精品国产自在| 亚洲侵犯无码网址在线观看| 亚洲天天更新| 久久天天躁狠狠躁夜夜躁| 国产香蕉97碰碰视频VA碰碰看| 亚洲成肉网| 亚洲电影天堂在线国语对白| 欧美福利在线观看| 亚洲成AV人手机在线观看网站| 91九色最新地址| 国产欧美日韩综合在线第一| 精品色综合| 亚洲婷婷丁香| 91九色视频网| 久久婷婷六月| 亚洲欧洲综合| 日韩第一页在线| 国产精品深爱在线| 久久久波多野结衣av一区二区| 亚洲午夜片| 亚洲女同欧美在线| 色婷婷亚洲十月十月色天| 亚洲毛片在线看| 免费在线看黄网址| 国产18在线播放| 中文国产成人久久精品小说| 无码国产偷倩在线播放老年人| 国产在线无码av完整版在线观看| 国产va在线| 精品欧美一区二区三区久久久| 国产日本一线在线观看免费| 91精品啪在线观看国产91| 男女猛烈无遮挡午夜视频| 综合网久久| 亚洲AV无码乱码在线观看代蜜桃 | 中文字幕乱码中文乱码51精品| 日韩精品高清自在线| 日韩一区二区三免费高清| 少妇被粗大的猛烈进出免费视频| 国产综合精品日本亚洲777| 中文字幕永久在线看| 欧美精品xx| 日韩av无码精品专区| 嫩草影院在线观看精品视频| 国外欧美一区另类中文字幕| 中文字幕欧美日韩| 黄色网在线免费观看| av大片在线无码免费| 毛片在线播放a| 国产SUV精品一区二区| 国产精品久久久久久久久久98 | 久青草网站| 国产一区二区影院| 日a本亚洲中文在线观看| 欧美福利在线播放| julia中文字幕久久亚洲| 香蕉视频在线精品| 尤物午夜福利视频| 青青草国产精品久久久久| 亚洲午夜久久久精品电影院| 狠狠色丁婷婷综合久久| 亚洲色图欧美在线| 日本在线国产| 成年看免费观看视频拍拍| 国产又粗又猛又爽视频| 久久这里只精品国产99热8| 色精品视频| 91丝袜乱伦|