薛銀剛,劉菲,王利平,#,江曉棟,王倩,施昕瀾,薛柯,金珊,姜逸
1. 常州大學環境與安全工程學院,常州 213164 2. 常州市環境監測中心,江蘇省環境保護水環境生物監測重點實驗室,常州 213001
抗生素作為人類醫學的重要發明,自問世以來創造了很多醫學奇跡。除了醫療領域,由于抗生素具有預防疾病和刺激生長的作用,以亞治療劑量長期添加于動物飼料中,被廣泛應用于養殖業[1-3]。我國是抗生素生產和使用大國。據報道,我國年產抗生素原料約21萬t,3萬t出口,國內使用18萬t,其中約一半用于臨床,一半用于畜禽養殖業[4]。抗生素的濫用和過度使用在微生物抗性發展中起著至關重要的作用[5],由此產生的抗生素耐藥菌(antibiotic resistant bacteria,ARB)和抗生素抗性基因(antibiotic resistance genes,ARGs)污染問題引起人們的廣泛關注[6-7]。
當ARGs作為一種新型環境污染物提出之后[8],有關其在環境中來源、傳播和污染的報道日益增多。迄今已有很多種ARGs在世界范圍內的水和廢水[9-13]、土壤[14-15]和沉積物[16-17]等介質中被相繼檢出,主要檢出的是四環素類、磺胺類、喹諾酮類、大環內酯類和氨基糖苷類等。目前關于ARGs的研究主要集中于ARGs的來源探究、ARGs的環境地球化學行為與傳播機制、細菌耐藥對人體健康的影響以及ARGs的環境污染控制等方面[9, 11-13],且大多數研究主要圍繞水和土壤中ARGs展開。相對于水、土壤和沉積物等環境介質,關于ARGs在空氣介質中污染現狀的研究信息還較為缺乏,而空氣中攜帶ARGs的致病菌一旦被人吸入,可能對人體造成直接的健康危害。Pal等[18]通過研究發現相比泥土和水等環境介質,北京霧霾空氣樣品中檢出的ARGs種類最多,平均有64.4種,表明氣溶膠是ARGs的潛在儲存庫和傳播的載體。然而,國內外對大氣氣溶膠中ARGs的研究相對較少。
本文就養殖場和醫院2個抗生素大量使用的典型場所展開討論,根據近年來國內外的文獻資料,對ARGs的污染現狀、檢測技術和對人體的健康風險進行綜述,并對今后開展氣溶膠中ARGs研究提出幾點建議。
獸用抗生素進入動物體內,便會誘導產生抗性菌株[19],這些腸道抗性菌株隨糞便排入環境中,在糞便處理和動物移動期間很容易被氣溶膠化[20],研究表明動物糞便及其接觸過的土壤中都含有大量ARGs,經過氣流作用會懸浮于空氣中[21]。同時,養殖過程中產生的廢水以及養殖場廢物處理過程中都含有大量ARGs,通過蒸發、厭氧消化和發酵過程都會產生氣溶膠[22]。目前,養殖場氣溶膠中已發現的ARGs主要為四環素類和大環內酯類,高的檢出率與這2類抗生素在養殖場的大量使用密不可分[23-24]。養殖場氣溶膠中已檢出的ARGs種類見表1。
四環素類抗生素是一類重要的廣譜抗菌藥物,由于具有預防疾病和促進動物生長等作用,被廣泛用于集約化畜禽養殖場[25],許多致病菌由于產生了tet-R基因而對四環素類抗生素產生抗性[26]。目前發現于畜禽養殖場氣溶膠中的四環素類抗性基因已達十余多種。在養雞場氣溶膠中發現tetW、tetL、tetA、tetA/P、tetX、tetG、tetA/C、tetY、tetB、tetH、tetZ、tetQ和tetO 13種四環素類抗性基因[22,27-28]。并且四環素類抗性基因廣泛存在于各類養殖環境的氣溶膠中,Mceachran等[29]研究肉牛飼養場附近空氣顆粒物樣品,利用實時熒光定量PCR技術(real-time quantitative PCR,qPCR)檢測出6種四環素類ARGs,并發現相比上風向,下風向氣溶膠中四環素類抗性基因的豐度是顯著增加的。高達13種四環素類ARGs也被發現存在于養豬場環境產生的氣溶膠中[30-34]。
大環內酯類抗生素由于可以有效地抑制某些革蘭氏陽性菌和革蘭氏陰性菌,從而被廣泛地應用于動物細菌感染的治療和預防[35],Just等[28]在來源于籠養和散養的舍內微生物氣溶膠中發現了ermA、ermB 2種大環類酯類抗性基因,其中ermA只存在于散養雞舍的氣溶膠中,可以看出用于散養雞的抗生素主要用于動物生長,可能更有助于紅霉素耐藥性形成。金黃色葡萄球菌是畜禽養殖環境中常見的病原體[36],Liu等[32]通過從6個養豬場的149株金黃色葡萄球菌氣溶膠中檢出了ermC,同時大多數菌株表現出多重抗藥性,有3株菌株抗9種抗生素。ermF、mefA也被發現存在于養豬場的腸球菌和鏈球菌等含致病菌的氣溶膠中[34]。由表1可知ermA、ermB是畜禽養殖場最常見的大環內酯類抗性基因。

表1 養殖場和醫院氣溶膠中檢出的抗生素抗性基因(ARGs)Table 1 Antibiotic resistance genes (ARGs) detected in aerosols of livestock farms and hospitals
除了2類檢出率較高的ARGs,在畜禽養殖場的氣溶膠還發現了1種桿菌肽鋅抗性基因bcrR[28],2種喹諾酮類抗性基因qnrS、parC[27],1種氨基糖苷類抗性基因aac6′-aph2″[32],8種β-內酰胺類抗性基因blaCARB-4、blaCTX-M、blaampC、blaOXAⅠ、blaOXA-18、blaOXAⅡ、blaPSE、blaTEM*和3種sul2、sul3、dfrA1磺胺類抗性基因[27]。
近年來,醫院環境的細菌耐藥性明顯升高[37]。氟喹諾酮類是用于治療幾種革蘭氏陰性和革蘭氏陽性細菌感染的廣譜抗生素,其抗藥性首次在耐甲氧西林金黃色葡萄球菌的治療中被發現[38]。有研究表明,在過去10年中,大腸桿菌對氟喹諾酮類(如環丙沙星)的耐藥率有所提高[39];一些致病革蘭氏陰性細菌菌株(大腸桿菌、產氣腸桿菌和肺炎克雷伯桿菌)幾乎抵抗所有當代抗生素[40];Santoro等[41]從醫院廢水處理設施收集廢水樣品,其中22.2%的菌株被列為多重耐藥。Tang等[42]對上海第一人民醫院的細菌抗生素敏感性進行調查,發現該醫院的抗生素抗藥性持續增加,大腸桿菌、鮑曼不動桿菌和金黃色葡萄球菌是最普遍的抗性菌株。
醫院內的感染對病患和雇員構成健康威脅,特別是抗生素抗性在細菌之間的傳播問題,接觸傳播和空氣微生物傳播是醫院細菌感染的較為常見的傳播方式[43]。已有研究表明,從醫院呼吸科住院部的微生物氣溶膠中分離的許多菌株抗一種或多種抗生素,所有與少動鞘氨醇單胞菌有關的分離株均檢出萬古霉素抗性基因vanB,另有一些菌株含四環素類抗性基因tetA、tetC和紅霉素抗性基因ermX[44]。耐甲氧西林金黃色葡萄球菌可導致醫院感染的傳播[43],Drudge等[45]從醫院各個部門(急診、普通門診、重癥監護病房、兒科和胸肺科門診)的獨立空氣凈化裝置中收集灰塵樣本,利用PCR技術在多個樣品中檢測到aac6′-aph2″、ermA和mecA抗性基因。與醫院環境接觸的人員高度暴露于多重耐藥細菌,并且在醫生和護士家中,空氣中耐甲氧西林菌株的檢出率更高,同時所有分離的凝血酶陰性葡萄球菌菌株均對萬古霉素、利福平和利奈唑胺敏感[46]。上述研究表明,醫院氣體環境是ARGs和致病菌的儲存庫,但是醫院環境生物氣溶膠中ARGs和致病菌的污染特征研究僅僅處于起步階段,而國內還鮮少涉及該方面的研究工作。
攜帶ARGs的微生物氣溶膠可借助空氣介質進行傳播和擴散,其中粒徑為0.1~20.0 μm的氣溶膠與人類健康密切相關[47]。氣溶膠中ARGs的采集一般是借鑒微生物氣溶膠的采集方法,目前已用于氣溶膠中ARGs的采集方法主要有固體撞擊式采樣法、液體捕捉式采樣法、膜過濾采樣法和離心式采樣法。
固體撞擊式采樣法是指空氣中微生物氣溶膠在獲得足夠的慣性后,脫離氣流而撞擊于固體平板上,通常以培養基為收集介質,使該類采樣方法更適于微生物的培養和鑒定[48]。固體撞擊式采樣器最常用的是安德森(Andersen)采樣器,Andersen采樣器通過模擬人的呼吸道解剖結構和動力學特征,采用分粒徑撞擊原理設計[49],采集效率高且采集粒徑范圍寬。Andersen二級采樣器(第一級>8 μm;第二級0.8~8 μm)已被用于養豬場ARB的采集,其細菌的抗生素耐藥性利用K-B紙片擴散法確定[50]。Andersen六級采樣器是一種6級篩板式空氣微生物采樣器,第1~6級捕獲的微粒直徑分別為>7.0 μm;4.7~7.0 μm;3.3~4.7 μm;2.1~3.3 μm;1.1~2.1 μm和0.65~1.1 μm。由于其具有微生物存活率高、采集粒譜范圍寬、采樣效率高以及適用范圍廣等特點,被廣泛應用于醫院和養殖場環境氣溶膠中ARGs的采集[31-32, 44]。另外,Andersen八級采樣器(空氣動力學直徑:>9.0 μm;5.8~9.0 μm;4.7~5.8 μm;3.3~4.7 μm;2.1~3.3 μm;1.1~2.1 μm;0.7~1.1 μm和0.4~0.7 μm)被用于研究集約化養殖過程中與粒徑相關的細菌多樣性和四環素抗性基因(tetW、tetL)豐度[22]。
液體捕捉式采樣法可以完成氣溶膠到水溶膠的采樣過程,主要采用的是液體沖擊式采樣器,收集介質通常是無菌水、緩沖生理鹽水或營養液等液體,該類收集介質可以起到緩沖作用,減少微生物的損傷[48]。常用的液體沖擊式采樣器有AGI系列的全玻璃液體沖擊式采樣器AGI-30和SKC公司生產的BioSampler液體生物氣溶膠取樣器,由于長時間的采樣會引起收集介質的蒸發而增加試驗誤差,所以該類采樣器適用于短時間收集樣品[51-52],其收集的采樣液可以用于進一步的微生物培養或分子生物學檢測。AGI-30采樣器已被用于采集養豬場氣溶膠中多重耐藥的腸球菌、凝固酶陰性葡萄球菌和鏈球菌[34,53],適用于收集室內環境氣載多重耐藥細菌。Brooks等[54]為研究家禽舍內生物氣溶膠的抗生素抗性成分,利用BioSampler采集肉雞廠室內和室外的氣溶膠樣品,結果表明ARB高度集中于室內環境中,且多為耐藥葡萄球菌。Ling等[30]利用BioSampler和Omni 3000濕式濃縮采樣器采集養豬場室內PM10(收集于無菌的磷酸鹽緩沖液PBS),檢測出tetX、tetW和intI1。
膜過濾式采樣法是指空氣中的微生物顆粒在抽氣裝置的作用下被阻留在濾材上,所使用的采樣器結構主要包括抽氣裝置和裝有多孔濾膜的收集裝置,是較為簡單的一類采樣方法[49]。膜過濾式采樣器的特點是效率高,在氣溶膠中ARGs的樣品采集過程中有利于收集不可培養的細菌,這對全面掌握ARGs的種類和豐度等信息具有重要意義,但是該類方法在溫度過低或過高時均不利于生物粒子的捕捉,也不適于長時間采樣[55]。膜過濾式采樣法常用的濾膜材料包括玻璃纖維、聚氯乙稀和聚碳酸酯等,生物氣溶膠的采集效率與所選濾膜類型、孔徑和氣體流速有關。Hi-Q CF-902便攜式大流量空氣取樣器結合玻璃纖維濾膜[29]和Maple多級沖擊式采樣器配備聚氯乙烯濾膜[28]分別用于牛飼養場和家禽舍內生物氣溶膠中ARGs的樣品采集,經qPCR技術檢出多種ARGs (tetB、tetL、tetM、tetO、tetQ、tetW、tetA/C、tetG、ermA、ermB和bcrR),表明該類方法的適用性。
離心式采樣法是指生物氣溶膠顆粒利用旋轉運動產生的離心力獲得一定動量,并因其慣性偏離氣體流線,撞擊于采集面上[47],所用采樣器有我國制造的LWC-I空氣浮游菌采樣器和德國制造的RCS離心式空氣微生物采樣器。Li等[56]利用RCS離心式空氣微生物采樣器采集污水處理廠空氣樣本,利用PCR結合凝膠電泳技術檢出空氣樣本中存在sul2和intI1。目前關于利用離心式采樣法進行氣溶膠中ARGs的樣品采集的研究還較少,同時有研究表明,在微生物氣溶膠的回收率方面,離心式空氣微生物采樣器比Andersen采樣器略低[57]。
AGI-30采樣器和Andersen 6級樣器是國際空氣生物學學會推薦使用的采樣器,也是氣溶膠中ARGs的樣品采集常用的2類采樣設備,但是未有研究針對不同類型采樣器的性能、適用性、收集效率和后續ARGs定性定量檢測等方面進行比較評價,使氣溶膠中ARGs的檢出結果存在較大的不確定性。不同的樣品采集條件適用于不同的采樣器,Chang等[58]采用了過濾法(聚碳酸酯濾膜)、液體捕捉式(Andersen單級采樣器)和固體撞擊式(AGI-30采樣器)3類方法收集養豬場生物氣溶膠,其中AGI-30采樣器收集的可培養細菌濃度最高,過濾法收集到的可培養真菌濃度最高。研究者們只有充分了解各種采樣方法以及采樣器的特點,才能使試驗分析結果更具準確性,而目前關于氣溶膠中ARGs的研究還較少,不同采樣方法對ARGs種類和濃度的分析結果可能產生的影響還不明確,有待開展進一步的研究。
微生物是ARGs的宿主,抗生素抗性的傳統檢測技術主要是基于微生物培養,以抗性表型來評價其抗性類型[59]。傳統的抗菌藥敏試驗包括紙片擴散試驗,E檢驗梯度擴散試驗和肉湯稀釋敏感性試驗[60]。藥敏試驗被用于評價多種環境中微生物對抗生素的抗性強弱,如檢測出污水和污泥中大腸桿菌對四環素類抗生素抗藥率高達57%[61]以及海水和沙粒中腸球菌屬的抗紅霉素和四環素的頻率最高[62]。藥敏試驗也被用于氣溶膠中細菌的抗性表征,Gandolfi等[63]根據臨床實驗室標準研究所協議,使用紙片擴散法研究PM10中細菌的抗生素抗藥性。Liu等[32]利用Mueller-Hinton瓊脂試驗對養豬場室內氣溶膠進行抗生素敏感性檢測,發現了多重耐藥金黃色葡萄球菌。Sapkota等[34]使用最小抑菌濃度瓊脂稀釋法在養豬場的室內空氣中篩選多重耐藥腸球菌屬和鏈球菌屬,發現其多重耐藥性是由多個大環內酯類和四環素類抗性基因編碼。
藥敏實驗法需要24~48 h純化細菌,另24~72 h完成敏感性試驗[64],為了提高敏感性測試時間,PCR技術這一快速平臺在臨床實驗室獲得認可[60]。PCR技術是一種用于放大擴增特定的DNA片段的分子生物學技術,可使微量的DNA大幅增加,無需對微生物進行分離培養,從而被廣泛地應用于ARGs的研究[65-66]。PCR技術可與微生物培養相結合用于檢測ARGs,Lopes等[67]結合瓊脂盤擴散法和PCR技術檢測豬身上分離的鼠傷寒沙門氏菌所攜帶的ARGs,其中多重抗藥性的菌株由blaTEM、catA1、floR、sul1、sul2、sul3、tetA和tetB共同編碼。Schoenfelder等[68]結合藥敏實驗法和PCR技術研究凝血酶陰性葡萄球菌在家畜環境中的抗生素抗性譜。鑒于PCR技術無法對ARGs進行準確定量,qPCR結合熒光能量傳遞技術,利用熒光信號累積實時監測整個PCR進程以實現抗性基因的精確定量。qPCR技術在糞便、土壤、水和垃圾固體等多種樣品的ARGs的定量方面發揮了巨大優勢[69-72]。普通PCR和qPCR技術已被廣泛應用于氣溶膠中ARGs的定量檢測,如表1所示。高敏等[27]結合PCR和qPCR技術獲得了養雞場空氣樣品完整的抗性數據,實現ARGs的定性定量分析。
由于大氣間細菌的行為、生存能力和運輸受到缺乏信息的限制,空氣中的微生物對人體健康造成的實際風險的評估仍然具有挑戰性[63]。空氣傳播可能是已知具有相對較高抗生素抗性水平的細菌引起重要疾病的主要傳播途徑[73-74]。Gibbs等[50]在距離養豬場的25 m、50 m、100 m和150 m處分別設置采樣點,在采集到的氣溶膠樣品中發現耐藥性金黃色葡萄球菌的濃度隨著距離的增加而減少。產生于畜禽糞便或畜禽本身的致病菌逸散到養殖場環境中形成氣溶膠,便會由傳統通風方式從舍內傳播到舍外,一旦進入舍外環境,風會將源于畜禽場的氣溶膠傳播開來。ARGs具有廣泛的傳播潛力,有證據表明畜禽場抗生素使用量與人類病原體中相關ARGs含量的上升有關[75]。ARGs存在于氣溶膠中可以進行長距離的傳播[36, 76],其在環境中的持久性殘留、傳播和擴散比抗生素本身的危害還要大[77]。ARGs可以整合到質粒[78]、轉座子[79]、整合子[80]等可移動遺傳元件實現在不同的菌株(包括致病菌)之間的橫向轉移,進入環境的抗性基因可以在不同介質中遷移和轉化,最終很可能進入人體,使人體對各種抗生素的耐藥性有所增加[76]。目前關于氣溶膠中抗性基因與可移動遺傳元件的關系還不明確,有待開展進一步的研究工作。Létourneau等[31]收集養殖場工人的鼻分泌物,在1名和10名工作者的鼻腔菌群分別檢出了tetA/C和tetG,由此可見,工人可以通過呼吸獲取空氣中的微生物[81],暴露于氣溶膠化的人類病原體和抗生素抗性細菌,而其攜帶的抗性基因很可能會傳播給其他人員。

圖1 養殖場和醫院攜帶ARGs氣溶膠的產生與傳播Fig. 1 Formation and transmission of aerosols carrying ARGs in livestock farms and hospitals
WHO在2015年的喬治敦大學“全球未來行動”講座中提到“耐藥性的超級細菌令世界各地急診室和重癥監護病房不堪重負”[82],充分表明致病菌耐藥性對人體健康造成了極大威脅。目前在畜禽養殖環境的空氣中已檢出多種多重耐藥致病菌;Chapin等[53]分析了養豬場氣溶膠中致病菌耐藥性情況,結果表明,98%的分離株至少對常用的2種抗生素表現出高水平的抗性,而人體吸入這些空氣可能是多重耐藥性病原體從動物轉移到人類的暴露途徑。Friese等[83]在土耳其火雞和肉雞場的空氣中檢測到耐甲氧西林金黃色葡萄球菌,檢出率高達77.8%。氣溶膠中ARGs對人體的健康風險在于致病菌一旦攜帶ARGs后容易被人體吸入,從而直接對人體造成健康危害。研究表明從豬和雞糞中釋放的大多數細菌氣溶膠中含大量病原體,其中大約80%的生物氣溶膠是可呼吸的[20]。PM2.5具有較強的吸附能力,是多種污染物(化學和生物源性污染物)的集合體[84-85],由于其粒徑小,進入機體部位深,對人體的暴露程度很高,從而產生較大的毒害作用[86-87]。分布在畜禽場氣溶膠(粒徑<2.5 μm)中的致病菌可能穿過并沉積在氣管、支氣管和肺泡區更深處[88],存在于細顆粒物中的ARGs很可能是向人體呼吸系統傳播的重要途徑。張蘭河等[89]發現動物舍內的四環素和紅霉素耐藥菌氣溶膠主要沉降在人體的咽喉和支氣管,這無疑危害著動物飼養員的生命健康。Gao等[22]利用Andersen 8級采樣器采集畜禽場空氣樣品,在不同粒徑的顆粒物中均檢出了tetW和tetL,存在于較小顆粒中攜帶抗性基因的大腸桿菌能夠穿透并沉積在氣管和原發性支氣管中,這對養殖環境中易感人群的健康構成威脅。
我國是抗生素生產和使用大國,而畜禽養殖業和醫療行業作為抗生素大量使用的場所,長期以來存在大劑量和不科學用藥的情況,造成ARGs這一新型污染物在各種環境中累積、傳播。目前對于氣溶膠中ARGs的研究較少,我國尚處于起步階段。氣溶膠作為ARGs的潛在儲存庫缺乏有關種類、濃度、來源以及健康風險等系統的研究數據,本文通過綜述養殖場和醫院2個典型場所氣溶膠中ARGs的研究現狀,對未來開展相關的研究提出了以下幾點建議:
(1)開展養殖場和醫院等典型場所ARGs的關聯性研究工作,致力于探討不同場所氣溶膠中ARGs污染的來源、種類、濃度、傳播擴散機制(宿主菌和可移動遺傳元件)及關鍵影響因素(抗生素和氣溶膠中的化學成分)。
(2)由于空氣樣品所含生物量通常較低,而ARGs的采集技術和處理方法對檢測結果影響很大,統籌生物氣溶膠采樣、樣品預處理和ARGs鑒定(PCR和qPCR)等步驟,建立氣溶膠中ARGs的樣品采集和定性定量檢測方法具有重要意義。
(3)建立氣溶膠中ARGs風險評估方法,主要分為劑量-效應評估和呼吸系統暴露評估。通過動物實驗和分子生態毒理學研究,確定ARGs通過呼吸系統進入體內的劑量反應與人體耐藥水平和疾病暴露的關系;開展相關實驗并結合歷史資料進行典型場所氣溶膠中ARGs的呼吸系統暴露評估,評估重點為人體暴露于氣體環境中的ARGs濃度、頻率和持續時間,并考慮不同場所氣溶膠中ARGs污染程度和受試人群的差異。
[1] Ben W W, Wang J, Pan X, et al. Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China [J]. Chemosphere, 2017, 167: 262-268
[2] Wang R, Zhang J Y, Sui Q W, et al. Effect of red mud addition on tetracycline and copper resistance genes and microbial community during the full scale swine manure composting [J]. Bioresource Technology, 2016, 216: 1049-1057
[3] Wang J, Ben W W, Yang M, et al. Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths [J]. Environment International, 2016, 92: 317-323
[4] 中華人民共和國環境保護部. 關于政協十二屆全國委員會第三次會議第0668號(資源環境類035號)提案答復的函[EB/OL]. (2015-08-06) [2017-11-22]. http://www.zhb.gov.cn/gkml/hbb/qt/201511/t20151128_317897.htm
[5] Gilchrist M J, Greko C, Wallinga D B, et al. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance [J]. Environmental Health Perspectives, 2007, 115(2): 313-316
[6] Zhang R R, Gu J, Wang X J, et al. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure [J]. Bioresource Technology, 2017, 225: 343-348
[7] Johnson T A, Stedtfeld R D, Wang Q, et al. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture [J]. MBio, 2016, 7(2): e02214-15
[8] Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado [J]. Environmental Science and Technology, 2006, 40(23): 7445-7450
[9] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science and Technology, 2010, 44(19): 7220-7225
[10] Mao D Q, Yu S, Rysz M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants [J]. Water Research, 2015, 85(6): 458-466
[11] Zhai W C, Yang F X, Mao D Q, et al. Fate and removal of various antibiotic resistance genes in typical pharmaceutical wastewater treatment systems [J]. Environmental Science and Pollution Research, 2016, 23(12): 12030-12038
[12] Dang B, Mao D, Xu Y, et al. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes [J]. Water Research, 2017, 111: 81-91
[13] Wang J, Mao D, Mu Q, et al. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants [J]. Science of the Total Environment, 2015, 526: 366-373
[14] Lin H, Sun W C, Zhang Z L, et al. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system [J]. Environmental Pollution, 2016, 211(3): 332-337
[15] Zhou B R, Wang C, Zhao Q, et al. Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms [J]. Journal of Hazardous Materials, 2016, 320: 10-17
[16] Mao D Q, Luo Y, Mathieu J, et al. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation [J]. Environmental Science and Technology, 2014, 48(1): 71-78
[17] Dang B J, Yan X, Mao D Q, et al. Complete nucleotide sequence of plasmid pNA6 reveals the high plasticity of IncU family plasmids [J]. Gene, 2016, 591(1): 74-79
[18] Pal C, Bengtsson-Palme J, Kristiansson E, et al. The structure and diversity of human, animal and environmental resistomes [J]. Microbiome, 2016, 4(1): 54-68
[19] Jiang X B, Shi L. Distribution of tetracycline and trimethoprim/sulfamethoxazole resistance genes in aerobic bacteria isolated from cooked meat products in Guangzhou, China [J]. Food Control, 2013, 30(1): 30-34
[20] Chien Y C, Chen C J, Lin T H, et al. Characteristics of microbial aerosols released from chicken and swine feces [J]. Journal of the Air & Waste Management Association, 2011, 61(8): 882-889
[21] Wang N, Yang X D, Jiao S J, et al. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China [J]. PloS One, 2014, 9(11): e112626
[22] Gao M, Jia R Z, Qiu T L, et al. Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations [J]. Environmental Pollution, 2016, 220: 1342-1348
[23] Alavi N, Babaei A A, Shirmardi M, et al. Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province, Iran [J]. Environmental Science and Pollution Research International, 2015, 22(22): 17948-17954
[24] Topp E, Renaud J, Sumarah M, et al. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field [J]. Science of the Total Environment, 2016, 562: 136-144
[25] Bergstr?m K, Nyman G, Widgren S, et al. Infection prevention and control interventions in the first outbreak of methicillin-resistant Staphylococcus aureus infections in an equine hospital in Sweden [J]. Acta Veterinaria Scandinavica, 2012, 54: 14
[26] Kyselková M, Jirout J, Vrchotová N, et al. Spread of tetracycline resistance genes at a conventional dairy farm [J]. Frontiers in Microbiology, 2015, 6: 536
[27] 高敏, 仇天雷, 秦玉成, 等. 養雞場空氣中抗性基因和條件致病菌污染特征[J]. 環境科學, 2017, 38(2): 510-516
Gao M, Qiu T L, Qin Y C, et al. Sources and pollution characteristics of antibiotic resistance genes and conditional pathogenic bacteria in concentrated poultry feeding operations [J]. Environmental Science, 2017, 38(2): 510-516 (in Chinese)
[28] Just N A, Létourneau V, Kirychuk S P, et al. Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations [J]. Annals of Occupational Hygiene, 2012, 56(4): 440-449
[29] Mceachran A D, Blackwell B R, Hanson J D, et al. Antibiotics, bacteria, and antibiotic resistance genes: Aerial transport from cattle feed yards via particulate matter [J]. Environmental Health Perspectives, 2015, 123(4): 337-344
[30] Ling A L, Pace N R, Hernandez M T, et al. Tetracyclineresistance and class 1 integron genes associated with indoor and outdoor aerosols [J]. Environmental Science and Technology, 2013, 47(9): 4046-4052
[31] Létourneau V, Nehmé B, Mériaux A, et al. Human pathogens and tetracycline-resistant bacteria in bioaerosols of swine confinement buildings and in nasal flora of hog producers [J]. International Journal of Hygiene and Environmental Health, 2010, 213(6): 444-449
[32] Liu D J, Chai T J, Xia X Z, et al. Formation and transmission of Staphylococcus aureus (including MRSA) aerosols carrying antibiotic-resistant genes in a poultry farming environment [J]. Science of the Total Environment, 2012, 426(2): 139-145
[33] Hong P Y, Li X Z, Yang X F, et al. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings [J]. Environmental Microbiology, 2012, 14(6): 1420-1431
[34] Sapkota A R, Ojo K K, Roberts M C, et al. Antibiotic resistance genes in multidrug-resistant Enterococcus spp. and Streptococcus spp. recovered from the indoor air of a large-scale swine-feeding operation [J]. Letters in Applied Microbiology, 2006, 43(5): 534-540
[35] 李向梅. 牛奶中四種大環內酯類藥物殘留免疫檢測技術研究[D]. 北京: 中國農業大學, 2016: 1-3
Li X M. Immunoassay techniques for the determination of four macrolides residues in milk [D]. Beijing: China Agricultural University, 2016: 1-3 (in Chinese)
[36] Zhong Z B, Chai T J, Duan H Y, et al. REP-PCR tracking of the origin and spread of airborne Staphylococcus aureus in and around chicken house [J]. Indoor Air, 2009, 19(6): 511-516
[37] Fasugba O, Gardner A, Mitchell B G, et al. Ciprofloxacin resistance in community-and hospital-acquired Escherichia coli, urinary tract infections: A systematic review and meta-analysis of observational studies [J]. BMC Infectious Diseases, 2015, 15(1): 1-16
[38] Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use [J]. Interdisciplinary Perspectives on Infectious Diseases, 2012, 2012(3): 976273
[39] Rath S, Padhy R N. Prevalence of fluoroquinolone resistance in Escherichia coli, in an Indian teaching hospital and adjoining communities [J]. Journal of Taibah University Medical Sciences, 2015, 10(4): 504-508
[40] Falagas M E, Kanellopoulou M D, Karageorgopoulos D E, et al. Antimicrobial susceptibility of multidrug-resistant Gramnegative bacteria to fosfomycin [J]. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27(6): 439-443
[41] Santoro D O, Cardoso A M, Coutinho F H, et al. Diversity and antibiotic resistance profiles of Pseudomonads from a hospital wastewater treatment plant [J]. Journal of Applied Microbiology, 2015, 119(6): 1527-1540
[42] Tang J, Wang L L, Xi Y F, et al. A three-year survey of the antimicrobial resistance of microorganisms at a Chinese hospital [J]. Experimental and Therapeutic Medicine, 2016, 11(3): 731-736
[43] Herfst S, B?hringer M, Karo B, et al. Drivers of airborne human-to-human pathogen transmission [J]. Current Opinion in Virology, 2017, 22: 22-29
[44] Yan G, Veillette M, Duchaine C. Airborne bacteria and antibiotic resistance genes in hospital rooms [J]. Aerobiologia, 2010, 26(3): 185-194
[45] Drudge C N, Krajden S, Summerbell R C, et al. Detection of antibiotic resistance genes associated with methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci in hospital air filter dust by PCR [J]. Aerobiologia, 2012, 28(2): 285-289
[46] Lis D O, Pacha J Z, Idzik D. Methicillin resistance of airborne coagulase-negative staphylococci in homes of persons having contact with a hospital environment [J]. American Journal of Infection Control, 2009, 37(3): 177-182
[47] 賀小萌, 曹罡, 邵明非, 等. 空氣中抗性基因(ARGs)的研究方法及研究進展[J]. 環境化學, 2014(5): 739-747
He X M, Cao G, Shao M F, et al. Research method and progress on antibiotics resistance genes (ARGs) in air [J]. Environmental Chemistry, 2014(5): 739-747 (in Chinese)
[48] 王彥杰, 李琳, 許光素, 等. 微生物氣溶膠采集技術的特點及應用[J]. 微生物學通報, 2017, 44(3): 701-709
Wang Y J, Li L, Xu G S, et al. The application and characteristics of technologies forbioaerosols collection [J]. Microbiology China, 2017, 44(3): 701-709 (in Chinese)
[49] 劉洋, 王木根, 謝珊珊, 等. 空氣中微生物氣溶膠采樣技術研究進展[J]. 職業與健康, 2017, 33(5): 713-716
Liu Y, Wang M G, Xie S S, et al. Research progresses on sampling technique of airborne microbiological aerosol [J]. Occupation and Health, 2017, 33(5): 713-716 (in Chinese)
[50] Gibbs S G, Green C F, Tarwater P M, et al. Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation [J]. Environmental Health Perspectives, 2006, 114(7): 1032-1037
[51] Ghosh B, Lal H, Srivastava A. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms [J]. Environment International, 2015, 85: 254-272
[52] 談書勤, 顧大勇, 侯婷, 等. 固體空氣微生物采樣器與液體空氣微生物采樣器采樣效果的比較[J]. 中華疾病控制雜志, 2014, 18(1): 51-54
Tan S Q, Gu D Y, Hou T, et al. Comparison of the solid air-sampler and liquid air-sampler for airborne microorganisms [J]. Chinese Journal of Disease Control and Prevention, 2014, 18(1): 51-54 (in Chinese)
[53] Chapin A, Rule A, Gibson K, et al. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation [J]. Environmental Health Perspectives, 2005, 113(2): 137-142
[54] Brooks J P, Mclaughlin M R, Scheffler B, et al. Microbial and antibiotic resistant constituents associated with biological aerosols and poultry litter within a commercial poultry house [J]. Science of the Total Environment, 2010, 408(20): 4770-4777
[55] 賀小萌. 空氣微生物污染的檢測方法及其在污水廠的應用研究[D]. 哈爾濱: 哈爾濱工業大學, 2014: 20-21
He X M. Studies on airborne microorganism pollution detection method and application in a wastewater treatment plant [D]. Harbin: Harbin Institute of Technology, 2014: 20-21 (in Chinese)
[56] Li J, Zhou L T, Zhang X Y, et al. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant [J]. Atmospheric Environment, 2015, 124: 404-412
[57] 高暉, 蔣黎娜, 張冬瑩, 等. LWC-I型、CA6和CA2三種空氣微生物采樣器在公共場所中應用的對比試驗[J]. 衛生研究, 2000, 29(3): 145-147
Gao H, Jiang L N, Zhang D Y, et al. Contrast test using three kinds of air-microorganism samplers LWC-I, CA6 and CA2 in public places [J]. Journal of Hygiene Research, 2000, 29(3): 145-147 (in Chinese)
[58] Chang C W, Chung H, Huang C F, et al. Exposure ofworkers to airborne microorganisms, in open-air swine houses [J]. Applied & Environmental Microbiology, 2001, 67(1): 155-161
[59] 王麗梅, 羅義, 毛大慶, 等. 抗生素抗性基因在環境中的傳播擴散及抗性研究方法[J]. 應用生態學報, 2010, 21(4): 1063-1069
Wang L M, Luo Y, Mao D Q, et al. Transport of antibiotic resistance genes in environment and detection methods of antibiotic resistance [J]. Chinese Journal of Applied Ecology, 2010, 21(4): 1063-1069 (in Chinese)
[60] Quach D T, Sakoulas G, Nizet V, et al. Bacterial cytological profiling (BCP) as a rapid and accurate antimicrobial susceptibility testing method for Staphylococcus aureus [J]. Ebiomedicine, 2016, 4: 95-103
[61] Reinthaler F F, Posch J, Feierl G, et al. Antibiotic resistance of E. coli in sewage and sludge [J]. Water Research, 2003, 37(8): 1685-1690
[62] Oliveira A J, Pinhata J M. Antimicrobial resistance and species composition of Enterococcus spp. isolated from waters and sands of marine recreational beaches in Southeastern Brazil [J]. Water Research, 2008, 42(8): 2242-2250
[63] Gandolfi I, Franzetti A, Bertolini V, et al. Antibiotic resistance in bacteria associated with coarse atmospheric particulate matter in an urban area [J]. Journal of Applied Microbiology, 2011, 110(6): 1612-1620
[64] Goff D A, Jankowski C, Tenover F C. Using rapid diagnostic tests to optimize antimicrobial selection in antimicrobial stewardship programs [J]. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 2012, 32(8): 677-687
[65] Kyselková M, Kotrbová L, Bhumibhamon G, et al. Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure [J]. Soil Biology and Biochemistry, 2015, 81: 259-265
[66] Brooks J P, Adeli A, Mclaughlin M R. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems [J]. Water Research, 2014, 57(5): 96-103
[67] Lopes G V, Michael G B, Cardoso M, et al. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment [J]. Veterinary Microbiology, 2016, 194: 84-92
[68] Schoenfelder S M, Dong Y, Fe?ler A T, et al. Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments [J]. Veterinary Microbiology, 2017, 200: 79-87
[69] Luby E M, Moorman T B, Soupir M L. Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure [J]. Science of the Total Environment, 2016, 550: 1126-1133
[70] Mu Q H, Li J, Sun Y X, et al. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China [J]. Environmental Science & Pollution Research, 2015, 22(9): 6932-6940
[71] 李蕾, 徐晶, 趙由才, 等. 垃圾填埋場抗生素抗性基因初探[J]. 環境科學, 2015(5): 1769-1775
Li L, Xu J, Zhao Y C, et al. Investigation of antibiotic resistance genes (ARGs) in landfill [J]. Environmental Science, 2015(5): 1769-1775 (in Chinese)
[72] Peng S, Wang Y M, Zhou B B, et al. Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China [J]. Science of the Total Environment, 2015, 506(4): 279-286
[73] Rao G G. Risk factors for the spread of antibiotic-resistant bacteria [J]. Drugs, 1998, 55(3): 323-330
[74] Hamed M S, Mahnaz N, Hossein K, et al. Occurrence of airborne vancomycin-and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran [J]. Advanced Biomedical Research, 2016, 5(1): 143-147
[75] Price L B, Stegger M, Hasman H, et al.Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock [J]. MBio, 2012, 3(1): e00305-11
[76] 高敏, 賈瑞志, 仇天雷, 等. 畜禽養殖中逸散生物氣溶膠特征的研究進展[J]. 生態與農村環境學報, 2015, 31(1): 12-21
Gao M, Jia R Z, Qiu T L, et al. Progress in research on characteristics of bioaerosol diffused during livestock breeding [J]. Journal of Ecology and Rural Environment,2015, 31(1): 12-21 (in Chinese)
[77] 蘇建強, 黃福義, 朱永官. 環境抗生素抗性基因研究進展[J]. 生物多樣性, 2013, 21(4): 481-487
Su J Q, Huang F Y, Zhu Y G. Antibiotic resistance genes in the environment [J]. Biodiversity Science, 2013, 21(4): 481-487 (in Chinese)
[78] Jitwasinkul T, Suriyaphol P, Tangphatsornruang S, et al. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients [J]. Journal of Global Antimicrobial Resistance, 2016, 6: 57-66
[79] Li G, Zhang Y, Bi D, et al. First report of a clinical, multidrug-resistant Enterobacteriaceae isolate coharboring fosfomycin resistance gene fosA3 and carbapenemase gene blaKPC-2on the same transposon, Tn 1721 [J]. Antimicrobial Agents & Chemotherapy, 2015, 59(1): 338-343
[80] Hamidian M, Holt K E, Hall R M. Genomic resistance island AGI1 carrying a complex class 1 integron in a multiply antibiotic-resistant ST25 Acinetobacter baumannii isolate [J]. Journal of Antimicrobial Chemotherapy, 2015, 70(9): 2519-2523
[81] Wilson I G. Airborne Campylobacter infection in a poultry worker: Case report and review of the literature [J].Communicable Disease and Public Health, 2004, 7(4): 349-353
[82] WHO. WHO Director-General delivers lecture at Georgetown University’s Global Futures Initiative [EB/OL]. (2015-09-30) [2017-11-22]. http://www.who.int/dg/speeches/2015/georgetown-university-lecture/en/
[83] Friese A, Schulz J, Zimmermann K, et al. Occurrence of livestock-associated methicillin-resistant Staphylococcus aureus in turkey and broiler barns and contamination of air and soil surfaces in their vicinity [J]. Applied and Environmental Microbiology, 2013, 79(8): 2759-2766
[84] Zhang R Y, Suh I, Zhao J, et al. Atmospheric new particle formation enhanced by organic acids [J]. Science, 2004, 304(5676): 1487-1490
[85] Shi Y, Ji Y, Sun H, et al. Nanoscale characterization of PM2.5airborne pollutants reveals high adhesiveness and aggregation capability of soot particles [J]. Scientific Reports, 2015, 5: 11232
[86] Crouse D L, Peters P A, Hystad P, et al. Ambient PM2.5, O3, and NO2exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC) [J]. Environmental Health Perspectives, 2015, 123(11): 1180-1186
[87] Kim J Y, Lee E Y, Choi I, et al. Effects of the particulate matter2.5(PM2.5) on lipoprotein metabolism, uptake and degradation, and embryo toxicity [J]. Molecules & Cells, 2015, 38(12): 1096-1104
[88] Kawanaka Y, Tsuchiya Y, Yun S J, et al. Size distributions of polycyclic aromatic hydrocarbons in the atmosphere and estimation of the contribution of ultrafine particles to their lung deposition [J]. Environmental Science & Technology, 2009, 43(17): 6851-6856
[89] 張蘭河, 賀雨偉, 陳默, 等. 畜禽養殖場空氣中可培養抗生素耐藥菌污染特點研究[J]. 環境科學, 2016(12): 4531-4537
Zhang L H, He Y W, Chen M, et al. Pollution characteristics of antibiotic resistant bacteria from atmospheric environment of animal feeding operations [J]. Environmental Science, 2016(12): 4531-4537 (in Chinese)