999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

灌水施氮方式對玉米生育期土壤NO3N時空分布的影響

2017-03-02 10:56:34漆棟良胡田田
農業機械學報 2017年2期

漆棟良 胡田田,2

(1.西北農林科技大學水利與建筑工程學院, 陜西楊凌 712100;2.西北農林科技大學旱區農業水土工程教育部重點實驗室, 陜西楊凌 712100)

灌水施氮方式對玉米生育期土壤NO3N時空分布的影響

漆棟良1胡田田1,2

(1.西北農林科技大學水利與建筑工程學院, 陜西楊凌 712100;2.西北農林科技大學旱區農業水土工程教育部重點實驗室, 陜西楊凌 712100)

引言

關于氮肥損失的途徑,除了氨揮發和反硝化作用外,硝態氮的淋溶是一條重要途徑。調控土壤中的硝態氮含量被認為是降低氮素損失和提高氮肥利用率的關鍵[1]。前人研究了不同水、氮供應水平下土壤硝態氮的空間分布[2-3]和動態變化[4],發現施氮量是造成土壤中硝態氮殘留的主要因素[3],灌水量則直接影響到硝態氮的下移[5]。合理的灌水施氮措施可使土壤中的硝態氮更多地、較長時間地維持在作物根區,易于被根系吸收,收獲后其殘留量減小。

1 材料與方法

1.1 試驗概況

試驗于2012年4—9月份在農業部作物高效用水武威科學觀測實驗站(37°57′20″N、102°50′50″E)進行。實驗站位于甘肅省武威市涼州區, 地處騰格里沙漠邊緣。海拔高度1 581 m,為大陸性溫帶干旱氣候,該地區多年平均氣溫為8℃,多年平均降水量約為164.4 mm,年均蒸發量為2 000 mm。玉米生育期內降水量為129.0 mm(最大單次降水量為20.4 mm)。試驗地土壤類型為灰鈣質輕砂壤土,田間持水量為21.7% (質量含水率)。土壤堿解氮質量比為50.3 mg/kg,有效磷質量比為3.82 mg/kg,有機質質量比為8.9 g/kg,土壤pH值約為8.2。灌溉水源為礦化度0.71 g/L的地下水,地下水埋深40 m以上。

供試作物為制種玉米,品種是金西北22號。采用壟植溝灌技術,溝和壟的斷面為梯形。溝深30 cm,溝底寬20 cm,壟頂寬20 cm,壟底寬35 cm,溝間距55 cm,溝長5 m。小區為東西走向,四周開闊,面積24 m2(4 m×6 m)。

1.2 試驗設計

試驗采用二因素三水平隨機區組設計。設施氮方式和灌水方式2個因素,各分3種不同方式:灌水方式包括交替灌水、均勻灌水和固定灌水;施氮方式包括交替施氮、均勻施氮和固定施氮。其中,固定灌水固定施氮處理又分為水氮同區(灌水溝和施氮溝相同,FFT)和水氮異區(灌水溝和施氮溝相反,FFY)2種情況,共有10 個處理,見表1。隨機區組排列,共3個區組,區組之間設1.5 m寬隔離帶,試驗布置見圖1(與區組1相似,各處理在區組2、3內隨機排列)。

表1 試驗設計Tab.1 Experimental design

圖1 試驗布置圖Fig.1 Arrangement diagram of experiment

1.3 試驗實施

起壟前,在壟的位置以過磷酸鈣(45 kg/hm2,以P2O5計)作為底肥均勻撒施。之后,開溝起壟。4月19日播種,9月20日收獲。各處理灌水量和施氮量相同,灌溉定額3 750 m3/hm2,施氮量采用當地適宜的施氮水平200 kg/hm2(純氮)[14]。灌水量在低壓管出水口處用精確水表測量。灌水量和灌水時間與當地農民對制種玉米的灌水管理保持一致,共灌水5次,分別在播后3 d、拔節期(播后45 d)、大喇叭口期(播后84 d)、抽雄期(播后98 d)、灌漿期(播后119 d),各灌水750 m3/hm2。氮肥選用尿素,分3次施入,基施50%,大喇叭口期和抽雄期各25%。肥料施在溝中(壟上不施),開溝施肥,施后覆土。氮肥基施時,固定施氮在南側(FFT)或北側溝(FFY),交替施氮在南側溝;其后固定施氮位置不變,交替施氮在南、北側溝交替進行;均勻施氮在南、北兩側溝同時施氮,且兩側施氮量相等。追施氮肥時,施肥、灌水在同一天內完成。具體實施見表2。

表2 灌水與施氮的時期與位置Tab.2 Time and location of irrigation and nitrogen supply

注:固定施氮條件下,對FFY施氮位置為北側溝,對FFT施氮位置為南側溝。DAT表示播種后的天數,設定播種當天的天數為0 d。

1.4 測定項目與方法

圖2 土壤取樣示意圖Fig.2 Schematic of soil sampling

1.5 數據處理

用SigmaPlot軟件繪圖,SPSS 12.0進行方差分析與多重比較,方差分析用One-way ANOVA,多重比較用Duncan法。

2 結果與分析

取樣位置影響因子土層深度/cm0~2020~4040~6060~8080~100灌水方式***NSNS植株北側施氮方式******NS灌水方式×施氮方式***NSNSNS灌水方式**NS*NS植株南側施氮方式******NS灌水方式×施氮方式***NSNSNS灌水方式**NSNSNS植株下施氮方式**NSNSNS灌水方式×施氮方式*NSNSNSNS

注: *、**分別表示在P<0.05和P<0.01水平差異顯著,NS表示差異不顯著。

圖3 灌漿期不同處理下土壤含量的空間分布(單位:mg/kg)Fig.3 Spatial distributions of soil nitrate nitrogen in different treatments at filling stage

圖4 灌漿期AC、CC和FC處理下土壤質量含水率的空間分布(單位:%)Fig.4 Spatial distributions of soil moisture content at filling stage for AC, CC and FC treatments

圖5 AC、CC、FFT和FFY不同位置在0~100 cm土壤含量隨播后天數的變化Fig.5 Dynamics of soil nitrate nitrogen content following days after planting at different positions in 0~100 cm soil depth of AC, CC, FFT and FFY treatments

3 討論

處理土層深度/cm0~2020~4040~6060~8080~1000~100AA29.2±2.1c28.4±1.8c15.6±0.7b12.1±0.6b10.1±0.3b95.3±2.9fAC28.6±2.2c27.2±2.1c14.8±1.3b11.3±0.8b9.7±0.5b91.5±3.4fAF31.3±3.4b30.6±2.7b17.6±1.1b13.5±1.0b11.7±0.8b104.8±4.8dCA31.3±2.8b30.9±2.8b15.5±1.0b12.8±1.3b11.7±0.8b103.1±4.2eCC30.7±2.7b30.5±3.0b16.6±0.9b12.9±0.7b11.5±0.4b102.2±2.4eCF34.6±3.6ab33.1±3.5b18.5±1.4a14.9±1.2a11.3±0.9b112.4±3.5cFA32.7±3.8b31.5±2.8b16.2±1.1b15.5±1.8a11.3±0.8b107.2±3.4cdFC32.6±3.5b31.6±1.8b14.6±0.8b14.5±0.5a12.0±1.1b105.3±4.5cdFFT34.8±4.1ab32.5±3.2b18.9±1.3a16.6±1.3a13.7±1.3a116.5±4.8bFFY44.5±4.8a42.8±4.4a14.6±0.7b10.6±0.9c9.8±0.4b123.3±6.1a

注:同列數值后不同字母表示各土層的土壤NO3-N殘留量差異達P<0.05顯著水平。

圖6 AC、CC和FC處理下0~100 cm土層植株南、北兩側土壤含水率隨生育期的變化Fig.6 Changes of soil moisture content in south and north of plant in 0~100 cm soil depth during growth period for AC, CC and FC treatments

4 結論

1 LEHRSCH G A, SOJKA R E, WESTERMANN D T. Furrow irrigation and N management strategies to protect water quality[J]. Communications in Soil Science and Plant Analysis, 2001, 32(7-8):1029-1050.

2 岳文俊, 張富倉,李志軍,等.水氮耦合對甜瓜氮素吸收與土壤硝態氮累積的影響[J/OL].農業機械學報,2015,46(2):88-96.http:∥www.j-csam.org/jcsam/ch/reader/view-abstract.aspx?file_no=20150214&flag=1. DOI:10.6041/j.issn.1000-1298.2015.02.014. YUE Wenjun, ZHANG Fucang, LI Zhijun, et al. Effects of water and nitrogen coupling on nitrogen uptake of muskmelon and nitrate accumulation in soil[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):88-96. (in Chinese)

3 王振華, 權麗雙, 鄭旭榮, 等. 水氮耦合對滴灌復播油葵氮素吸收與土壤硝態氮的影響[J/OL]. 農業機械學報, 2016, 47(10): 91-100. http:∥www.j-csam.org/jcsam/ch/reader/view-abstract.aspx?file_no=20161013&flag=1. DOI:10.6041/j.issn.1000-1298.2016.10.013. WANG Zhenhua, QUAN Lishuang, ZHENG Xurong, et al. Effects of water-nitrogen coupling on nitrogen uptake and nitrate accumulation in soil of oil sunflower in drip-irrigated multiple cropping system[J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 91-100. (in Chinese)

4 栗麗, 洪堅平, 王宏庭, 等.施氮與灌水對夏玉米土壤硝態氮積累、氮素平衡及其利用率的影響 [J]. 植物營養與肥料學報, 2010, 16(6): 1358-1365. LI Li, HONG Jianping, WANG Hongting, et al. Effects of nitrogen application and irrigation on soil nitrate accumulation, nitrogen balance and use efficiency in summer maize[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1358-1365. (in Chinese)

5 高亞軍, 李生秀, 李世清, 等.施肥與灌水對硝態氮在土壤中殘留的影響[J].水土保持學報,2005, 19(6):61-64. GAO Yajun, LI Shengxiu, LI Shiqing, et al. Effect of fertilization and irrigation on residual nitrate N in soil [J]. Journal of Soil and Water Conservation,2005, 19(6):61-64. (in Chinese)

6 邢維芹, 王林權, 李立平, 等.半干旱地區玉米的水肥空間耦合效應Ⅱ土壤水分和速效氮的動態分布 [J].土壤, 2003, 35(3): 242-247. XING Weiqin, WANG Linquan, LI Liping, et al.Effect of water-fertilized spatial coupling on corn in semiarid area Ⅱ dynamics distribution of water and available nitrogen in soil[J]. Soil, 2003, 35(3): 242-247. (in Chinese)

7 HAN K, YANG Y, ZHOUC J, et al. Management of furrow irrigation and nitrogen application on summer maize[J].Agronomy Journal, 2014, 106(4):1402-1410.

8 劉小剛, 張富倉, 楊啟良, 等. 不同溝灌方式下玉米根區礦物質氮遷移動態研究 [J].中國生態農業學報, 2011, 19(3):540-547. LIU Xiaogang, ZHANG Fucang, YANG Qiliang, et al. Transfer of mineral nitrogen in maize root zone soil under different furrow irrigation modes[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3):540-547. (in Chinese)

9 李平, 齊學斌, 樊向陽.分根區交替灌溉對馬鈴薯水氮利用效率的影響 [J]. 農業工程學報, 2010, 16(1): 145-152. LI Ping, QI Xuebin, FAN Xiangyang, et al.Effect of alternate partial root-zone irrigation on nitrogen and water use efficiency of potato[J]. Transactions of the CSAE, 2010, 16(1): 145-152. (in Chinese)

10 ZHANG L D, GA L H, ZHANG L X, et al. Alternate furrow irrigation and nitrogen level effects of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse [J]. Scientia Horticulturae, 2012, 138:43-49.

11 王春暉, 祝鵬飛, 束良佐, 等. 分根區交替灌溉和氨形態影響土壤硝態氮的遷移利用 [J]. 農業工程學報, 2014, 30(11):92-101. WANG Chunhui, ZHU Pengfei, SHU Liangzuo, et al. Effects of alternate partial root irrigation and nitrogen forms on utilization and movement of nitrate in soil[J]. Transitions of the CASE, 2014,30(11): 92-101. (in Chinese)

12 WANG Y S, LIU F L, ANDERSEN M N, et al. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation[J]. Functional Plant Biology, 2010, 37(2):175-182.

13 WANG Y S, LIU F L, NEERGAARD A D, et al.Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes[J]. Plant and Soil, 2010, 337(1-2): 167-177.

14 楊榮, 蘇永中. 水氮配合對綠洲沙地農田玉米產量、土壤硝態氮和氮平衡的影響[J].生態學報, 2009, 28(3):1460-1469. YANG Rong, SU Yongzhong.Effects of nitrogen fertilization and irrigation rate on grain yield, nitrate accumulation and nitrogen balance on sandy farmland in the marginal oasis in the middle of Heihe River basin[J]. Acta Ecologica Sinica, 2009, 28(3):1460-1469. (in Chinese)

15 劉玉潔, 李援農, 潘韜, 等. 不同灌溉制度對覆膜春玉米的耗水規律及產量的影響 [J].干旱地區農業研究, 2009,27(6): 67-71. LIU Yujie, LI Yuannong, PAN Tao, et al.Study on effects of different irrigation treatments on evapotranspiration and yield in spring maize[J].Agricultural Research in the Arid Area, 2009, 27(6): 67-71. (in Chinese)

16 TSAI C Y, HUBER D M, GLOVER D V, et al. Relationship of N deposition to grain yield and N responses of three maize hybrids[J]. Crop Science, 1984, 24(2): 277-281.

17 潘英華, 康紹忠. 交替隔溝灌溉土壤水分入滲規律及其對作物水分利用的影響 [J].農業工程學報, 2000, 21(7):1-5. PAN Yinghua, KANG Shaozhong.Irrigation water infiltration in furrows and crop water use of alternate furrow irrigation[J]. Transactions of the CSAE, 2000, 21(7):1-5. (in Chinese)

18 CHIKOWO R, MAPFUMO P, NYAMUGAFATA P, et al. Nitrate-N dynamics following improved fallows and maize root development in a Zimbawean sandy clay loam[J]. Agroforestry Systems, 2003, 59(3): 187-195.

19 HIREL B, GOUIS J L, NEY B, et al. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches[J]. Journal of Experimental Botany,2007,58(9):2369-2387.

20 漆棟良, 胡田田, 吳雪, 等.適宜灌水施氮方式利于玉米根系生長提高產量 [J].農業工程學報, 2015, 31(11): 144-149. QI Dongliang, HU Tiantian, WU Xue, et al.Rational irrigation and nitrogen supply methods improving root growth and yield of maize[J]. Transactions of the CSAE, 2015, 31(11): 144-149. (in Chinese)

21 WANG H Q, LIU F L, ANDERSEN M N, et al.Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (SolanumtuberosumL.)[J]. Irrigation Science, 2009, 27(6): 443-447.

23 LIS X, WANG Z H., MALHI S S, et al. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dry land area in China[J]. Advances in Agronomy, 2009, 102: 223-265.

24 TIAN Q Y, CHEN F J, LIU J L, et al. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots [J]. Journal of Plant Physiology, 2008, 165(9):942-951.

25 WANG L, DE KROON H, SMITS A J M. Combined effects of partial root zone drying and patchy fertilizer placement on nutrient acquisition and growth of oilseed[J]. Plant and Soil, 2007,295(1-2): 207-216.

26 SKINNER R H, HAN J D, BENJAMIN J G. Nitrogen uptake and portioning under alternate and every-furrow irrigation [J]. Plant and Soil, 1999, 210(1): 11-20.

Effects of Different Nitrogen Supply and Irrigation Methods on Spatial-temporal Distribution of Soil Nitrate Nitrogen during Maize Growth

QI Dongliang1HU Tiantian1,2

(1.CollegeofWaterResourcesandArchitecturalEngineering,NorthwestA&FUniversity,Yangling,Shaanxi712100,China2.KeyLaboratoryofAgriculturalSoilandWaterEngineeringinAridandSemiaridAreas,MinistryofEducation,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)

A field experiment was conducted to investigate the effect of varying supply methods of nitrogen and irrigation on dynamics and distribution of soil nitrate nitrogen during maize (ZaymaysL., cv. Gold northwestern 22) growth in Northwest China. Irrigation methods included alternate furrow irrigation (AI), fixed furrow irrigation (FI) and conventional furrow irrigation (CI). Nitrogen supply methods included alternate nitrogen supply (AN), fixed nitrogen supply (FN) and conventional nitrogen supply (CN), which were applied at each irrigation. Maize rows were established in west-east direction. Soil nitrate nitrogen content in south and north of the plant was measured in 0~100 cm soil depth (20 cm as an interval) before planting and at 6 collars, 12 collars, tasseling, filling and maturity stages. The results showed that spatial-temporal distribution of soil nitrate nitrogen in south and north of the plant was influenced more by varying methods of nitrogen supply and irrigation compared with that under the plant, so did that in 0~40 cm soil depth compared with that in 40~100 cm. At filling stage, soil nitrate nitrogen of irrigated side was moved down to 60~100 cm soil depth for FI coupled with FN when nitrogen and water were applied within the same furrow, and that of non-water supply side was gathered in 0~40 cm soil depth for FI coupled with FN when nitrogen and water were applied to different furrows. Compared with CI, AI reduced soil nitrate nitrogen under the plant in 40~80 cm soil depth by 9.9%~14.4% for different nitrogen supply methods. Compared with the other treatments, AI coupled with CN or AN maintained soil nitrate nitrogen in 0~40 cm soil depth for a longer time during maize growth. Soil residual nitrate nitrogen in 0~100 cm soil depth at harvest was comparable between AI coupled with CN and AI coupled with AN, and the residual of them was reduced by 11.7%~27.3% compared with those of the other treatments. Therefore, alternate furrow irrigation coupled with conventional or alternate nitrogen supply brought a relatively reasonable spatial-temporal distribution of soil nitrate nitrogen during maize growth, and lowered soil residual nitrate nitrogen at harvest.

maize; irrigation method; nitrogen supply method; soil nitrate nitrogen; spatial-temporal distribution

10.6041/j.issn.1000-1298.2017.02.037

2016-06-25

2016-09-19

國家自然科學基金項目(51079124)、國家高技術研究發展計劃(863 計劃)項目(2011AA100504)和中央高?;究蒲袠I務費專項(QN2011067)

漆棟良(1987—),男,博士生,主要從事節水灌溉理論與作物高效利用水氮研究,E-mail: qdl198799@126.com

胡田田(1966—),女,教授,博士生導師,主要從事農業水土資源高效利用研究,E-mail: hutiant@nwsuaf.edu.cn

S158.5

A

1000-1298(2017)02-0279-09

主站蜘蛛池模板: 免费一级α片在线观看| 91亚洲精选| 亚洲精品福利视频| 成人国产一区二区三区| 国产成人精品2021欧美日韩| 亚洲一道AV无码午夜福利| 亚洲国产成人在线| 久久永久精品免费视频| 91精品亚洲| 刘亦菲一区二区在线观看| 黄色网在线免费观看| 日韩精品无码一级毛片免费| 亚洲精品少妇熟女| 久久综合色天堂av| 中文字幕丝袜一区二区| 超薄丝袜足j国产在线视频| 九九九国产| 久久综合一个色综合网| 伊人91在线| 精品三级网站| 欧美在线天堂| 国产在线精品99一区不卡| 欧美三级自拍| 精品自窥自偷在线看| 在线视频亚洲色图| 99精品热视频这里只有精品7| 久久99国产综合精品1| 全色黄大色大片免费久久老太| 欧美三级视频网站| 精品国产三级在线观看| 亚洲色偷偷偷鲁综合| 成人午夜在线播放| 99re视频在线| 日韩精品一区二区三区中文无码| 久草性视频| 露脸真实国语乱在线观看| 亚洲αv毛片| 91精品久久久久久无码人妻| 国产精品尤物在线| 特级毛片免费视频| 国产主播一区二区三区| 日本免费高清一区| 国产精品午夜福利麻豆| 日韩性网站| 又黄又湿又爽的视频| 欧美在线免费| 欧美一区精品| 欧美日韩另类在线| 亚洲无码在线午夜电影| 9966国产精品视频| 亚洲乱强伦| 中文字幕丝袜一区二区| 亚洲第一在线播放| 色偷偷av男人的天堂不卡| 在线国产91| 成人福利在线视频免费观看| 午夜激情婷婷| 青草免费在线观看| 五月婷婷综合在线视频| 亚洲国产91人成在线| 久久青草免费91观看| 欧美在线一二区| 欧美在线国产| 2018日日摸夜夜添狠狠躁| 中文字幕不卡免费高清视频| 波多野结衣久久精品| 97国产精品视频人人做人人爱| 国产精品污污在线观看网站| 亚洲一级无毛片无码在线免费视频| 亚洲福利视频一区二区| 亚洲国产日韩一区| 免费视频在线2021入口| 青青草原国产一区二区| 第一页亚洲| 被公侵犯人妻少妇一区二区三区| 欧美一级在线播放| 国产美女主播一级成人毛片| 十八禁美女裸体网站| 爱做久久久久久| 欧美久久网| 人妻一区二区三区无码精品一区 | 国产精品jizz在线观看软件|