劉向前,李小軍,,金倫喆,陸昌洙(
1.湖南中醫藥大學藥學院,湖南長沙410208;2.圓光大學藥學院,韓國益山570-749;3.慶熙大學藥學院,韓國首爾130-701)
天然產物中木栓烷型三萜核磁共振波譜特征
劉向前1,李小軍1,2,金倫喆2,陸昌洙3(
1.湖南中醫藥大學藥學院,湖南長沙410208;2.圓光大學藥學院,韓國益山570-749;3.慶熙大學藥學院,韓國首爾130-701)
對天然產物中發現的木栓烷型三萜化合物的13C-NMR、1H-NMR譜學特征進行綜述,以期減少天然產物特別是木栓烷型三萜結構鑒定工作的盲目性和重復性,為進一步研究分析木栓烷型三萜提供經驗借鑒。
木栓烷型三萜;核磁波譜特征;13C-NMR;1H-NMR
本文引用:劉向前,李小軍,金倫喆,陸昌洙.天然產物中木栓烷型三萜核磁共振波譜特征[J].湖南中醫藥大學學報,2017,37(1):87-105.
木栓烷型(friedelane type)三萜及其皂苷主要分布于衛矛科(Celastraceae)、翅子藤科(Hippocrateaceae)、大戟科(Euphorbiaceae)、大風子科(Flacourtiaceae)和藤黃科(Guttiferae/Clusiaceae)等植物中,衛矛科(Celastraceae)和翅子藤科(Hippocrateaceae)中尤為常見。現代藥理學研究表明,該類化合物具有抗腫瘤、抗炎、抗-HIV、抗菌、抗白血病和抗氧化等藥理活性作用[1-6]。早在20世紀70年代,藥物化學等領域的專家學者就對其進行了熱門研究。近年來,越來越多結構復雜、新穎的木栓烷型三萜被發現,因其具有良好的藥理活性而一直成為天然產物研究的熱點。
與其它天然產物研究一樣,木栓烷型三萜及其苷類化合物分離純化得到單體化合物后,更為重要的一步是其結構和構型的鑒定(結構表征)。常用的波譜學鑒定方法主要有UV、IR、NMR、MS、X-Ray及CD等,其中一維和二維NMR在三萜的解析中起著至關重要的作用。通過FAB-MS、ESI-MS、HRMS和MSMS等質譜技術可準確測定木栓烷型三萜的分子量及相應的結構信息,一維和二維NMR綜合分析可快速確定三萜苷元、糖和苷元的連接位置、糖鏈結構等信息,再綜合UV、IR、CD等鑒定手段和該物質的理化性質,以及必要的文獻查閱,可準確地推測出其平面和立體結構。
本文對1980-2015年已報道的246個木栓烷型三萜的13C-NMR和1H-NMR數據進行歸納總結,以期有助于相關研究者進行這類化合物的結構鑒定,為進一步分析研究木栓烷型三萜提供經驗借鑒。
天然產物中的木栓烷型三萜根據其結構特征主要分為5類:木栓烷型三萜(Intact friedelanes,TypeⅠ)、降碳類木栓烷型三萜(Norfriedelanes,TypeⅡ)、開環型木栓烷型三萜(Secofriedelanes,TypeⅢ)、環氧型木栓烷型三萜(Epoxyfriedelanes,TypeⅣ)和二聚體類木栓烷型三萜(Dimers,TypeⅤ)。從生物合成途徑來看,木栓烷型三萜及其衍生物由角鯊烯-2,3-環氧化物的環化而得,在木栓烷型三萜的基本母核的結構基礎上再進行碳環骨架的重排、轉化、氧化和聚合,得降碳類、開環型、環氧型和二聚體類木栓烷型三萜及其衍生物。它們的基本結構類型和天然來源分別見圖1和表1。

圖1 木栓烷三萜I-V類型的代表性化合物

表1 木栓烷型三萜的天然來源

續表1

續表1

續表1
2.1 木栓烷型三萜的13C-NMR特征
木栓烷型三萜苷元中除了與氧相連的碳外,其余碳一般在δ60以下。在13C-NMR中,角甲基一般出現在δ6.2~35.5,其中23-CH3一般在6.2~13.5左右;23位為甲基時,24甲基的δ值為13.7~23.5;25-28位CH3的δ值一般出現在18~32;29-30位甲基δ值一般為31~35。無氧取代時,-CH2-的δ值一般分布于δ18-42左右,-CH-在δ37-60,而季碳的δ值則一般在δ33-57。木栓烷型三萜苷元和糖上與氧相連的碳δ值在60~90之間,具體而言,OH碳位δ61~82左右,乙酰基取代比相應的OH取代向低場位移2~3左右。當有單OH或多OH取代時,會因為取代基效應而引起α-C向低場位移34~50,β-C向低場位移2~10左右,γ-C效應與前面兩種效應相反,向高場位移0~9。烯碳為δ109~160左右,羰基碳δ170~220,一般羰基碳在δ180左右,而形成酯鍵則稍向高場位移,醛基碳則一般在δ195~210左右。以下綜述了具有典型代表性的五類木栓烷型三萜的13C-NMR數據。
2.1.1 基本結構木栓烷型三萜的13C-NMR特征
正常結構的木栓烷型三萜的13C-NMR特征一般與上述相似,在角甲基無氧取代的情況下一般會出現8個角甲基信號,最具特征的是23-CH3一般在δ6.2~13.5左右,當23-CH3為β型時,δ值一般在10以下;當23-CH3為α型時,由于空間效應的影響,其與24-CH3中的H的斥力作用減弱導致直接相連C的電子云密度減弱,從而減小了屏蔽效應,化學位移移向低場,一般出現在δ13.5附近。當相應位置出現氧代時由于氧的吸電子效應會使相應的C的δ值升高。見表2。
2.1.2 降碳木栓烷型三萜的13C-NMR特征
降碳木栓烷型三萜一般降碳的位置出現在取代甲基部位:如23-nor(N47和N48)、24-nor(N8和N29-N33)、29-nor(N8)、30-nor(N49)等。此類三萜13CNMR最大特征就是甲基信號的相應減少。見表3。
2.1.3 開環木栓烷型三萜的13C-NMR特征
該種類型的木栓烷型三萜最典型的結構特征是母環中A環的開環,且最常見的開環位置一般為3,4-seco(如S2-S5、S10-S20)或2,3-seco(如S1、S6-S9)。在開環部位一般都有-O-原子的介入,使得相應開環部位的化學位移向低場移動。另外,在開環的同時也常常伴隨著降碳現象的出現(S9、S16)。見表4。
2.1.4 環氧木栓烷型三萜的13C-NMR特征
該類型的三萜在結構上保留了木栓烷母環的完整性,其結構特點是在母環外接有環外的環氧橋,這使得環氧橋上與-O-原子相連的-C-原子化學位移向低場移動。見表5。
2.1.5 二聚體類木栓烷型三萜的13C-NMR特征
該類三萜的結構特征是由2分子的木栓烷母環聚合而成,一般為一邊含有1個醌環(quinoid),具有典型的醌類化合物碳信號;另一邊帶有一個芳香環(aromatic),具有芳香化合物碳信號。通常各相應位置的碳信號為成對出現的。見表6。

表2 正常結構木栓烷型三萜的13C-NMR數據

續表2

C I68 I69 I70 I71 I72 I73 I74 I75 I76 I77 I78 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 22.3 41.7 212.8 58.8 41.3 49.0 68.4 52.9 37.2 60.0 37.6 30.5 40.4 39.1 32.4 35.8 30.5 41.6 29.6 33.1 27.9 39.4 6.9 16.1 19.0 21.8 18.3 32.1 74.5 26.0 74.0 30.1 213.2 53.3 42.7 41.2 18.2 53.0 36.9 52.4 35.9 30.5 39.8 38.4 32.1 35.4 30.0 42.7 28.9 33.4 28.2 28.1 6.9 14.3 17.9 20.0 18.7 32.2 28.9 72.0 74.0 29.7 213.2 53.3 42.7 41.2 18.1 53.1 36.9 52.4 32.7 29.5 39.7 38.0 30.2 35.3 30.0 42.4 31.3 40.2 28.2 38.2 6.8 14.3 17.5 20.9 17.7 32.0 31.8 183.1 27.6 41.2 213.0 57.9 41.7 40.7 17.8 51.5 37.4 59.0 34.8 30.4 37.5 38.4 32.6 29.3 42.4 38.5 34.1 32.8 31.0 22.0 6.6 14.3 17.0 19.0 16.1 177.0 26.7 79.7 19.3 36.3 71.9 52.9 37.4 40.9 17.4 52.6 37.0 59.6 35.6 30.9 37.8 38.6 32.3 29.2 44.5 37.6 34.5 28.2 35.1 32.2 9.6 14.3 17.4 20.3 18.3 183.7 29.5 34.2 22.3 41.1 212.1 58.0 42.1 40.7 18.3 53.2 43.8 58.9 51.3 213.1 54.1 42.4 32.1 27.2 47.2 30.3 35.8 28.7 32.8 34.0 6.9 14.5 17.6 20.1 19.0 209.5 34.0 29.1 25.0 41.6 213.3 58.1 43.1 42.2 17.9 52.8 44.1 60.1 76.9 42.0 41.1 38.2 32.4 35.9 30.0 42.5 35.4 28.1 32.7 39.2 6.9 14.8 12.9 20.1 19.5 32.0 31.7 35.0 22.3 41.1 212.0 58.1 42.2 40.9 18.6 52.2 44.4 59.3 51.2 214.3 55.6 44.0 30.0 29.3 34.5 33.1 33.7 28.3 36.1 31.0 6.9 14.6 18.4 18.1 19.7 68.5 33.3 33.6 22.3 41.3 212.8 58.2 41.9 41.1 18.2 52.1 38.4 59.4 47.2 73.0 44.8 40.5 37.5 32.1 36.0 40.3 31.7 28.3 33.4 29.3 6.8 14.6 19.5 19.2 12.2 67.8 34.0 32.9 22.17 41.34 212.20 57.91 41.96 40.82 18.54 52.32 37.51 58.99 35.24 28.95 38.96 40.59 50.17 218.38 45.68 43.24 30.14 32.68 27.04 31.14 6.87 14.56 17.25 20.27 15.93 27.44 74.06 25.84 22.22 41.43 212.78 58.04 42.14 41.11 18.41 53.32 37.42 59.31 35.61 30.74 40.06 39.11 44.28 74.40 36.45 44.09 30.36 33.14 27.51 36.45 6.88 14.60 18.06 20.08 21.43 25.44 74.45 25.71

表3 降碳木栓烷型三萜的13C-NMR數據

表4 開環木栓烷型三萜的13C-NMR數據

表5 環氧木栓烷型三萜的13C-NMR數據

表6 二聚體類木栓烷型三萜的13C-NMR數據

續表6
2.2 木栓烷型三萜的1H-NMR特征
在木栓烷型三萜氫譜中,主要包括甲基(-CH3)信號、亞甲基(-CH2-)信號、次甲基(-CH-)信號、雙鍵質子(CH=CH)信號、以及常見的羥基(-OH)氫信號和羧基(-COOH)醛基(-CHO)等官能團的活潑氫信號。
在木栓烷型三萜中,-CH3的氫化學位移在δ0.6-1.9之間,23-H一般以二重峰(d峰)出現,一般在δ1.0左右;非取代基直接連接的-CH2-一般在δ0.75-2.6之間,同一碳上的兩個氫因空間位置不同,位移相差δ0-0.9左右;非取代基直接相連的-CH-氫信號一般在δ0.67-2.75左右,4-H因與23-H相互偶合,一般以四重峰(q峰)出現。10和18-H則列分為2個二重峰(dd峰)。有OH等取代時,同碳H的δ值明顯向低場移動。表7~11綜述了具代表性的五類木栓烷型三萜的1H-NMR數據特征。

表7 正常結構木栓烷型三萜的1H-NMR數據(mult,J in Hz)

續表7


表8 降碳木栓烷型三萜的1H-NMR數據(mult,J in Hz)

表9 開環木栓烷型三萜的1H-NMR數據(mult,J in Hz)

續表9

表10 環氧木栓烷型三萜的1H-NMR數據(mult,J in Hz)

表11 二聚體類木栓烷型三萜的1H-NMR數據(mult,J in Hz)
木栓烷型三萜是五環三萜中具有潛在藥用價值的一類,其中一些化合物表現出了良好的生物活性,例如雷公藤紅素(celastrol,N36)、衛矛酮(tingenone, N37)、扁塑藤素(pristimerin,N44)、violaic A(S10)、violaic B(S11)、violalide(S12)等,尤其是最近發現的結構獨特且生物活性好的醌甲基化物降碳類、開環類、環氧類木栓烷型三萜,引起了許多相關研究者的極大關注。本文主要總結了近幾十年來天然來源的木栓烷型三萜的結構特征,對這些化合物的NMR數據特征進行了分類歸納,以期對木栓烷型三萜化合物的結構解析研究提供一定的參考。
[1]Itokawa H,Takeya K,Hitotsuyanagi Y,et al.Anti Tumor Compounds Isolated from Higher Plants[J].Studies in Natural Products Chemistry,2000,24:269-350.
[2]Rios JL,Recio MC,Manez S,et al.Natural Triterpoids as Anti-inflammatory Agents[J].Studies in Natural Products Chemistry,2000,22:93-143.
[3]Chen K,Shi Q,Kashiwada Y,et al.Anti-AIDS Agents,6. Salaspermic Acid,an Anti-HIV Principle from Tripterygium wilfordii,and the Structure-Activity Correlation with Its Related Compound[J].Journal of Natural Products,1992,55(3):340-346.%
[4]Patra A,Chaudhuri SK.Studies on triterpenoids:Conversion of friedelanones into some secofriedelanes[J].Indian Journal of Chemistry,1989,28B:376-380.
[5]Nozaki H,Suzuki H,Lee KH,et al.Structure and StereochemistryofMaytenfolicAcidandMaytanfoliol,TwoNewAntileukemic Triterpenes from Maytenus dioversifolia:X-Ray Crystal Structures[J].Journal of the Chemical Society,Chemical Communications,1982,18:1048-1051.
[6]CarvalhoPRF,SilvaDHS,BolzaniVS,etal.Antioxidant Quinonemethide triterpenes from Salacia campestris[J].Chemistry&Biodiversity,2005,2:367-372.
[7]Gunatilaka AAL,Nanyakkara NPD,Sultanbawa MUS.Studies on terpenoids and Steroids.Part 1.Structure of six Novel 27-Hydroxy and 6β-Hydroxy Di-and Tri-oxygenated D:A-friedo-Oleanane Triterpenes fromKokoona zeylanica[J].Journal of the Chemical Society,Perkin Transactions 1,1983:2459-2469.
[8]Gunatilaka AAL,Nanyakkara NPD.Studies on terpenoids and steroids-2,Structure of two new tri-and tetra-oxygenated D:A-friedo-oleanane triterpenes fromKokoona zeylanica[J].Tetrahedron,1984,40(4):805-809.
[9]Klass J,Tinto WF.Friedelane Triterpenoids fromPeritassa compta:Complete1H and13CAssignments by 2D NMR Spectroscopy [J].Journal of Natural Products,1992,55(11):1626-1630.
[10]Betancor C,Freire R,Gonzalez AG,et al.Three Triterpenes and other terpenoids from Catha cassinoides[J].Phytochemistry,1980,19:1989-1993.
[11]Anjaneyulu ASR,Rao MN.Elaeodendrol and Elaedendradiol, New Nortriterpenes from Elaeeodendron glaucum[J].Phytochemistry,1980,19:1163-1169.
[12]Waeretunga C,Kumer V,Sultanbawa MS.Two new angular methyldioxygenatedD:A-friedo-oleananes[J].Tetrahe-dron Letters,1982,23(19):2031-2032.
[13]Weeratunga G,Kumar V,Sultanbawa MS.D:A-Friedelanes fromElaeodendron glaucum[J].Australian Journal of Chemistry, 1983,36(5):1067-1072.
[14]Weeratunga G,Kumar V,Sultanbawa MUS,et al.28,29-dihydroxyfriedelane-3-one,afriedelanewithtwooxygenated methyl groups,from Elaeodendron balae(Celastraceae)[J]. Journal of the Chemical Society,Perkin Transactions 1,1982, 2457-2459.
[15]Martinez MV,Corona MM,Velez CS,et al.Terpenoids from Mortonia diffusa[J].Journal of Natural Products,1988,51(4): 793-796.
[16]Nozaki H,Suzuki H,Lee KH,et al.Structure and stereochemistryofmaytenfolicacidandmaytenfoliol,twonewantileukemic triterpenes from Maytenus diversifolia:X-ray crystal structures[J].Journal of the Chemical Society,Chemical Communications,1982,18:1048-1051.
[17]Nozaki H,Suzuki H,Hirayama T,et al.Antitumour triterpenes of Maytenus diversifolia[J].Phytochemistry,1986,25(2):479-485.
[18]Nozaki H,Matsuura Y,Hirono S,et al.Maytensifolin-C,a friedelane alcohol from Maytenus diversifolia[J].Phytochemistry,1991,30(11):3819-3821.
[19]Queiroga CL,Silva GF,Dias PC,et al.Evaluation of the antiulcerogenic activity of friedelan-3β-ol and friedelin isolated from Maytenus ilicifolia(Celastraceae)[J].Journal of Ethnopharmacology,2000,72:465-468.
[20]Salazar GCM,Silva GDF,Duarte LP,et al.Two epimeric friedelane triterpenes isolated from Maytenus truncata Reiss:1H and13C chemical shift assignments[J].Magnetic Resonance in Chemistry,2000,38:977-980.
[21]Oliveira MLG,Duarte LP,Silva GDF,et al.3-oxo-12α-hydroxyfriedelane from Maytenus gonoclada:structure elucidation by1H and13C chemical shift assignments and 2D NMR spectroscopy[J].Magnetic Resonance in Chemistry,2007,45:895-898.
[22]Andrade de SF,Comunello E,Noldin VF,et al.Antiulcerogenic activity of fractions and 3,15-dioxo-21α-hydroxyfriedelane isolated from Maytenus robusta(Celastraceae)[J].Archives of Pharmacal Research,2008,31(1):41-46.
[23]Chavez H,Braun AE,Ravelo AG,et al.Friedelane triterpenoids from Maytenus macrocarpa[J].Journal of Natural Products,1998,61:82-85.
[24]ItokawaH,ShirotaO,IkutaH,etal.Triterpenesfrom Maytenus ilicifolia[J].Phytochemistry,1991,30(11): 3713-3716.
[25]Rodriguez FM,Perestelo NR,Jimenez IA,et al.Friedelanes from Crossopetalum lobatum.A New Example of a Triterpene Anhydride[J].Helvetica Chimica Acta,2009,92:188-194.
[26]Sousa de JR,Silva GDF,Pedersoli JL,et al.Friedelane and oleanane triterpenoids from bark wood of Austroplenckia populnea[J].Phytochemistry,1990,29(10):3259-3261.
[27]Filho SAV,Duarte LP,Santos MH,et al.Complete assignment of the1H and13C NMR pectral of a new polyester sesquiterpene from Austroplenckia populnea[J].Magnetic Resonance in Chemistry,2000,38:1023-1026.
[28]Silva GDF,Duarte LP,Filho SAV,et al.Epikatonic acid from Austro-plenckia populnea:structure elucidation by 2D NMR spectroscopy and X-ray crystallography[J].Magnetic Resonance in Chemistry,2002,40:366-370.
[29]Sun CR,Hu HJ,Xu RS,et al.A New Friedelane Type Triterpene from Euonymus hederaceus[J].Molecules,2009,14: 2650-2655.
[30]Prakash O,Roy R,Garg HS,et al.13C NMR studies of the friedelane series of triterpenoids and the conformation of the D and E ring in friedelan-7-one[J].Magnetic Resonance in Chemistry,1987,25:39-41.
[31]Sukumar E,Rao RB,Kundu AB.A friedelane triol from the roots of Pristimera grahamii[J].Phytochemistry,1990,29(9): 3044-3046.
[32]Wu XY,Qin GW,Fan AJ,et al.1-Hydroxy-2,5,8-trimethyl-9-fluorenone from Tripterygium wilfordii[J].Phytochemistry, 1994,36(2):477-479.
[33]MorotaT,YangCX,SasakiH,etal.Triterpenesfrom Tripterygium wilfordii[J].Phytochemistry,1995,39(5):1153-1157.
[34]Yang JH,Luo SD,Wang YS,et al.Triterpenes from Tripterygium wilfordii Hook[J].Journal of Asian Natural Products Research,2006,8(5):425-429.
[35]Zhang WJ,Pan DJ,Zhang LX,et al.Studies on triterpenoids of Tripterygium wilfordii Hook-f.[J].Acta Pharmaceutica Sinica,1986,21(8):592-598.
[36]Liu X,Wu D.Constituents of friedelane triterpenes fromCelastrus monospermus Roxb.[J].Chinese traditional and herbal drugs, 1993,24:395-397.
[37]Zhang K,Liu JL,Wang YH,et al.Constituents of triterpenes from Celastrus monospermus Roxb.[J].Acta Scientiarum Naturalium Sunyatseni,1998,37:85-88.
[38]Chen MX,Wang DY,Guo J.3-Oxo-11β-hydroxyfriedelane from the roots of Celastrus monospermus[J].Journal of Chemical Researches,2010,2:114-117.
[39]Somwong P,Suttisri R,Buakeaw A.A new 1,3-diketofriedelane triterpene from Salacia verrucosa[J].Fitoterapia,2011, 82:1047-1051.
[40]Silva FC,Rodrigues VG,Duarte LP,et al.A new friedelane triterpenoid from the branches of Maytenus gonoclada(Celastraceae)[J].Journal of Chemical Research,2011,10:555-557.
[41]Kaweetripob W,Mahidol C,Prawat H,et al.Lupane,friedelane,oleanane,andursanetriterpenesfromthestemof Siphonodon celastrineus Griff[J].Phytochemistry,2013,96: 404-417.
[42]Ardiles AE,González-Rodríguez A,Nú?ez MJ,et al.Studies of naturally occurring friedelane triterpenoids as insulin sensitizers in the treatment type 2 diabetes mellitus[J].Phytochemistry,2012,84:116-124.
[43]Chen MX,Wang DY,Guo J.3-oxo-11β-hydroxyfriedelane from the roots ofCelastrus monospermus[J].Journal of Chemical Research,2010,34(2):114-117.
[44]ChenMX.StudiesonFriedelaneTriterpenesofCelastrus monospermus Roxb.[D].Guangdong Pharmaceutical Uni-versity,2010.
[45]Sousa de GF,Soares DCF,Mussel W da N,et al.Pentacyclic Triterpenes from Branches of Maytenus robusta and in vitro Cytotoxic Property Against 4T1 Cancer Cells[J].Journal of the Brazilian Chemical Society,2014,25(8):1338-1345.
[46]RogersD,Phillips FL,Joshi BS,et al.Revised structures of the triterpenes Q,T,and U from Salacia prinoides DC;X-ray crystal structure of triterpene T[J].Journal of the Chemical Society,Chemical Communications,1980,22:1048-1049.
[47]Kumar V,Wazeer MIM,Wijeratne DBT.21α,26-Dihydroxy-D: A-friedo-oleanan-3-one from Salacia reticulata Var.Diandra (Celastraceae)[J].Phytochemistry,1985,24(9):2067-2069.
[48]Kumar V,Wijeratne DBT,Abeygunawardena C.21α,30-Dihydroxy-D:A-friedooleanan-3-one from Salacia reticulata Var.β-Diandra stem bark[J].Phytochemistry,1990,29(1):333-335.
[49]Gunatilaka AAL,Dhanabalasingham B,Karunaraine V.Studies on terpenoids and steriods.Part 27.Structure of a D:A-friedooleanane triterpenoid fromSalacia reticulata and revision of the structures of kokoonol and kokzeylanol series of triterpenoids[J].Tetrahedron,1993,49(45):10397-10404.
[50]Morikawa T,Kishi A,Pongpiriyadacha Y,et al.Structures ofnewfriedelane-typetriterpenesandeudesmanes-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis[J].Journal of Natural Products,2003,66:1191-1196.
[51]Kishi A,Morikawa T,Matsuda H,et al.Structures of new friedelane-and nor-friedelane-type triterpenes and polyacylated eudesmane-type sequiterpene from Salacia chinesis Linn.(S. prinoides DC.,Hippocrateaceae)and radical scavenging activities of principal constituents[J].Chemical&Pharmaceutical Bulletin,2003,51(9):1051-1055.
[52]Agius BR,Vogler B,Stokes SL,et al.Inhibition of Cruzain by triterpenoids isolated from a Salacia species from Monteverde, Costa Rica[J].Natural Product Communications,2007,2(11): 1083-1084.
[53]Duarte LP,Miranda de RRS,Rodrigues SBV,et al.Stereochemistry of 16α-hydroxyfriedelin and 3-oxo-16-methylfriedel-16-ene established by 2D NMR spectroscopy[J].Molecules, 2009,14:598-607.
[54]Huang J,Guo ZH,Cheng P,et al.Three new triterpenoids from Salacia hainanensis Chun et How showed effective antia-glucosidase activity[J].Phytochemistry Letters,2012,5:432-437.
[55]Yu MH,Shi ZF,Yu BW,et al.Triterpenoids and α-glucosidase inhibitory constituents from Salacia hainanensis[J].Fitoterapia,2014,98:143-148.
[56]Anjaneyulu V,Ravi K.Terpenoids from Euphorbia antiquorum [J].Phytochemistry,1989,28(6):1695-1697.
[57]Wandji J,Wansi JD,Fuendjiep V,et al.Sequiterpene lactone and friedelane derivative from Drypetes molunduana[J].Phytochemistry,2000,54:811-815.
[58]Wandji J,Tillequin F,Mulholland DA,et al.Phenolic constituents from Drypetes armoracia[J].Phytochemistry,2003, 63:453-456.
[59]Chiozem DD,Dufat HTV,Wansi JD,et al.New Friedelane Triterpenoids with Antimicrobial Activity from the Stems of Drypetes paxii[J].Chemical&Pharmaceutical Bulletin,2009, 57(10):1119-1122.
[60]Fannang SV,Kuete V,Djama CM,et al.A new friedelane triterpenoid and saponin with moderate antimicrobial activity from the stems of Drypetes laciniata[J].Chinese Chemical Letters,2011,22:171-174.
[61]Wittayalai S,Mahidol C,Prachyawarakorn V,et al.Terpenoids from the roots of Drypetes hoaensis and their cytotoxic activities[J].Phytochemistry,2014,99:121-126.
[62]Li Y,Zuo WJ,Mei WL,et al.Three new terpenoids from Trigonostemon xyphophylloides(Croiz.)L.K.Dai and T.L.Wu [J].Phytochemistry Letters,2013,6:472-475.
[63]Awanchiri SS,Trinh-Van-Dufat H,Shirri JC,et al.Triterpenoids with antimicrobial activity from Drypetes inaequalis[J]. Phytochemistry,2009,70:419-423.
[64]Chen WH,Han CR,Hui Y,et al.Terpenoids from the Stems of Drypetes congestiflora[J].Helvetica Chimica Acta,2015, 98:724-730.
[65]Vincent C,Ange B,Serge R,et al.Composition and chemical variability of the triterpene fraction of dichloromethane extracts of cork(Quercus suber L.)[J].Industrial Crops and Products, 2002,15:15-22.
[66]Olmedo DA,perez JLL,Olmo del E,et al.A New Cytotoxic Friedelane Acid-Pluricostatic Acid-and Other Compounds from the Leaves of Marila pluricostata[J].Molecules,2008, 13:2915-2924.
[67]Lannang AM,Noudou BS,Sewald N.Ovalifolone A and B: New friedelane derivatives fromGarcinia ovalifolia[J].Phytochemistry Letters,2013,6:157-161.
[68]Giner RM,Gray AI,Gibbons S,et al.Friedelane Triterpenes from the Stem bark of Caloncoba glauca[J].Phytochemistry, 1993,33(1):237-239.
[69]Tane P,Tsopmo A,Ngnokam D,et al.New Friedelane triterpenes from Leppidobotrys staudtii[J].Tetrahedron,1996,52 (47):14989-14994.
[70]Laure F,Herbette G,Faure R,et al.Structures of new secofriedelane and friedelane acids from Calophyllum inphyllum of French Polynesia[J].Magnetic Resonance in Chemistry,2005, 43:65-68.
[71]Li LY,Huang XS,Sattler I,et al.Structure elucidation of a new friedelane triterpene from the mangrove plant Hibiscus tiliaceus[J].Magnetic Resonance in Chemistry,2006,44: 624-628.
[72]MensahIA,KumiSA,WaibelR,etal.AnovelD:A-friedooleanane triterpenoid and other constituents of the stem bark of Dichapetalum barteri Engl.[J].Arkivoc,2007,ix:71-79.
[73]Chen HY,Lin CW,Chen GY,et al.3β-hydroxyfriedelan-17β-carboxy-lic acid[J].Acta Crystallographica Section E: Structure Reports Online,2008,E64:o890.
[74]Setzer WN,Setzer MC,Peppers RL,et al.Triterpenoids Constituents in the Bark of Balanops australiana[J].Australian Journal of Chemistry,2000,53(9):809-812.
[75]Merfort I,Buddrus J,Nawwar MAM,et al.A triterpene from the bark of Tamarix aphylla[J].Phytochemistry,1992,31(11):4031-4032.
[76]Chang CW,Wu TS,Hsieh YS,et al.Terpenoids of Syzygium formosanum[J].Journal of Natural Products,1999,62:327-328.
[77]Ankli A,Heilmann J,Heinrich M,et al.Cytotoxic cardenolides and anti-bacterial terpenoids from Crossopetalum gaumeri[J]. Phytochemistry,2000,54:531-537.
[78]Oliveira DM de,Silva GD de F,Duarte LP,et al.Chemical constituentsisolatedfromrootsofMaytenusacanthophylla Reissek(Celastraceae)[J].Biochemical Systematics and Ecology,2006,34(8):661-665.
[79]Nakano K,Oose Y,Masuda Y,et al.A diterpenoid and triterpenes from tissue cultures of Tripterygium wilfordii[J].Phytochemistry,1997,45(2):293-296.
[80]Nakano K,Oose Y,Takaishi Y,et al.A novel epoxy-triterpene and nortriterpene from callus cultures ofTripterygium wilfordii[J].Phytochemistry,1997,46(7):1179-1182.
[81]Takaishi Y,Miyagi K,Kawazoe K et al.Terpenoids from Tripterygium wilfordii Var.regelii[J].Phytochemistry,1997,45 (5):975-978.
[82]Duan H,Takaishi Y,Momota H,et al.Immunosuppressive terpenoids from extract of Tripterygium wilfordii[J].Tetrahedron, 2001,57:293-296.
[83]YangGZ,LiCY,LiYC.Studyofanewtriterpenoid fromTripterygiumwilfordii[J].ChineseJournalofOrganic Chemistry,2006,26(11):1529-1532.
[84]Yang GZ,Li YC.Antitumor Triterpenoids fromTripterygium wilfordii Hook f.[J].Chemistry and Industry of Forest Products,2006,26(4):19-22.
[85]Yoshihisa T,Noriko W,Hideo T,et al.Triterpenoid inhibitors from Tripterygium wilfordii Var.regelii[J].Phytochemistry, 1997,45(5):969-975.
[86]LiKH,DuanHQ,KazuyoshiK,etal.Terpenoidsfrom Tripterygium wilfordii[J].Phytochemistry,1997,45(4):791-796.
[87]Duan H,Kawazoe K,Bando M,et al.Di-and Tri-terpenoids from Tripterygium hypoglaucum[J].Phytochemistry,1997,46 (3):535-543.
[88]MorotaT,YangCX,QinWZ,etal.D:A-friedo-24-noroleanane triterpenoids fromTripterygium wilfordii[J]. Phytochemistry,1995,39(5):1159-1163.
[89]Wu J, Zhou Y,Wang LY,et al.Terpenoids from root bark of Celastrus orbiculatus[J].Phytochemistry,2012,75:159-168.
[90]Ying YM,Li CY,Chen Y,et al.Lupane-and Friedelane-Type Triterpenoids from Celastrus stylosus[J].Chemistry& Biodiversity,2015,12:1222-1228.
[91]Chang FR,Hayashi KI,Chen IH,et al.Antitumor Agents. 228.Five New Agarofurans,Reissantins A-E,and Cytotoxic Principles from Reissantia buchananii[J].Journal of Natural Products,2003,66:1416-1420.
[92]CarvalhoPRF,SilvaDHS,BolzaniVS,etal.Antioxidant quinonemethild Triterpenes from Salacia campestris[J].Chemistry&Biodiversity,2005,2:367-372.
[93]He YF,Sun YW,Chen DL,et al.hainanenone A:a new friedelanetriterpenoidfromtheleavesandstemsof Drypetes hainanensis[J].Chemistry of Natural Compounds, 2015,51(2):273-275.
[94]Chen DL,Cheng X,Sun YW,et al.A New Friedelane Triterpenoid Possessing Cytotoxicity from the Leaves and Stems of Drypetes hainanensis[J].Chemistry of Natural Compounds, 2014,50(1):93-96.
[95]Mpetga JDS,He HP,Hao XJ,et al.Further cycloartane and friedelane triterpenoids from the leaves of Caloncoba glauca [J].Phytochemistry Letters,2014,7:52-56.
[96]Giner RM,Gray AI,Lavaud C,et al.30-Norfriedelane Triterpenes from the Stem bark of Caloncoba glauca[J].Phytochemistry,1992,31(1):223-225.
[97]Camacho MDR,Phillipson JD,Croft SL,et al.Assessment of the antipro-Tozoal activity of Galphimia glauca and the isolation of new nor-secofriedelanes and norfiredelanes[J].Journal of Natural Products,2002,65:1457-1461.
[98]Nú?ez MJ,Ardiles AE,Martínez ML,et al.Unusual D:B-friedobaccharane and oxygenated friedelane-type triterpenoids fromSalvadoreanCelastraceaespecies[J].Phytochemistry Letters,2012,5(2):244-248.
[99]Yang GZ,Yin XQ,Li YC.Chemical constituents of Tripterygium wilfordii[J].Helvetica Chimica Acta,2000,83(12): 3344-3350.
[100]Dai JJ,Tao HM,Min QX,et al.Anti-hepatitis B virus activities of friedelolactones from Viola diffusa Ging[J].Phytomedicine,2015,22:724-729.
[101]SutthivaiyakitS,NakornNN,KrausW,etal.Anovel 29-nor-3,4-seco-friedelane triterpene and a new guaiane sesquiterpene from the roots of Phyllanthus oxyphyllus[J]. Tetrahedron,2003,59:9991-9995.
[102]Setzer WN,Shen X,Bates RB,et al.A phytochemical investigation of Alchornea latifolia[J].Fitoterapia,2000,71:195-198.
[103]Duan H,Takaishi Y,Momota H,et al.Triterpenoids from Tripterygium wilfordii[J].Phytochemistry,2000,53(7):805-810.
[104]Anu SJ,Rao JM.New norfriedelene-1,3-dione from the root bark ofSalacia oblonga[J].Indian Journal of Chemistry SectionB-OrganicChemistryincludingMedicinalChemistry, 2003,42(5):1180-1182.
[105]Pradhan BP,Hassan A,Shoolery JN.Three new friedelane lactones from the bark ofGynocardia odorata(Flacourtiaceae) [J].Tetrahedron Letters,1984,25(8):865-868.
[106]Li YZ,Li ZL,Yin SL,et al.Triterpenoids from Calophyllum inophyllumandtheirgrowthinhibitoryeffectsonhuman leukemia HL-60 cells[J].Fitoterapia,2010,81:586-589.
[107]Shirota O,Morita H,Takeya K,et al.Five New Triterpene Dimers from Maytenus chuchuhuasca[J].Journal of Natural Products,1997,60:1100-1104.
[108]Itokawa H,Shirota O,Morita H,et al.New triterpene dimers from Maytenus ilicifolia[J].Tetrahedron Letters,1990,31: 6881-6882.
(本文編輯 蘇維)
NMR Spectral Characteristics of Natural Friedelanes:A Review
LIU Xiangqian1,LI Xiaojun1,2,KIM Youn-chul2,YOOK Chang-soo3
(1.School of Pharmacy,Hunan University of Chinese Medicine,Changsha,Hunan 410208,China;
2.School of Pharmacy,Wonkwang University,Iksan 570-749,Korea;
3.School of Pharmacy,KyungHee University,Seoul 130-701,Korea)
The friedelane-type triterpenoids from natural products were studied in this paper including their chemical structures and spectral characteristics of13C-NMR,1H-NMR,so as to provide reference for reducing the blindness and repeatability of structure identification,and contribute to reducing some difficulties in the structure identification of friedelanetype triterpenoids,and provide theoretical basis for further research and analysis of friedelane-type triterpenoids.
friedelane-type triterpenoids;NMR spectral characteristics;13C-NMR;1H-NMR
R284.1
A
2016-04-12
湖南省中醫藥科研計劃項目(2013136);湖南中醫藥大學藥物分析學“十二五”校級重點學科建設項目;湖南省中藥學重點學科建設項目。
劉向前,男,博士,教授,研究方向:天然產物活性成分研究,生藥活性成分與質量評價研究,中藥化學與分析;E-mail: lxq0001cn@163.com。