999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

AlphaGo: Using Machine Learning to Master the Ancient Game of Go阿爾法圍棋:機(jī)器學(xué)習(xí)掌握圍棋這項(xiàng)古老技藝

2017-02-08 23:37:56德米什哈薩比斯莊曉旭閆冉審訂
英語(yǔ)世界 2017年9期
關(guān)鍵詞:程序人工智能游戲

文/德米什·哈薩比斯 譯/莊曉旭 閆冉/審訂

By Demis Hassabis1

圍棋起源于中國(guó),至今已有2500多年的歷史。孔子曾為圍棋作文,它也是中國(guó)文人騷客必需掌握的四藝之一。全世界的圍棋手總數(shù)超過(guò)4000萬(wàn),圍棋的規(guī)則簡(jiǎn)單:棋手在棋盤上行白子或黑子,努力吃掉對(duì)方的棋子或在棋盤上圍地。下圍棋主要靠個(gè)人的直覺(jué)與感覺(jué),其美妙、精微與蘊(yùn)含的智慧,讓幾千年來(lái)的人們?yōu)橹裢?/p>

[2]雖然圍棋規(guī)則簡(jiǎn)單,下起來(lái)卻極其復(fù)雜。可能的棋位多達(dá)1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000種,這比宇宙中的原子數(shù)量都要多,比國(guó)際象棋大10的100次方倍。

The game of Go originated in China more than 2,500 years ago.Confucius wrote about the game, and it is considered one of the four essential arts required of any true Chinese scholar. Played by more than 40 million people worldwide, the rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture the opponent’s stones or surround empty space to make points of territory. The game is played primarily through intuition and feel, and because of its beauty, subtlety and intellectual depth it has captured the human imagination for centuries.

[2] But as simple as the rules are,Go is a game of profound complexity.There are1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 possible positions—that’s more than the number of atoms in the universe,and more than a googol times larger than chess.

[3]圍棋的復(fù)雜性使其對(duì)計(jì)算機(jī)有很大難度,也正因此圍棋成為人工智能研究者渴望征服的挑戰(zhàn)。這些研究者們以各類游戲?yàn)閷?shí)驗(yàn),以發(fā)明出可以解決問(wèn)題的智能、靈活的計(jì)算程序,有時(shí)解決的方式與人類相似。電腦可以勝任的第一個(gè)游戲是“井字游戲”(又叫作“一字棋”),時(shí)間是1952年。1994年,掌握了跳棋。1997年,電腦“深藍(lán)”因戰(zhàn)勝棋王加里·卡斯帕羅夫而聞名。計(jì)算機(jī)的戰(zhàn)績(jī)并不局限于棋牌游戲——2011年IBM的沃森在《危險(xiǎn)邊緣》節(jié)目中,擊敗該節(jié)目的兩位冠軍;2014年,我們通過(guò)原始像素輸入開(kāi)發(fā)出掌握雅麗達(dá)游戲幾十種玩法的計(jì)算機(jī)程序。但到現(xiàn)在為止,人工智能工程師依舊不能開(kāi)發(fā)出百戰(zhàn)百勝的圍棋計(jì)算機(jī)程序。

[4]傳統(tǒng)的人工智能方法是構(gòu)建覆蓋所有可能位置的搜索樹(shù),而這并能不在圍棋中實(shí)現(xiàn)。因而當(dāng)我們著手征服圍棋的時(shí)候,采取了不同的方法。我們建立了名為“阿爾法圍棋”(A l p h a G o)的體系。該體系結(jié)合了高級(jí)樹(shù)形檢索與深度神經(jīng)網(wǎng)絡(luò),我們給這些神經(jīng)網(wǎng)絡(luò)中輸入棋局并用含有數(shù)百萬(wàn)類神經(jīng)元連接的1 2個(gè)不同的網(wǎng)絡(luò)層對(duì)其處理。一個(gè)神經(jīng)網(wǎng)絡(luò),即“策略網(wǎng)絡(luò)”,可以選擇下一步棋的走法;另一個(gè)神經(jīng)網(wǎng)絡(luò),即“價(jià)值網(wǎng)絡(luò)”,則可預(yù)測(cè)棋局的贏家。

[3] This complexity is what makes Go hard for computers to play, and therefore an irresistible challenge to artificial intelligence (AI) researchers,who use games as a testing ground to invent smart, flexible algorithms that can tackle problems, sometimes in ways similar to humans. The fi rst game mastered by a computer was noughts and crosses2noughts and crosses是一種在3×3格子上進(jìn)行的連珠游戲,由于棋盤一般不畫(huà)邊框,格線排成井字故得名。兩個(gè)玩家,一個(gè)打圈(○),一個(gè)打叉(×),輪流在3乘3的格上打自己的符號(hào),最先以橫、直、斜連成一線則為勝。因而又叫“一字棋”。(also known as tic-tac-toe)in 1952. Then fell checkers in 1994. In 1997 Deep Blue famously beat Garry Kasparov at chess. It’s not limited to board games either—IBM’s Watson bested two champions at Jeopardy3美國(guó)一檔智力競(jìng)賽電視節(jié)目。in 2011, and in 2014 our own algorithms learned to play dozens of Atari games just from the raw pixel inputs. But to date, Go has thwarted AI researchers.

[4] Traditional AI methods—which construct a search tree over all possible positions—don’t have a chance in Go.So when we set out to crack Go, we took a different approach. We built a system, AlphaGo, that combines an advanced tree search with deep neural networks. These neural networks take a description of the Go board as an input and process it through 12 different network layers containing millions of neuron-like connections. One neural network, the “policy network,” selects the next move to play. The other neural network, the “value network,” predicts the winner of the game.

[5]我們用人類專家圍棋比賽中的3000萬(wàn)個(gè)走法強(qiáng)化這套神經(jīng)網(wǎng)絡(luò)系統(tǒng),直到它可以預(yù)測(cè)57%的人類落子(在阿爾法圍棋之前,這個(gè)紀(jì)錄是44%)。但我們的目標(biāo)不是模仿人類選手,而是要戰(zhàn)勝他們。要實(shí)現(xiàn)這個(gè)目標(biāo),阿爾法圍棋掌握了如何為自身發(fā)現(xiàn)新戰(zhàn)略,即在神經(jīng)網(wǎng)絡(luò)中對(duì)棋局進(jìn)行成千上萬(wàn)次計(jì)算,并運(yùn)用試差法調(diào)整系統(tǒng)間的連接(這一過(guò)程又叫強(qiáng)化學(xué)習(xí))。當(dāng)然,上文種種都要求強(qiáng)大的運(yùn)算能力,所以我們也大量使用了谷歌云平臺(tái)。

[6]在種種強(qiáng)化之后,我們開(kāi)始讓阿爾法圍棋參與實(shí)戰(zhàn)。首先,我們舉辦了阿爾法圍棋與其他頂級(jí)計(jì)算機(jī)圍棋程序間的錦標(biāo)賽。阿爾法圍棋在5 0 0場(chǎng)競(jìng)賽中只輸了一場(chǎng)。接著我們邀請(qǐng)了蟬聯(lián)三屆歐洲圍棋冠軍的樊麾——他從1 2歲起就投身圍棋,是職業(yè)選手中的精英。我們邀請(qǐng)他到倫敦的工作室來(lái)參加挑戰(zhàn)賽。在2 0 1 5年1 0月的閉門比賽中,阿爾法圍棋5∶0贏得了比賽。這是電腦程序第一次戰(zhàn)勝職業(yè)圍棋手。

[5] We trained the neural networks on 30 million moves from games played by human experts, until it could predict the human move 57 percent of the time (the previous record before AlphaGo was 44 percent). But our goal is to beat the best human players, not just mimic them. To do this, AlphaGo learned to discover new strategies for itself, by playing thousands of games between its neural networks, and adjusting the connections using a trial-and-error process known as reinforcement learning. Of course,all of this requires a huge amount of computing power, so we made extensive use of Google Cloud Platform.

[6] After all that training it was time to put AlphaGo to the test. First, we held a tournament between AlphaGo and the other top programs at the forefront of computer Go. AlphaGo won all but one of its 500 games against these programs. So the next step was to invite the reigning three-time European Go champion Fan Hui—an elite professional player who has devoted his life to Go since the age of 12—to our London office for a challenge match.In a closed-doors match last October,AlphaGo won by 5 games to 0. It was the first time a computer program has ever beaten a professional Go player.

[7] We are thrilled to have mastered Go and thus achieved one of the grand challenges of AI. However, the most significant aspect of all this for us is that AlphaGoisn’t just an“expert”system built with hand-crafted rules;instead it uses general machine learning techniques to fi gure out for itself how to win at Go. While games are the perfect platform for developing and testing AI algorithms quickly and efficiently,ultimately we want to apply these techniques to important real-world problems. Because the methods we’ve used are general-purpose4general-purpose 通用的。, our hope is that one day they could be extended to help us address some of society’s toughest and most pressing problems,from climate modelling to complex disease analysis. We’re excited to see what we can use this technology to tackle next! ■

[7]我們很開(kāi)心能夠掌握圍棋訣竅,攻破人工智能眾多難點(diǎn)中的一個(gè)。但是,對(duì)我們來(lái)說(shuō)最大的亮點(diǎn)在于,阿爾法圍棋不是靠人工建立的“專家”系統(tǒng),而是運(yùn)用一般的機(jī)器學(xué)習(xí)技巧,自己贏得圍棋比賽。雖然各類游戲是迅速高效地開(kāi)發(fā)和檢測(cè)人工智能計(jì)算程序的完美平臺(tái),但我們最終的目標(biāo)是把這些技巧用于解決重要的現(xiàn)實(shí)問(wèn)題。我們使用的方法是通用的,因而我們希望有一天能拓展這些方法來(lái)解決社會(huì)中一些最艱難、最緊迫的問(wèn)題,比如氣候模型和復(fù)雜疾病分析等。我們很希望看到,接下來(lái)我們可以用這項(xiàng)技術(shù)解決哪些問(wèn)題。 □

猜你喜歡
程序人工智能游戲
試論我國(guó)未決羈押程序的立法完善
2019:人工智能
商界(2019年12期)2019-01-03 06:59:05
人工智能與就業(yè)
“程序猿”的生活什么樣
數(shù)讀人工智能
小康(2017年16期)2017-06-07 09:00:59
英國(guó)與歐盟正式啟動(dòng)“離婚”程序程序
數(shù)獨(dú)游戲
瘋狂的游戲
飛碟探索(2016年11期)2016-11-14 19:34:47
下一幕,人工智能!
爆笑游戲
主站蜘蛛池模板: 中文国产成人精品久久| 亚洲精品波多野结衣| 国产一区成人| 国产清纯在线一区二区WWW| 爱色欧美亚洲综合图区| 欧美成人综合视频| 国产成人永久免费视频| 国产网站黄| 成人毛片免费观看| 波多野结衣AV无码久久一区| 她的性爱视频| 成年人久久黄色网站| 最新亚洲av女人的天堂| 国产高清不卡| 99精品视频九九精品| 美女毛片在线| 国产地址二永久伊甸园| 综合色88| 精品色综合| 亚洲综合婷婷激情| 高清欧美性猛交XXXX黑人猛交| 亚洲性日韩精品一区二区| 亚洲欧美不卡视频| 一级一毛片a级毛片| 夜夜拍夜夜爽| 亚洲精品欧美日韩在线| 国产成人高清亚洲一区久久| 六月婷婷激情综合| 久久永久视频| 人人爽人人爽人人片| 无码国产伊人| 久久五月天综合| 青青青国产精品国产精品美女| 久久综合AV免费观看| 高清无码不卡视频| 日韩午夜伦| 国产视频只有无码精品| 亚洲男人在线天堂| 日韩少妇激情一区二区| 制服丝袜在线视频香蕉| 免费午夜无码18禁无码影院| 91无码视频在线观看| 综合天天色| 99精品视频播放| 亚洲精品成人片在线观看| 中文字幕在线日本| 国产91特黄特色A级毛片| 精品国产女同疯狂摩擦2| 91色在线观看| 国产91在线|中文| 国产精品欧美在线观看| 97综合久久| 国产精品视频导航| 欧美日本中文| 一级不卡毛片| 亚洲精品图区| 国产成人91精品| 国产91av在线| 伊人福利视频| 国产美女免费网站| 国产在线精品人成导航| 国产成人亚洲综合a∨婷婷| 久久99国产综合精品1| 久久99热66这里只有精品一| 久久久久亚洲精品无码网站| 秋霞午夜国产精品成人片| 色婷婷视频在线| 欧美精品v欧洲精品| 国产亚洲精品自在久久不卡| 国内99精品激情视频精品| 无码福利日韩神码福利片| 亚洲专区一区二区在线观看| 无码AV动漫| a网站在线观看| 激情国产精品一区| 欧美三级日韩三级| 亚洲欧洲天堂色AV| 五月丁香在线视频| 亚洲综合一区国产精品| 欧美精品1区| 麻豆国产原创视频在线播放| 日韩毛片基地|