徐建飛,金黎平
(中國農業科學院蔬菜花卉研究所/農業部薯類作物生物學與遺傳育種重點實驗室,北京100081)
馬鈴薯遺傳育種研究:現狀與展望
徐建飛,金黎平
(中國農業科學院蔬菜花卉研究所/農業部薯類作物生物學與遺傳育種重點實驗室,北京100081)
馬鈴薯是世界第三大糧食作物,馬鈴薯產業的可持續發展對保障世界和中國的糧食安全具有重要意義。優良品種是支撐馬鈴薯產業發展的基礎。馬鈴薯經常遭受病蟲害的侵襲和非生物脅迫,加工業的迅速發展和人們對食物營養的重視,迫切需要選育出更抗病、更耐逆、更高產、更優質和專用的馬鈴薯新品種。培育一個優良馬鈴薯品種,種質資源是基礎,重要性狀的遺傳學是理論指導,先進的育種技術是保障,完善的推廣和栽培模式是支撐。世界范圍內,保存了大約65 000份馬鈴薯種質資源,通過對種質資源抗病、抗逆和品質方面的系統評價,并應用多種資源利用技術,將三大類約17個野生種的種質導入到普通栽培種中,應用于育種和遺傳學研究。利用純合雙單倍體材料作為測序對象,馬鈴薯基因組序列已經被揭示,預測出了39 031個蛋白編碼基因,目前更多的種質資源正在被重測序以揭示更多的等位變異。馬鈴薯普通栽培品種是無性繁殖四倍體作物,具有四體遺傳特性,盡管如此,許多植株發育和形態、塊莖品質和抗病抗逆等重要性狀的遺傳特性基本明確,并定位和克隆了大量重要性狀相關基因。目前,馬鈴薯育種技術主要涵蓋傳統育種技術、倍性育種技術、標記輔助選擇育種技術、基因工程育種技術和新興的基因組選擇育種技術。中國馬鈴薯遺傳育種研究隊伍不斷壯大,品種選育取得了重大進展。荷蘭馬鈴薯遺傳育種水平居于世界前列,合作育種模式推動了商業化育種。不斷完善馬鈴薯綜合育種技術,創新育種模式和機制,充分利用現有種質資源培育突破性、專用型品種將是未來馬鈴薯遺傳育種發展的主要方向。
馬鈴薯;育種;遺傳學;現狀;展望
馬鈴薯(Solanum tuberosum)是世界第三大糧食作物和最重要的非禾本科作物。2014年全球馬鈴薯總產 3.82億噸,分布在全球 158個國家和地區(http://fao.org/faostat)。馬鈴薯塊莖營養豐富全面,含有人體必需的全部七大類營養物質,全球約10億人將馬鈴薯作為主要食物食用[1]。中國是第一大馬鈴薯生產國,產量占世界總產量的1/4左右。馬鈴薯在中國各個生態區域都有廣泛種植,尤其在西部貧困地區和邊遠山區種植面積更大,為緩解中國食物安全壓力和消除地區性貧困起到了重要作用[2-3]。馬鈴薯起源于南美和中北美地區,經過當地人們的馴化逐漸形成可以食用的地方品種;16世紀,馬鈴薯經由探險家傳入歐洲[4];根據古籍《長安客話》考證,馬鈴薯約于明朝萬歷年間傳入中國。馬鈴薯不斷被馴化和傳播的歷史,就是一部馬鈴薯育種史:在最初的馴化過程中,對人畜有毒的糖苷生物堿(以茄堿和卡茄堿為主)含量減少[5],匍匐莖逐漸縮短,塊莖不斷增大;引入歐洲后,適應長日照結薯的品種開始出現[6];隨著導致愛爾蘭大饑荒的晚疫病的發生,人們開始從野生種引入抗病種質培育抗病新品種;現在,為了滿足馬鈴薯鮮食和加工市場的巨大需求,育種者選育出了大量的馬鈴薯新品種應用于生產。然而,馬鈴薯作為無性繁殖作物,經常遭受病蟲害的侵襲和非生物脅迫,加之加工業的迅速發展和人們對食物營養的重視,迫切需要選育出更抗病、更耐逆、更高產、更優質和專用的馬鈴薯新品種。如何選育出一個優良的馬鈴薯品種?優異的種質資源是材料基礎,重要性狀的遺傳學是理論指導,先進的育種方法是技術保障,完善的推廣和栽培模式是應用支撐。
種質資源是植物育種與遺傳學研究的基礎。馬鈴薯種質資源豐富,包含眾多野生種和栽培種,而且種質資源的分類一直在不斷變化。SPOONER等[7]在總結可以用于野生種種別界限和相互關系鑒別的形態學、分子水平、種間雜交障礙和野外觀察的大量數據之后,提出馬鈴薯分為107個野生種和4個栽培種,這相對于HAWKES[8]提出的劃分為228個野生種和 7個栽培種的分類學說發生了明顯變化。
1.1 種質資源的收集和保存技術
世界范圍內,目前保存了大約30大類共65 000份馬鈴薯種質資源[9]。世界上主要馬鈴薯種質資源收集和保存的機構是:國際馬鈴薯中心(International Potato Center,CIP)、荷蘭遺傳資源中心(The Centre for Genetic Resources,the Netherlands,CGN)、英國馬鈴薯種質資源庫(Commonwealth Potato Collection,CPC)、德國馬鈴薯種質資源庫(The IPK Potato collections at Gross Luesewitz,GLKS)、俄羅斯瓦維洛夫植物栽培科學研究所(The Vavilov Institute of Plant Industry,VIR)、美國馬鈴薯基因庫(National Research Support Project-6,NRSP-6),除此之外,世界上其他國家如秘魯、玻利維亞、阿根廷、智利和哥倫比亞等國都建立有馬鈴薯種質資源庫。據估計,中國目前保存有5 000余份種質資源,以國內外育成品種和品系為主,野生種資源偏少。
馬鈴薯種質資源保存有多種方式,總體上來講,野生種通常以實生種子進行保存,栽培品種(系)通常以試管苗或者田間種植的方式保存。試管苗保存技術形成于 1973年[10],由于比田間保存高效和安全,現在已經成為世界范圍內種質資源保存的主要形式,其主要是利用低溫(6—8℃)和山梨醇作為滲透調節劑來抑制植物生長,達到2年左右時間不用擴繁而較長時間保存資源的目的,這種技術已經成為世界上主要馬鈴薯種質資源庫采用的通用技術。然而,試管苗保存存在耗時、高成本和因頻繁更新擴繁易導致污染而造成資源丟失等諸多問題。冷凍保存技術以其低成本和長期保存的優點,逐漸開始被種質資源管理者所接受。冷凍保存是將植物以超低溫(-196℃)狀態長期保存在液氮中,理論上不需要定時更新保存[9]。冷凍保存最主要的問題是要避免外植體冷卻過程中細胞內結冰,該項技術一直處在不斷完善過程中[11-12]。目前GLKS和CIP已經采用冷凍保存技術進行馬鈴薯資源的保存:GLKS采用液滴凍結技術(droplet freezing technique)保存了1 341份歐洲馬鈴薯品種資源;CIP對197份安第斯地方品種進行了冷凍保存,但其莖段成活率和再生率都比較低。近年來,為了提高冷凍保存的可靠性和效率,研究者嘗試將應用于香蕉資源的冷凍保存技術進行馬鈴薯資源保存,結果表明,相對于CIP和GLKS的冷凍保存技術,該方法的成活率和再生率都比較高,而且不同基因型的保存效果比較一致,可用于馬鈴薯資源長期保存[9]。
1.2 種質資源的評價
馬鈴薯種質資源遺傳多樣性評價主要可以分為形態學指標評價和分子水平評價。形態學指標是植物分類和品種鑒別的傳統方法。在馬鈴薯分類學上,常涉及的莖、葉和花等形態學指標多達 53個[13]。在馬鈴薯品種鑒別上,世界范圍內普遍采用的是國際植物新品種保護聯盟(International Union for the Protection of New Varieties of Plants,UPOV)發布的DUS測試指南,其涉及的形態學相關性狀指標為42個,但不同國家根據具體情況對測試指南進行了修改,例如中國測試的指標是41個,英國測試的指標是37個,而印度測試的指標是45個。隨著分子生物學的發展尤其是分子標記技術的發展,種質資源的分子水平評價技術逐漸成熟,其可以快速地進行操作和分析,又可以避免由于環境變化造成的形態學指標上的變化[14]。分子水平評價主要包括應用蛋白質、分子標記和DNA序列進行遺傳多樣性分析,具體包括同工酶電泳、限制性酶切位點拷貝數變化(RFLP和AFLP)、基因組和質體DNA微衛星標記(SSR)、質體缺失標記、核糖體DNA非轉錄間隔子序列(ITS)、多倍體直系同源基因序列等[7]。近年來,隨著基因組測序技術的發展,單核苷酸多態性(SNP)標記已經開始應用于種質資源評價和品種鑒別。
在馬鈴薯分類學研究領域,除了對種質資源進行形態學指標和分子水平評價之外,也進行生殖障礙如自交不親和性(self-incompatibility)、單向不親和性(unilateral incompatibility)、雄性不育性、2n配子(2n gametes)發生率和胚乳平衡數(endosperm balance numbers,EBN)的評價,并經常根據特定的研究目的,開展種質資源的生物脅迫(病害、蟲害等)、非生物脅迫(干旱、霜凍和鹽堿等)和品質性狀(干物質、營養成分和炸片炸條等)評價。
1.3 種質資源的利用
馬鈴薯的起源依然存在爭議,但無論馬鈴薯起源是源于多起源假說(multiple origin hypothesis)或是限制性起源假說(restricted origin hypothesis)[7,15],不可改變的事實是,馬鈴薯在自然界中主要以野生種形式存在。育種的本質是創造變異并進行選擇,因此,馬鈴薯育種者需要不斷地從野生種中尋找新的變異[16]。野生種被廣泛應用于栽培種抗非生物脅迫如耐霜凍和抗低溫糖化及抗生物脅迫如抗病蟲(晚疫病、病毒病、青枯病、黃萎病、科羅拉多甲蟲和線蟲)性狀改良,根據野生種與栽培種雜交從易到難變化即種質向栽培種轉移從易到難又分為3個類別(表1)。此外野生種還可以提供非常豐富的等位基因多態性,拓展育種材料的遺傳多樣性[17]。
然而,由于野生種在進化過程中為了保持種性而與栽培種形成了諸如雜交不親和、雄性不育和胚乳敗育等生殖障礙[38],導致馬鈴薯野生資源利用難度增大。為了能將馬鈴薯野生種的優異性狀轉移到栽培種中,研究者開發了很多方法[17]:(1)倍性操作。倍性操作主要是通過體細胞加倍(秋水仙素處理和愈傷組織培養)和非減數配子進行染色體加倍,從而使雜交雙親或者配子體的 EBN達到相同數目后進行性狀轉移。有時倍性操作需要借助橋梁品種雜交來實現,S. acaule是常用的橋梁種之一[39-40]。(2)蒙導授粉(mentor pollination)與胚挽救。當花柱不親和與胚乳敗育同時發生的情況下,采用蒙導授粉和胚挽救策略有時可以獲得種間雜種。蒙導授粉是指采用含有供體不易親和花粉和介導者易親和花粉的混合花粉進行母本授粉,借助介導者花粉與柱頭識別反應而達到供體花粉成功受精目的,通常介導者的花粉具有胚斑標記,其后代容易鑒別和去除[41]。受精后,當胚不能正常發育時就需要進行胚挽救即將胚至于培養基上讓其發育成熟。然而,對于馬鈴薯來講,如果胚早期階段就停止發育,胚挽救很難成功[42]。(3)激素處理。在介導者花粉缺乏胚斑等明顯標記而不能進行后代選擇的時候,可以利用2,4-D等生長素在授粉后24 h來處理子房從而達到獲得實生種子的目的[42]。(4)正反交。在野生資源利用過程中,有些材料只有作母本或作父本才易于成功,例如當S.cardiophyllum與S.pinnatisectum雜交時,只有S. pinnatisectum作為母本才容易成功[42]。(5)親和基因型選擇。對于馬鈴薯來說,有時雖然2個種間可以雜交,但并不是種內的所有基因型間均可以雜交,這種種間雜交基因型的依賴性需要對雜交組合基因型進行選擇以避免雜交障礙[43]。(6)體細胞融合。廣義上屬于倍性操作范疇,在花粉和柱頭不親和或者胚敗育的情況下,體細胞雜交(somatic hybridization)或者原生質體融合(protoplast fusion)可以繞開有性雜交而進行野生資源利用。然而,體細胞雜交需要豐富的操作經驗和大量的時間和物質投入,有時獲得的體細胞雜種外源有利性狀卻不一定被導入。S.tuberosum與S.brevidens、S.bulbocastanum、S.circaeifolium、S.commersonii、S.acaule種之間的體細胞融合都見諸文獻報道[17]。

表1 系統評價過或應用于馬鈴薯育種的野生種[16]Table 1 Wild relatives that have been evaluated and/or used in potato breeding
栽培馬鈴薯是四倍體作物,基因組高度雜合,存在嚴重的自交衰退現象,這給基因組學研究帶來巨大挑戰。揭示馬鈴薯基因組序列必須首先找到合適的測序材料,人們把目光投向了傳統的組織培養技術。通過二倍體材料S. phureja的花藥培養獲得了一個單倍體材料,利用染色體加倍又獲得了一個純合的雙單倍體材料DM1-3 516 R44(DM)[44]。同時,利用含有普通栽培種血緣的的二倍體雜合材料 RH89-039-16的BAC序列進行基因組序列的錨定和比較[45]。馬鈴薯基因組大概為844 Mb,通過DM序列的組裝拼接,共獲得727 Mb全基因組序列,沒有完成組裝的117 Mb主要是重復序列。通過 EST和已有的遺傳和物理圖譜上的分子標記對組裝的基因組序列進行了驗證。結合轉錄組和蛋白組學數據,從測序基因組中預測出了39 031個蛋白編碼基因,其中9 875個基因存在可變剪接,這表明同一個基因即使序列不變卻也存在更多的功能性變異[46]。
通過基因組序列中的共線性同源基因區塊分析發現,馬鈴薯基因組存在2次全基因組范圍的復制事件。馬鈴薯基因組不同單倍型序列之間存在高度的多態性。通過RH的部分區段序列與DM對應序列比較后發現,每隔40 bp就存在一個SNP,每隔394 bp就存在一個indel;RH的2個單倍型之間的部分序列比較表明,每隔29 bp就存在一個SNP,每隔253 bp就存在一個indel[46]。
近來,抗病和抗逆尤其是耐寒特性突出的馬鈴薯野生種 S.commersonii的基因組序列也被揭示[47]。相對于栽培種,該種的基因組雜合程度更低,重復區段更少,抗病候選基因更少,但卻包含很多栽培種不具備的耐寒相關基因。目前,只有3個材料(DM基因組序列,RH的部分單倍型序列,PI243503基因組序列)的基因組序列被揭示,這遠不能揭示豐富的馬鈴薯原始栽培種、新型栽培種、普通栽培種以及自然界中大量存在的野生種基因組水平上的遺傳多樣性,進行更多單倍型測序將對馬鈴薯研究具有更大的作用,當前涉及同源四倍體測序的技術嘗試正在進行中。
馬鈴薯由于存在無性和有性結合的混合繁殖方式,造成其遺傳組成高度雜合,在自然界中存在大量從二倍體到六倍體的結薯和非結薯種。現代馬鈴薯栽培品種是同源四倍體作物,具有四體遺傳(tetrasomic inheritance)特性[48]。雖然四體遺傳比較復雜,但是單基因控制的質量性狀和多基因控制的數量性狀依然可以應用孟德爾遺傳學和數量遺傳學進行分析[49]。馬鈴薯許多質量性狀是由主效基因控制,如控制晚疫病小種專一性抗性基因 R1-R11、非小種專一性抗性基因RB/Rpi-blb1、抗PVX基因Rx、抗PVY基因Ryadg和金線蟲抗性基因H1等,薯皮和花冠顏色、薯形和芽眼深淺也是由主效基因控制的[49]。對于單基因控制的質量性狀來說,可以通過子代測驗(progeny tests)或者分子生物學手段如高分辨率熔解曲線(high-resolution melt,HRM)來分析親本等位基因構成,對于等位基因組成形式是單式(simplex)或者復式(duplex)親本,后代需要對目標性狀進行篩選,而對于親本組成是三式(triplex)或者四式(quadruplex)時,在排除雙交換情況下,子代全部含有目標基因。
然而,馬鈴薯大多數性狀是由多基因控制的數量性狀。數量性狀的表型是由基因型和環境互作形成的,子代表型數據常呈正態分布。數量性狀可以通過家系均值和方差進行分析,但不同群體的均值和方差會變化很大。在試驗設計中,如果環境變異被壓縮到趨近于零時,可以認為表型變異全部由遺傳變異決定的[50]。數量性狀有效分析例如容錯性子代測驗(robust progeny tests)對于群體改良、選擇策略和遺傳增益(genetic gain)非常重要[51],研究者已經開始將這種統計分析方法應用于馬鈴薯的數量性狀分析[49]。馬鈴薯主要性狀及其遺傳形式見表2。
在抗病基因定位和克隆方面,晚疫病、病毒病和線蟲抗性研究有較大突破。晚疫病是馬鈴薯第一大病害,平均導致馬鈴薯減產16%[77]。晚疫病抗性研究中,最先受到育種者關注的是來自于S.demissum的主效基因R1-R11[78],在2000年左右,R1、R3、R2、R4和R10都被導入到栽培品種中[79-81],但由于田間晚疫病菌小種組成的變化,這些品種在田間相繼失去抗性。由于小種專一性抗性基因不斷被晚疫病菌克服,人們開始尋找并分離廣譜抗性的主效抗性基因,例如來自于 S.bulbocastanum的基因 Rpi-blb1/RB、Rpi-blb2和Rpi-blb3等基因接連被定位和克隆[32,81-83]。相對于主效基因,晚疫病數量抗性研究也比較深入,在全部 12條染色體上共發現至少20個QTL[48,68,84],其中不乏一些貢獻率高和重復性好的抗性位點。對于晚疫病主效抗性和數量抗性關系,GEBHARDT[85]認為:失效的R基因能增加數量抗性;一些抗性QTL通常與R基因連鎖存在;一些防衛信號傳導基因或者防衛反應基因屬于數量抗性基因的一部分。馬鈴薯在進化過程中,由于抗性基因和病原菌之間的互作,使得馬鈴薯不同種中含有豐富的抗性基因資源,有時又形成一個個抗性基因家族,例如,晚疫病抗性基因 R2基因家族,就包括晚疫抗性基因R2、R2-like、Rpi-abpt、Rpi-blb3、RD、Rpi-edn1.1、Rpi-snk1.1、Rpi-snk1.2、 Rpi-hjt1.1、Rpi-hjt1.2和Rpi-hjt1.3[86-87]。已克隆的晚疫病主效基因見表3。
自然界中大概有 40余種病毒感染馬鈴薯,其中PLRV和PVY危害最大,其次是PVX、PVA、PVM、PVS和PMTV,是導致馬鈴薯退化的主要原因[48]。目前,已經有很多病毒抗性基因被定位和克隆。花葉病毒病的抗性分為極端抗性(extreme resistance,ER)和過敏抗性(hypersensitive resistance,HR),ER抗性基因無病毒小種選擇性,抗性反應通常不表現出癥狀,而HR抗性的抗性依賴于病毒小種組成[98-99],抗性反應表現為明顯的病毒侵染部位壞死。已知的病毒抗性基因見表4。
線蟲對馬鈴薯根莖危害極大,并可以脫離寄主在土壤中長期存留,致使防治難度極大。對栽培馬鈴薯危害最大的線蟲是孢囊線蟲(Globodera spp.),其次是根結線蟲(Meloidogyne spp.)。
在S.tuberosum ssp. andigena、S.spegazzinii和S.vernei等許多種中發現了根結線蟲抗性基因,其中許多基因已經被導入到了栽培馬鈴薯種中[48]。目前,共有 14個線蟲抗性位點被定位于馬鈴薯的8個連鎖群中[108]。已知的馬鈴薯線蟲抗性基因或者QTL見表5。

表2 主要馬鈴薯性狀的遺傳學Table 2 Genetic control of major potato traits

表3 已經克隆的馬鈴薯抗晚疫病基因Table 3 Late blight resistance genes cloned from potato
馬鈴薯細菌性病害如青枯病(Ralstonia solanacearum)、黑脛病(Pectobacterium atrosepticum)、軟腐病(Pectobacterium spp.)和瘡痂病(Streptomyces spp.)的抗性一般都屬于數量抗性,在病原致病機理方面研究比較深入,但在馬鈴薯抗性機制和抗性位點研究方面進展較小,只是通過群體進行了抗性QTL定位或者通過原生質體融合或體細胞雜交方式進行了抗性的利用。普通栽培種(S.tuberosum)還沒有發現具有青枯病抗性的材料,來自于二倍體栽培種S.phureja的抗性被廣泛導入到栽培種中,但在高溫時,青枯病抗性并不穩定且具有小種特異性[119]。目前,研究者主要是通過原生質體融合,從S.commersonii、S.chacoense、S.stenotomum 和茄子中向馬鈴薯中引入了抗性種質[120-123]。研究者對馬鈴薯野生種軟腐病的抗性進行了評價,結果表明,來源于S.paucijugum、S.brevicaule和S.commersonii的材料具有良好的軟腐病抗性[124]。馬鈴薯瘡痂病抗性機制目前還不清楚,還沒有鑒定出來針對瘡痂病菌的抗性基因,只篩選出一些病菌侵染后的一些防衛相關基因[125],但瘡痂病耐受品種的塊莖通常會有更多、更厚的木栓細胞層[126],通過體細胞無性系篩選技術(somaclonal cell selection techniques)已經育成了具有瘡痂病極端抗性的馬鈴薯材料[127]。

表4 已知的馬鈴薯抗病毒病基因Table 4 Known virus resistance genes from potato

表5 已知馬鈴薯抗線蟲基因Table 5 Known nematode resistance genes from potato
在馬鈴薯塊莖性狀研究方面,塊莖顏色、薯形和芽眼深度等表觀性狀研究較多。塊莖顏色包括薯皮顏色和薯肉顏色。研究者最初認為,四倍體馬鈴薯薯皮顏色由D、R、P 3個位點控制,R位點控制紅色色素合成,P位點控制紫色色素合成,而D位點是薯皮特異的、控制色素合成的調控因子[128]。在二倍體群體中,也相應地存在控制薯皮顏色的I、R、P三基因系統,I相當于四倍體中的D位點,P對R顯性,即I_ R_ P_呈現紫色,I_ R_pp呈現紅色,ii_ _ _ _呈現白色[129]。D、R、P位點被分別定位于第10、第2和第11染色體上[130-131]。借助于番茄色素結構和調節基因的相關研究,研究者發現 R編碼二氫黃酮醇還原酶(dfr),P編碼類黃酮羥化酶(f 3'5' h),D編碼R2R3 MYB轉錄因子,并通過轉基因進行了功能驗證,D位點與薯形主效遺傳位點和芽眼深度基因 Eyd相距不遠[132-136]。薯肉顏色遺傳機理與薯皮顏色類似,只是組織特異性的調控因子發生了改變[132]。
塊莖形狀的研究歷史也較長,MASSON[137]將控制圓形薯形的基因命名為Ro,并確定該基因距著絲粒12.2 cM,后來的研究表明,除了Ro影響薯形性狀之外,還有其他位點的修飾效應[138],最近,研究者構建了一個包含2 157個SNP標記的遺傳圖譜,將薯形基因定位在第10和第2染色體上,第10染色體存在主效效應[53]。芽眼深度和薯形存在相互關聯,研究發現深芽眼和圓薯形2個性狀成連鎖關系,深芽眼控制基因被定位在第10染色體上,與薯形主效基因大概相距4 cM[54]。
而塊莖的產量、淀粉和還原糖含量、炸片顏色和損傷等復雜性狀,是由多基因控制的,遺傳機制比較復雜,而且易受環境影響。近年來,研究者一般通過關聯分析來進行復雜性狀研究。LI等[139]利用243個四倍體品種(系),對塊莖產量、淀粉含量和炸片顏色進行了分子標記關聯分析,發現了50個與淀粉含量相關的分子標記。馬鈴薯塊莖成熟時,碳水化合物主要是以淀粉和少量可溶性糖貯存在塊莖當中。在塊莖休眠期間,由于貯藏溫度較低,淀粉又會部分轉化成糖類物質,即“低溫糖化(cold-induced sweetening)”現象,其嚴重影響塊莖炸條和炸片質量。塊莖淀粉和糖相互轉化過程中,共有約18個遺傳位點參與作用,SCHREIBER等[140]利用208個四倍體材料,克隆了1個質體淀粉磷酸化酶基因PHO1a,該基因可以提升塊莖淀粉含量;研究發現,馬鈴薯中存在多種轉化酶(invertase)基因,轉化酶的活性與塊莖低溫糖化現象顯著相關,對其進行基因沉默或抑制表達可顯著改善低溫糖化現象[139,141-142]。酶促褐變和機械損傷嚴重影響塊莖商品品質,URBANY等[143]通過205個四倍體品種的酶促褐變和機械損傷性狀與候選基因和SSR標記關聯分析,鑒定出21個貢獻率的較大的分子標記或遺傳位點。
馬鈴薯耐受非生物脅迫如抗旱、耐寒、耐熱和耐鹽堿的機制比較復雜。馬鈴薯是水分高效利用的作物,但卻對干旱比較敏感[144-145]。抗旱的遺傳學研究主要集中在抗旱相關QTL定位方面,結果表明,馬鈴薯抗旱性遺傳復雜,受多個位點的影響[61,146],此外關于馬鈴薯抗旱的轉錄組學研究也較多[147-148]。馬鈴薯耐寒性和冷馴化能力是獨立遺傳控制的并且是由許多微效基因影響[149]。高溫會造成塊莖畸形、表皮開裂和內部壞死,而這些表型都是受獨立的遺傳機制控制的[59,150]。馬鈴薯耐鹽堿也是屬于多基因控制的復雜性狀,應用QTL定位和轉錄組學進行耐鹽堿機制研究見諸報道[59,151]。
4.1 傳統育種技術
目前,世界范圍內育成的馬鈴薯品種中,絕大多數是依靠傳統育種技術育成的品種,傳統育種技術是馬鈴薯育種技術的基礎。馬鈴薯傳統育種技術是在雙親雜交產生的子代基礎上,進行多代無性世代性狀評價和選擇,進而培育出優良品系和品種的過程。在無性世代的評價過程中,由于選擇壓力的增大,育種群體規模逐漸縮小,但入選的每個品系植株數量卻不斷增加[152]。在傳統育種中,親本的選配非常關鍵,親本一般為綜合性狀優良、個別性狀需要改良的育成品種或者是經過子代測驗證明能產生優良后代的育種材料,通常要求親本性狀互補[49]。由于馬鈴薯一些主要商品性狀如塊莖產量、數量、大小和比重等易受環境影響,無性世代品系通常需要進行多年多點的試驗評價,所以育成一個馬鈴薯新品種通常需要10年左右的時間。表6是一個典型的中國北方一季作地區的傳統育種流程。

表6 中國北方一季作地區傳統育種流程Table 6 Conventional potato breeding program in single cropping zone of China
4.2 倍性育種技術
自然界中,馬鈴薯大部分以不同倍性的近緣資源存在,其中74%以上是二倍體[153]。在EBN數目不同的情況下,它們難以與四倍體普通栽培馬鈴薯通過雜交進行優異性狀轉移,而倍性操作技術是進行野生資源利用的重要方法。廣義上的倍性育種技術包括雙單倍體(dihaploid)誘導、2n配子利用和體細胞雜交或者原生質體融合等技術。
1958年,HOUGAS等[154]通過馬鈴薯普通栽培種與來源S.phureja的材料雜交,成功地通過孤雌生殖誘導出雙單倍體,發現S.phureja種的某些選系是誘導四倍體孤雌生殖產生單倍體的優良授粉者(pollinator)[155]。在授粉過程中,授粉者的精細胞正常進入母本子房,可以使胚乳正常發育,同時刺激未受精的卵子發育成雙單倍體(2x)的胚[7]。但有時二倍體授粉者會產生2n花粉,這樣就會造成母本產生孤雌生殖的雙單倍體種子的同時,也會伴有四倍體種子,為解決此問題,研究者把一個產生胚斑的標記基因轉入具有高誘導能力的S.phureja無性系中,這樣在選擇時就可以直接淘汰授粉后代中帶有胚斑的四倍體雜交種子,提高了雙單倍體的誘導效率[156]。HOUGAS等[157]在1960年報道了雙單倍體可與24個結薯二倍體種雜交,并得到了健壯的后代。
CHASE[158]提出了利用二倍體資源的分解育種法(analytical breeding),接著研究者對利用二倍體雜種發生不減數 2n配子而產生的四倍體后代進行了評價[159],形成了分解合成育種方法并應用于育種實踐。2n配子即染色體不減數的配子或者是和體細胞染色體數目一樣的配子,它是由控制減數分裂的隱性基因控制的[7,160]。2n配子包括2n卵子和2n花粉,2n卵子是由于第二次減數分裂重組(second division restitution,SDR)形成的,而2n花粉主要是由于第一次減數分裂重組(first division restitution,FDR)形成的[7],并能將親本的雜合性100%的傳遞給后代。2n卵子的鑒別需要借助一系列顯微技術[161],這給檢測帶來很多不便,但實際應用過程中,二倍體母本和四倍體父本雜交,如果產生實生種子,通常就認為二倍體母本產生了2n卵子[162]。2n花粉檢測比較簡單,染色后通過普通光學顯微鏡即可檢測,其大小比正常花粉幾乎大了一倍并多了一個萌發孔。利用可以產生 2n配子的二倍體材料與四倍體普通栽培種雜交,可以產生四倍體實生種子。在分解合成育種中,通過種間雜交誘導四倍體栽培品種孤雌生殖產生雙單倍體,其與二倍體野生種和原始栽培種雜交產生二倍體雜種,從而達到利用豐富的野生資源的目的,最終利用二倍體雜種產生的 2n配子將優良性狀轉育到普通四倍體品種中[163]。目前,通過分解合成育種法育成了許多具有二倍體野生種種質的栽培品種或育種材料[164-167]。
體細胞雜交是除了2n配子利用技術和雙單倍體誘導技術外,繞過雜交障礙進行近緣種種質轉移的重要技術,可以同時轉移細胞核和細胞質基因,尤其在轉移多基因控制的數量性狀進行育種材料創制方面應用廣泛[168]。對于體細胞雜交技術,進行原生質體分離、培養、融合和再生程序復雜,且具有種質依賴性,因此,進行原生質體融合建立一個穩定的工作體系非常重要。目前通過原生質體融合獲得了很多具有抗病毒病、晚疫病和青枯病的育種材料[122,168-169]。
4.3 標記輔助選擇(marker-assisted selection,MAS)
由于栽培馬鈴薯是高度雜合的常異花授粉四倍體作物,異交率僅為0.5%左右,其雜交后代優良基因或者染色體區段重組到一起的概率極小,這就需要育種者必須通過擴大 F1代群體數量來增加優良子代出現概率,這就極大增加了選擇工作量。正常來講,育種者要每年要評價40個左右的植株和塊莖性狀,從雜交到品種釋放通常需要 10年左右時間[85]。隨著分子遺傳學和分子生物學研究的進步,標記輔助育種技術成為了加快育種進程的重要手段。由于栽培馬鈴薯四體遺傳特性和自交造成的高度等位變異,使得馬鈴薯相比其他主要作物,相對缺乏可以應用于育種的分子標記[170]。馬鈴薯育種輔助選擇標記主要集中在重要農藝性狀如抗病性和塊莖品質方面,在復雜性狀如產量和非生物脅迫方面的分子標記開發比較緩慢。目前,已經發表的、可用于育種群體選擇的分子表記如表 7
所示。

表7 可用于馬鈴薯標記輔助選擇的分子標記Table 7 Markers used in potato breeding selection

續表7 Continued table 7

續表7 Continued table 7
在分子標記實際應用于育種群體選擇時,有幾點需要注意:(1)開發的分子標記的遺傳背景。大多數與目標性狀連鎖的分子標記是在二倍體水平上開發的,而相當一部分的栽培種群體是不含有二倍體種質的,因此,四倍體栽培種群體是否含有目標性狀分子標記,所屬的遺傳背景非常關鍵,成功的育種選擇標記必須經過育種群體或資源的驗證才能證明其有效性[186]。(2)分子標記的組合應用。一方面,由于不同遺傳背景的資源的等位基因具有豐富的序列變異,對于特定性狀的選擇標記,需要標記組合應用才能完全追蹤到目標性狀,例如對于來源于S.tuberosum ssp. andigena的抗PVY的Ryadg來說,RYSC3標記具有良好的選擇效果[172],但是后來的研究者利用育種群體和不同遺傳背景的品種、品系進行標記驗證發現,RYSC3結合RYSC4和ADG2/BbvI標記共同檢測時會取得更好效果,即同時含有這3個標記,植株一定表現出對PVY抗性[187];另一方面,一部分分子標記不是依據目標性狀決定基因序列開發的,而是其單側的序列開發,因此,對此類標記,應用兩側標記同時進行選擇,可提高選擇準確率;此外,在標記檢測過程中,應用多重PCR檢測體系,即將多個標記檢測融合到一個PCR反應中,可以顯著提高標記檢測效率[175]。
4.4 基因組選擇(genomic selection,GS)
標記輔助選擇自20世紀80年代開始應用以來,主要針對少數基因控制的簡單性狀,而對于微效多基因控制的復雜性狀無能為力[188-189]。而基因組選擇是檢測全基因組范圍的所有分子標記,而不是針對單一性狀的部分標記。基因組選擇主要流程是通過試驗群體來估計出每個標記(通常是SNP)或者不同染色體區段的效應值,然后再利用這些效應值來計算育種群體的育種值,進而進行后代個體選擇[190]。基因組選擇技術自2001年開始應用于預測復雜性狀的表現以來,現已應用于奶牛、玉米、棕櫚和大麥等動物和植物的育種上,顯著提高了育種選擇效率[189,191-192]。
隨著新一代測序技術(next generation sequencing,NGS)的不斷改進和完善及生物信息學平臺的豐富,數以萬計的、以SNP為主的分子標記不斷地被開發出來,這為基因組選擇提供了充足的分子標記信息。以馬鈴薯基因組序列信息為基礎,基于Illumina平臺、包含20 000個SNP標記馬鈴薯全基因組SNP芯片已經商業化應用[193]。栽培馬鈴薯遺傳復雜,傳統育種中馬鈴薯存在嚴重的連鎖累贅,優異基因的導入常常伴隨著不利性狀。因此在馬鈴薯育種中通常既要盡量保留親本材料優異遺傳背景,又要定向改良現有受體親本的特定性狀,也就是說將前景選擇和背景選擇結合起來創制優異新材料和選育優良新品種,而基因組選擇技術是以前景選擇和背景選擇相結合的一項新的標記輔助選擇技術。目前,全基因組SNP芯片已經應用于馬鈴薯種質資源遺傳多樣性、簡單性狀和復雜性狀的基因定位和QTL作圖,但還沒有以SNP標記為基礎、將基因組選擇技術系統應用于馬鈴薯育種進程的報道,因此,開展系統的基因組選擇技術研究并將之應用于材料創制和品種選育意義重大。
4.5 基因工程(genetic engineering)
傳統的基因工程手段,一般通過基因轉化或者基因沉默技術進行作物改良,一直是伴隨著爭議的研究熱點。2015年,美國農業部批準了抗損傷和褐化的馬鈴薯品種 Innate?[194],該品種是通過 RNAi(RNA interference)技術限制了多酚氧化酶基因 PPO5和天冬酰胺酸合成酶基因Asn1的表達,從而使馬鈴薯加工過程中不會褐變和降低有害物質丙烯酰胺含量。最近,增加了晚疫病抗性和抗低溫糖化能力的 Innate?二代改良品種也已經通過了美國食品和藥品管理局的審批,正在辦理環保注冊手續,準備投放市場(http:// www.simplotplantsciences.com)。在馬鈴薯中,最早的轉基因品種是針對科羅拉多甲蟲(colorado potato beetles)抗性的轉Bt基因Russet Burbank[195],后來又引入了病毒病抗性基因,形成商業化品種Newleaf?系列,并于1996年獲得美國農業部審批投放市場[196-197],但是后來由于加工企業和消費者的排斥,不得不退出商業化種植。通過轉基因技術提高馬鈴薯晚疫病抗性也是研究熱點,晚疫病抗性基因R1、R3a、RB/Rpi-blb1都通過轉基因方式引入到感病品種中并使其獲得了抗性[80],甚至將3個晚疫病抗性基因Rpi-sto1、Rpi-vnt1.1和Rpi-blb3同時引入到一個馬鈴薯品種Désirée中[183]。
考慮到轉基因產品(genetically modified organism,GMO)的爭議,研究者相繼提出了無標記質粒(markerfree plasmids)[198]和順式轉基因(cisgenesis)的技術策略[199]。傳統的攜帶外源基因的轉化質粒含有使細胞產生抗生素抗性的基因,以方便陽性轉化材料的篩選,但人們擔心這種抗生素抗性基因會漂移并整合到其他非目標生物體的基因組中,因此研究者開發了一系列無抗性選擇標記的轉化質粒篩選系統[200]。相對于傳統的轉基因策略,順式轉基因定義是:引入生物體的外源核酸片段,只是來源于本種或與本種可雜交的種具有的、自然界本來就存在的核酸片段(包括啟動子和終止子),不含有任何其他不可雜交物種的外源核酸片段[201]。順式轉基因的概念實質上既包括了對無標記質粒的要求,又對質粒攜帶的外源基因進行了規范和限制。
近幾年來,在基因工程領域,CRISPR(clustered regularly interspaced short palindromic repeats)技術炙手可熱[202-203],該技術原理是依靠一種稱作Cas9的蛋白酶,利用引導性RNA分子鎖定目標DNA,進而對DNA進行編輯達到阻斷基因表達或者插入目標基因的目的。相對于鋅指核酸酶(zinc finger nucleases)和TALEN(transcription activator-like effector nucleases)技術,CRISPR技術更高效、更特異,而且成本更低,被譽為繼 PCR技術之后生物科學領域的又一個革命性技術[204]。目前,CRISPR技術已經有了應用于馬鈴薯研究的報道[205-206]。最近,另一種稱之為 NgAgo–gDNA的基因組編輯技術見諸報道[207],該技術是在一種短序列DNA引導下,NgAgo蛋白酶對特定DNA序列進行編輯,初步試驗結果表明,NgAgo–gDNA相對于 CRISPR,效率更高且目標序列不受所處位置限制,但該技術結果重復性和應用效果有待進一步驗證。在技術風險可控情況下,基因組編輯技術在消除馬鈴薯不利性狀如抗低溫糖化、降低丙烯酰胺和龍葵素含量等提升塊莖品質方面,以及編輯馬鈴薯特定目標性狀基因來提高抗病、抗逆能力方面將發揮重要作用。
2014年,中國馬鈴薯總產量9 551.5萬噸,但單產只有16.92 t·hm-2(http://fao.org/faostat),相比發達國家,單產增長的潛力依然巨大。中國馬鈴薯育種雖然起步較晚,但經過一代代育種者的不懈努力,從最初的品種引進到培育出一系列具有完全自主知識產權的品種,品種選育工作取得了重要突破,為中國馬鈴薯產業發展提供了堅實的品種支撐。
5.1 育種單位和育種歷史
目前,中國主要從事馬鈴薯品種選育的單位超過30家,以科研院所和大學為主,從事育種的企業相對較少。中國的馬鈴薯育種歷史始于20世紀30年代的國外品種和資源引進[3],而20世紀40年代由于戰亂,育種進程基本停滯;20世紀50年代,應用了36個高產并具有晚疫病抗性的引進品種,并開始了將實生種子(true potato seed,TPS)應用于生產的嘗試;20世紀60年代,中國育成了具有完全自主知識產權的馬鈴薯新品種,當時的育種目標以適應性、優質、抗病和高產為主;到了20世紀70年代,中國成為世界上TPS應用最廣泛的國家,這對中國西南山區馬鈴薯發展起到了積極作用; 20世紀80年代,育種目標聚焦到抗病和高產,在此期間,共育成了克新系列、高原系列和壩薯系列等93個馬鈴薯新品種;20世紀90年代,育種目標開始強調早熟性、加工型新品種的選育,在此期間,共育成了中薯系列、晉薯系列、鄂薯系列、鄭薯系列和青薯系列等67個馬鈴薯新品種;21世紀以來,中國馬鈴薯品種選育進程加快,共育成了 362個馬鈴薯新品種。
5.2 種質資源和育成品種
目前,中國各單位共保存了包括國內審定品種、國外引進品種、育種品系、原始栽培種和野生種等在內的5 000余份種質資源,這些資源大多數以試管苗形式保存,少部分以實生種子和塊莖形式保存,其中2 000份左右的資源被系統評價過。資源保存數量以中國農業科學院蔬菜花卉研究所和國家馬鈴薯改良中心(依托于黑龍江省農業科學院克山分院)為最多。
截止到2016年底,根據品種審定部門公告統計,中國共審定馬鈴薯品種611個(含國外引進品種),其中絕大多數為鮮食品種,而加工品種以國外引進品種為主。20世紀60年代育成的克新1號依然是中國種植面積最大的品種。
5.3 育種目標和品種輪換
高產、穩產、抗病、耐貯和優質是中國馬鈴薯最重要的育種目標,專用品質好、薯形好、芽眼淺、早熟、高產、抗病、抗逆是重點選擇方向。不同的栽培區育種目標各不相同,北方一作區以中熟和晚熟品種選育為主,東北地區尤其注重抗晚疫病和黑脛病,華北和西北地區注重耐旱、抗土傳病害、晚疫病和病毒病;中原二季作區以早熟或塊莖膨大快、對日照長度不敏感的品種選育為主,早熟、高產、休眠期短、抗病毒病和瘡痂病是主要的育種目標;對于西南一二季混作區的高海拔地區,主要是培育高抗晚疫病、癌腫病和粉痂病的中晚熟和晚熟品種,而對于中低海拔地區,則為以抗晚疫病、病毒病的中熟和早熟品種選育為主;在南方冬作區,品種選育聚焦日照長度反應不敏感、抗晚疫病和耐濕、耐寒和耐弱光的中、早熟品種。
在育種進程中隨著育種目標的不斷調整和新品種推廣應用,中國主栽品種先后經歷了四批次的品種輪換:(1)1950—1970年,17世紀以來從歐美國家引入中國的部分品種成為了適應當地條件的地方品種如河壩洋芋、深眼窩、廣靈里外黃和烏洋芋。20世紀30和 40年代引進篩選出勝利(Triumph)、卡它丁(Katahdin)和巫峽等品種成為了20世紀50年代的主栽品種。到了20世紀60年代,主栽品種逐漸被晚熟品種米拉(Mira)、疫不加(Epoka)和阿奎拉(Aquila)及早熟品種白頭翁(Anemone)所替代;20世紀 60年代后期,自主育成的虎頭、躍進和晉薯2號等幾十個抗晚疫病高產品種與上述引進品種一起成為主栽品種。(2)第二次品種輪換發生在20世紀80年代,自主育成的晚熟品種克新1號、壩薯8號和高原7號,早熟品種鄭薯2號、鄭薯4號和壩薯9號,以及國外引進品種費烏瑞它(Favorita)、臺灣紅皮(Cardinal)、底西芮(Désirée)和中心 24(CIP24)逐漸成為主栽品種。(3)第三次品種輪換發生在 1980年至 2000年期間,20世紀80和90年代育成的早熟新品種東農303、中薯2號、鄭薯5號、鄭薯6號和川芋早等品種種植面積增長迅速,引進品種大西洋(Atlantic)、夏波蒂(Shepody)、阿格瑞亞(Agria)和斯諾登(Snowden)等加工專用品種和冀張薯5號(Kondor)、抗疫白(Kennebec)等鮮食品種應用于生產,到2000年左右實現了第三次品種輪換。(4)2000年后,加大了專用和早熟新品種選育,育成了新品種300多個,其中中薯3號和中薯5號等早熟品種種植面積穩定增長,2006年首次國家級審定了炸片加工專用品種中薯10號和中薯11號,2010年前后實現了品種的第四次輪換。
在品種輪換過程中,品種的遺傳背景被不斷拓寬。1983年前,利用6個常用親本多籽白(292-20)、卡它丁、疫不加、米拉、白頭翁和小葉子育成品種 74個,占這一時期審定品種總數的68.8%,而2005年以前,利用上述6個親本共育成了156個品種,占同時期審定品種總數的45%。另外,國外品種作為親本資源在中國馬鈴薯品種選育中占有重要地位,2012年前育成的 379個審定品種中,含北美親本血緣的占13.7%、歐洲親本血緣的占35.9%,含國際馬鈴薯中心親本血緣的占17.9%。中國馬鈴薯品種類型不斷豐富,在產量、品質、抗病和外觀性狀上有較大改良。
2014年,荷蘭馬鈴薯總產710.03萬噸,不及中國總產量8%,但其單產達到45.66 t·hm-2,近中國單產的3倍(http://fao.org/faostat)。荷蘭的馬鈴薯育種和栽培水平位居世界前列,下面簡要分析一下其育種特點。
6.1 參與育種模式(participatory plant breeding)
荷蘭馬鈴薯育種體系是大學或研究機構、育種公司和農民育種者(farmer breeder/hobby breeder)共同組建而成的,形成了別具荷蘭特色馬鈴薯參與育種模式。荷蘭馬鈴薯育種主要由商業育種公司作為主體完成,而農民育種者在育種體系中扮演重要角色。荷蘭有近一半的農民種植馬鈴薯,農民是荷蘭馬鈴薯育種的重要參與者。2009年,荷蘭409個品種用于種薯生產,其中293個品種是荷蘭本國育成的,而這293個品種中,有一半左右的品種是由農民育種者選育出來的,占荷蘭種薯生產面積的44%[208]。荷蘭有19家較大的馬鈴薯育種公司,其中13家公司擁有自己的育種體系,14家公司與農民育種者進行品種選育合作。年繁殖實生苗數量超過5萬的、大的育種公司,一般都是既有自己的育種體系,又和農民育種者具有合作關系,而年繁殖實生苗數量小于1.5萬的、小的育種公司僅僅依靠自由育種者(與公司沒有合作關系)以及外國育種者進行品種選育。
大多數優秀的農民育種者都擁有可進行種薯生產的、50—80 hm2規模的農場,他們具有豐富的優質種薯生產和優良單株選擇經驗。通常每年冬天,與公司合作的農民育種者會收到來自育種公司的、含有系譜信息的實生種子和實生苗家系,然后他們根據各自偏好的育種目標,在與育種公司充分討論的基礎上進行材料選擇,然后農民育種者對這些材料進行田間種植、性狀評價和選擇,3年以后,大約有1%的株系保留下來并返回育種公司,進行后續的多地多年的田間評價及抗病性、品質等性狀的室內評價,有時育種公司會根據品種市場需求情況,直接將相關品系送往目標市場國家進行評價。經過這樣的程序,育成1個馬鈴薯品種需要大概12年時間。育種公司和農民育種者的合作育種流程見表8[209]。

表8 荷蘭育種公司和農民育種者的合作育種流程Table 8 Potato breeding program in a collaborative model of company and farmer breeder
6.2 公立科研機構在育種體系中的角色
荷蘭設有很多涉及馬鈴薯遺傳育種和種薯質量檢測的公立科研機構和管理部門,下面以瓦赫寧根大學及研究中心(Wageningen University and Research,WUR)為例說明一下公立科研機構在育種體系中的角色。在馬鈴薯遺傳育種研究方面,WUR主要從事以種質擴增、改良和創新為核心的前育種(pre-breeding)研究,利用最新的遺傳學研究成果,進行種質資源評價、親本選配和雜交及育種材料創制和低代品系培育,具體工作分為傳統育種和有機育種 2個體系同時進行。傳統育種體系中,無性一代至無性三代品系均會保留一部分塊莖網棚內種植,以免退化;有機育種體系各世代材料均在符合有機食品種植要求的地塊評價,一般不在網棚內備份繁種。對于傳統和有機育種體系的無性世代評價,WUR只負責早代品系的分子標記(晚疫病、病毒病和線蟲抗性為主)、田間農藝性狀和塊莖品質性狀的評價,一般在第四個無性世代評價時就將品系轉交給商業育種公司進行后續工作。WUR每年也會將部分雜交實生種子直接提供給公司和農民育種者進行篩選和評價[210],同時面向育種公司和農民育種者進行育種技術和田間選擇技術的培訓。
6.3 有機育種體系
荷蘭的傳統育種體系和中國差別較小,而有機育種體系相對傳統育種體系有較大差別。有機育種體系是指其培育出來的馬鈴薯品種符合有機食品生產標準要求,因此,其育種目標就更具挑戰性。對于有機栽培的馬鈴薯品種總的要求是在短的生育期內快速結薯,在病害侵襲和單純有機肥施用情況下,盡可能多的獲得較高經濟產量[211],因此,荷蘭有機馬鈴薯育種目標分為幾個層次:(1)必須具備性狀:葉片和塊莖具有良好的晚疫病抗性,良好的氮肥利用效率;(2)應該具備性狀:立枯病抗性,早疫病抗性,PVY抗性,早熟性,長休眠期;(3)最好具備性狀:瘡痂病和粉痂病抗性,植株快速封壟以壓制雜草,銀腐病抗性,食味好。為了達到以上育種目標,又在不借助轉基因技術的情況下,在早代育種群體即開始應用分子標記進行以抗病蟲為主的目標性狀輔助選擇,以加快育種進度。
隨著生物科學的迅猛發展,基礎研究領域取得的科研成果越來越快地直接在應用研究領域應用并取得成效,這直接促使了作物綜合育種技術的不斷成熟和完善,同時創新育種模式和機制,利用現有種質資源培育突破性、專用型品種將是未來馬鈴薯遺傳育種發展的主要方向。
7.1 基因組學數據在遺傳育種上的應用
馬鈴薯基因組序列已經被揭示,雖然獲得的全基因組序列只是源于2個種的測序材料,這相對于自然界中存在廣泛變異的馬鈴薯種質資源來說只是冰山一角,但基因組序列對馬鈴薯重要性狀遺傳學的促進作用已經顯現。DM參考基因組序列促進了很多重要性狀基因的定位和克隆,基于其開發的SNP芯片已經商業化應用。目前,研究者正在著手進行馬鈴薯種質資源重測序和攻克四倍體栽培種測序技術。在可預見的未來,隨著包含更多等位變異信息的基因組序列信息的揭示,馬鈴薯主要性狀尤其是多基因控制的、復雜性狀的遺傳機制將逐漸被揭示,這會大大促進基于全基因組水平上的標記選擇技術在育種群體評價和選擇上的應用,從而為育種者在親本組合選配上提供分子水平上的依據,并在早代群體中即可快速鎖定目標品系,加快育種進度。
7.2 種質資源收集和改良重要性凸顯
利用基因工程技術進行品種改良,在技術風險、食物安全、環境保護甚至社會倫理上一直存在爭議,即使在技術風險得到控制的情況下,轉基因食品的釋放是依然一個慎重和緩慢的過程。因此,為了培育突破性新品種,收集和挖掘現有馬鈴薯種質資源優異性狀,將是一個長期的基礎性工作。中國不是馬鈴薯起源國,而且涉及馬鈴薯起源地區的國家已經限制一些重要資源的釋放,這增加了資源引進的難度。作為應對措施,應當一方面通過合法途徑從世界上主要馬鈴薯種質資源庫進行資源引進;另一方面,要對中國現有種質資源進行系統評價,挖掘其應用潛力。
7.3 綜合育種技術逐漸形成
目前,中國乃至世界范圍內種植的馬鈴薯品種主要是依靠傳統育種技術培育而成的,隨著生物學研究尤其是分子生物學領域的快速發展,馬鈴薯育種技術必將逐漸整合現有技術方法并吸納最新基因組學研究成果形成綜合育種技術。具體來說,馬鈴薯綜合育種技術,將以雜交為基礎的傳統育種技術為基礎,以2n配子利用技術和體細胞雜交為主的倍性操作技術為資源改良和創制的途徑,以簡單性狀和復雜性狀追蹤及利用的標記輔助選擇技術和基因組選擇技術為提升親本組配和后代選擇效率的工具,以培育抗病、抗逆、高產、優質、專用馬鈴薯優良品種為目標,全面促進馬鈴薯優良品種選育進度。
7.4 專用型品種選育需求持續增大
隨著馬鈴薯加工業的迅速發展、環境友好的生產方式的轉變及人們對食品安全和營養的關注度增加,選育特定市場和可持續農業發展需求的專用型品種尤顯必要。選育耐旱、耐瘠薄、低成本種植品種,可以提高華北、西北和西南等占中國馬鈴薯總種植面積70%左右的、土壤瘠薄、經濟不發達主產區的馬鈴薯旱作生產能力,促進生態脆弱區域水、光、溫、土等自然資源的綜合利用;選育優質豐產早熟品種,可以在中原二季作區和南方冬作區進行設施和保護地種植,提高種植效益;選育抗病、耐貯藏、優質品種,可以減少東北、西南、西北、華北等地區氣傳和土傳病害重發區農藥施用、產量和貯藏損失,提高馬鈴薯商品性;選育優質加工專用品種,改良品種的塊莖干物質、淀粉、還原糖等加工品質特性,可以提高加工原料生產能力,促進馬鈴薯加工業穩定、持續發展。
7.5 商業化育種模式的嘗試
具有中國自主知識產權的馬鈴薯品種主要是公益性科研院所和大學育成的,馬鈴薯企業鮮有完善的育種體系,多是以種薯繁殖、銷售和加工為主。在市場經濟中,企業會最先覺察到市場需求并開發相關產品,利用其商業推廣體系,可以快速將產品推向市場,荷蘭馬鈴薯育種模式的成功證明了這一點。隨著馬鈴薯品種應用的市場導向機制的不斷完善,以及科研院所和企業人才交流及技術合作的不斷加強,企業會在中國馬鈴薯品種選育中扮演越來越重要的角色,但公益性育種機構與企業的合作機制有待于進一步探索。
[1] MULLINS E, MILBOURNE D, PETTI C, DOYLE-PRESTWICH B M, MEADE C. Potato in the age of biotechnology. Trends in Plant Science, 2006, 11(5): 254-260.
[2] 屈冬玉, 謝開云, 金黎平, 龐萬福, 卞春松, 段紹光. 中國馬鈴薯產業發展與食物安全. 中國農業科學, 2005, 38(2): 358-362.
QU D Y, XIE K Y, JIN L P, PANG W F, BIAN C S, DUANG S G. Development of potato industry and food security in China. Scientia Agricultura Sinica, 2005, 38(2): 358-362. (in Chinese)
[3] 金黎平, 屈冬玉, 謝開云, 卞春松, 段紹光. 我國馬鈴薯種質資源和育種技術研究進展. 種子, 2003, 5: 98-100.
JIN L P, QU D Y, XIE K Y, BIAN C S, DUAN S G. Advances of potato germplasm and breeding technology in China. Seed, 2003, 5: 98-100. (in Chinese)
[4] HAWKES J G, FRANCISCO-ORTEGA J. The early history of the potato in Europe. Euphytica, 1993, 70(1): 1-7.
[5] JOHNS T, ALONSO J G. Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica, 1990, 50(3): 203-210.
[6] GHISLAIN M N, ú?EZ J, HERRERA M R, SPOONER D M. The single Andigenum origin of Neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses. Theoretical and Applied Genetics, 2009, 118(5): 963-969.
[7] SPOONER D M, GHISLAIN M, SIMON R, JANSKY S H, GAVRILENKO T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review, 2014, 80(4): 283-383.
[8] HAWKES J G. The Potato: Evolution, Biodiversity, and Genetic Resources.Washington D. C.: Smithsonian Institution Press, 1990.
[9] PANTA A, PANIS B, YNOUYE C, SWENNEW R, ROCA W M. Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters, 2014, 35(3): 255-266.
[10] ROCA W M, ESPINOZA N O, ROCA M R, BRYAN J E. A tissue culture method for the rapid propagation of potatoes. American Potato Journal, 1978, 55(12): 691-701.
[11] GONZALEZ-ARNAO M T, PANTA A, ROCA W M, ESCOBAR R H, ENGELMANN F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell, Tissue and Organ Culture, 2007, 92(1): 1-13.
[12] KACZMARCZYK A, ROKKA V M, KELLER E R J. Potato shoot tip cryopreservation, a review. Potato Research, 2010, 54(1): 45-79.
[13] VAN DEN BERG R G, MILLER J T, UGARTE M L, KARDOLUS J P, VILLAND J, SPOONER D. Collapse of morphological species in the wild potato Solanum brevicaule complex (Solanaceae: sect. Petota). American Journal of Botany, 1998, 85(1): 92-109.
[14] COOKE R J. New approaches to potato variety identification. Potato Research, 1999, 42(3): 529-539.
[15] SALAMAN R N. The early European potato: Its character and place of origin. Journal of the Linnean Society(Botany), 1946, 53: 1-27.
[16] CASTA?EDA-áLVAREZ N P, DE HAAN S, JUáREZ H, KHOURY C K, ACHICANOY H A, SOSA C C, BERNAU V, SALAS A, HEIDER B, SIMON R, MAXTED N, SPOONER D M. Ex situ conservation priorities for the wild relatives of potato (Solanum L. Section Petota). PLoS ONE, 2015, 10: e0122599.
[17] JANSKY S. Overcoming hybridization barriers in potato. Plant Breeding, 2006, 125(1): 1-12.
[18] ESTRADA R N. Frost resistant potato hybrids via Solanum acaule, Bitt. Diploid-Tetraploid crosses. American Potato Journal, 1980, 57(12): 609-619.
[19] SUáREZ S, CHAVES E, CLAUSEN A, FRANCO J. Solanum tuber-bearing species resistance behavior against Nacobbus aberrans. Journal of Nematology, 2009, 41: 5-10.
[20] WATANABE K N, ORRILLO M, VEGA S, MASUELLI R, ISHIKI K. Potato germplasm enhancement with disomic tetraploid Solanum acaule. II. Assessment of breeding value of tetraploid F1hybrids between tetrasomic tetraploid S. tuberosum and S. acaule. Theoretical and Applied Genetics, 1994, 88(2): 135-140.
[21] CARPUTO D, CARDI T, SPEGGIORIN M, ZOINA A, FRUSCIANTE L. Resistance to blackleg and tuber soft rot in sexual and somatic interspecific hybrids with different genetic background. American Potato Journal, 1997, 74(3): 161-172.
[22] FROST K E, JANSKY S H, ROUSE D I. Transmission of Verticillium wilt resistance to tetraploid potato via unilateral sexual polyploidization. Euphytica, 2006, 149(3): 281-287.
[23] JANSKY S H, HAMERNIK A, BETHKE P C. Germplasm release: Tetraploid clones with resistance to cold-induced sweetening. American Journal of Potato Research, 2011, 88(3): 218-225.
[24] SANTINI M, CAMADRO E L, MARCELLáN O N, ERAZZú L E. Agronomic characterization of diploid hybrid families derived from crosses between haploids of the common potato and three wild Argentinian tuber-bearing species. American Journal of Potato Research, 2000, 77(4): 211-218.
[25] BRADSHAW J E, RAMSAY G. Utilisation of the commonwealth potato collection in potato breeding. Euphytica, 2005, 146(1): 9-19.
[26] TUCCI M, CARPUTO D, BILE G, FRUSCIANTE L. Male fertility and freezing tolerance of hybrids involving Solanum tuberosum haploids and diploid Solanum species. Potato Research, 1996, 39(3): 345-353.
[27] LINDQVIST-KREUZE H, CARBAJULCA D, GONZALEZESCOBEDO G, PéREZ W, BONIERBALE M. Comparison of transcript profiles in late blight-challenged Solanum cajamarquense and B3C1potato clones. Molecular Plant Pathology, 2010, 11(4): 513-530.
[28] BRADSHAW J E, BRYAN G J, RAMSAY G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Research, 2006, 49(1): 49-65.
[29] NARANCIO R, ZORRILLA P, ROBELLO C, GONZALEZ M, VILARó F, PRITSCH C, RIZZA M D. Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. European Journal of Plant Pathology, 2013, 136(4): 823-835.
[30] JO K R, ARENS M, KIM T Y, JONGSMA M A, VISSER R G F, JACOBSEN E, VOSSEN J H. Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theoretical and Applied Genetics, 2011, 123(8): 1331-1340.
[31] VILLAMON F G, SPOONER D M, ORRILLO M, MIHOVILOVICH E, PéREZ W, BONIERBALE W. Late blight resistance linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). Theoretical and Applied Genetics, 2005, 111(6): 1201-1214.
[32] VAN DER VOSSEN E, SIKKEMA A, HEKKERT B, GROS J, STEVENS P, MUSKENS M, WOUTERS D, PEREIRA A, STIEKEMA W, ALLEFS S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. The Plant Journal, 2003, 36: 867-882.
[33] NAESS K S, BRADEEN M J, WIELGUS M S, HABERLACH T G, MCGRATH M J, HELGESON J P. Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theoretical and Applied Genetics, 2000, 101(5): 697-704.
[34] LAFERRIERE T L, HELGESON P J, ALLEN C. Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theoretical and Applied Genetics, 1999, 98(8): 1272-1278.
[35] CARDI T, D'AMBROSIO E, CONSOLI D, PUITE K J, RAMULU K S. Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants. Theoretical and Applied Genetics, 1993, 87(1): 193-200.
[36] ESTRADA N. Utilization of Solanum brevidens to Transfer PLRV Resistance into the Cultivated Potato, Solanum tuberosum. London: Royal Botanical Gardens, 1991.
[37] THIEME R, RAKOSY-TICAN E, GAVRILENKO T, ANTONOVA O, SCHUBERT J, NACHTIGALL M, HEIMBACH U, THIEME T. Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theoretical and Applied Genetics, 2008, 116(5): 691-700.
[38] CAMADRO E L, CARPUTO D, PELOQUIN S J. Substitutes for genome differentiation in tuber-bearing Solanum: Interspecific pollenpistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theoretical and Applied Genetics, 2004, 109(7): 1369-1376.
[39] DIONNE L A. Studies on the use of Solanum acaule as a bridge between Solanum tuberosum and species in the series Bulbocastana,Cardiophylla and Pinnatisecta. Euphytica, 1963, 12(3): 263-269.
[40] HERMSEN J G T. Crossability, fertility and cytogenetic studies in Solanum acaule × Solanum bulbocastanum. Euphytica, 1966, 15(2): 149-155.
[41] SINGSIT C, HANNEMAN R E. Rescuing abortive inter-EBN potato hybrids through double pollination and embryo culture. Plant Cell Reports, 1991, 9(9): 475-478.
[42] CHEN Q, LYNCH D, PLATT H W, LI H Y, SHI Y, LI H J, BEASLEY J, RAKOSY-TICAN L, THEME R. Interspecific crossability and cytogenetic analysis of sexual progenies of Mexican wild diploid 1EBN species Solanum pinnatisectum and S. cardiophyllum. American Journal of Potato Research, 2004, 81(2): 159-169.
[43] WATANABE K N, ORRILLO M, VEGA S, VALKONEN J P T, PEHU E, HURTADO A, TANKSLEY S D. Overcoming crossing barriers between nontuber-bearing and tuber-bearing Solanum species: Towards potato germplasm enhancement with a broad spectrum of solanaceous genetic resources. Genome, 1995, 38: 27-35.
[44] PAZ M M, VEILLEUX R E. Influence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breeding, 1999, 118(1): 53-57.
[45] VAN OS H, ANDRZEJEWSKI S, BAKKER E, BARRENA I, BRYAN G J. Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genomewide physical map. Genetics, 2006, 173(2):1075-1087.
[46] POTATO GENOME SEQUENCING CONSORTIUM. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475(7355): 189-195.
[47] AVERSANO R, CONTALDI F, ERCOLANO M R, GROSSO V, IORIZZO M, TATINO F, XUMERLE L, AVANZATO C, FERRARINI A, DELLEDONNE M, SANSEVERINO W, CIGLIANO R A, CAPELLA-GUTIERREZ G T, FRUSCIANTE L, BRADEEN J M, CARPUTO D. The Solanum commersonii Genome Sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. The Plant Cell, 2015, 27(4): 954-968.
[48] GEBHARDT C, VALKONEN J P T. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 2001, 39: 79-102.
[49] SLATER A T, COGAN N O I, HAYES B J, SCHULTZ L, DALE M F B, BRYAN G J, FORSTER J W. Improving breeding efficiency in potato using molecular and quantitative genetics. Theoretical and Applied Genetics, 2014, 127(11): 2279-2292.
[50] KEARSEY M J, POONI H S. The Genetical Analysis of Quantitative Traits. Cheltenham: Stanley Thornes Ltd, 1998.
[51] MOOSE S P, MUMM R H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 2008, 147(3): 969-977.
[52] VAN ECK H J. Genetics of Morphological and Tuber Traits. Amsterdam: Elsevier, 2007.
[53] PRASHAR A, HORNYIK C, YOUNG V, MCLEAN K, SHARMA S K, DALE M F B, BRYAN G J. Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theoretical and Applied Genetics, 2014, 127(10): 2159-2171.
[54] LI X Q, DE JONG H, DE JONG D M, DE JONG W S. Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes. Theoretical and Applied Genetics, 2005, 110(6): 1068-1073.
[55] DE JONG H. Inheritance of russeting in cultivated diploid potatoes. Potato Research, 1981, 24(3): 309-313.
[56] KLOOSTERMAN B, ABELENDA J A, GOMEZ M M, OORTWIJN M, DE BOER J M, KOWITWANICH K, HORVATH B M, VAN ECK H J, SMACZNIAK C, PRAT S, VISSER R G, BACHEM C W. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495(7440): 246-250.
[57] CELIS-GAMBOA C, STRUIK P C, JACOBSEN E, VISSER R G F. Temporal dynamics of tuber formation and related processes in a crossing population of potato (Solanum tuberosum). Annals of Applied Biology, 2003, 143(2): 175-186.
[58] BERG J H, EWING E E, PLAISTED R L, MCMURRY S, BONIERBALE M W. QTL analysis of potato tuber dormancy. Theoretical and Applied Genetics, 1996, 93(3): 317-324.
[59] LEVY D, VEILLEUX R E. Adaptation of potato to high temperatures and salinity-a review. American Journal of Potato Research, 2007, 84(6): 487-506.
[60] ORTIZ R, HUAMAN Z. Inheritance of Morphological and Tuber Characteristics. Wallingford, UK: CAB International, 1994.
[61] ANITHAKUMARI A M, NATARAJA K N, VISSER R G F, LINDEN C G. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 2012, 30(3): 1413-1429.
[62] GANGADHAR B H, YU J W, SAJEESH K, PARK S W. A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Molecular Genetics and Genomics, 2013, 289(2): 185-201.
[63] ZHU X, RICHAEL C, CHAMBERLAIN P, BUSSE J S. BUSSAN AJ, JIANG J, BETHKE P C. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS ONE, 2014, 9(4): e93381.
[64] Marczewski W, Hennig J, Gebhardt C. The potato virus S resistance gene Ns maps to potato chromosome VIII. Theoretical and Applied Genetics, 2002, 105(4): 564-567.
[65] RITTER E, DEBENER T, BARONE A, SALAMINI F, GEBHARDT C. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular Genetics and Genomics, 1991, 227(1): 81-85.
[66] H?M?L?INEN H J, WATANABE N K, VALKONEN T J P, ARIHARA A, PLAISTED L R, PEHU E, MILLER L, SLACK A S. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theoretical and Applied Genetics, 1997, 94(2): 192-197.
[67] MARCZEWSKI W, FLIS B, SYLLER J, SCH?FER-PREGL R, GEBHARDT C. A major quantitative trait locus for resistance to Potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Molecular Plant-Microbe Interactions, 2001, 14(12): 1420-1425.
[68] SIMKO I, JANSKY S, STEPHENSON S, SPOONER D M. Genetics of Resistance to Pests and Diseases. Amsterdam: Elsevier, 2007.
[69] BROWN C R, YANG C P, MOJTAHEDI H, SANTO G S, MASUELLI R. RFLP analysis of resistance to Columbia root-knot nematode derived from Solanum bulbocastanum in a BC2population. Theoretical and Applied Genetics, 1996, 92(5): 572-576.
[70] PHILLIPS M S. Inheritance of Resistance to Nematodes. Wallingford: CAB International, 1994.
[71] RODEWALD J, TROGNITZ B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Molecular Plant Pathology, 2013, 14(7): 740-757.
[72] SANTA CRUZ J H, HAYNES K G, CHRIST B J. Effects of one cycle of recurrent selection for early blight resistance in a diploid hybrid Solanum phureja-S. stenotomum population. American Journal of Potato Research, 2009, 86(6): 490-498.
[73] BURKHART C R, CHRIST B J, HAYNES K G. Non-additive genetic variance governs resistance to fusarium dry rot in a diploid hybrid potato population. American Journal of Potato Research, 2007, 84(3): 199-204.
[74] DEES M W, LYS?E E, ALSHEIKH M, DAVIK J, BRURBERG M B. Resistance to Streptomyces turgidiscabies in potato involves an early and sustained transcriptional reprogramming at initial stages of tuber formation. Molecular Plant Pathology, 2015, 17(5): 703-713.
[75] PAGET M F, ALSPACH P A, GENET R A, APIOLAZA L A. Genetic variance models for the evaluation of resistance to powdery scab (Spongospora subterranea f. sp. subterranea) from long-term potato breeding trials. Euphytica, 2014, 197(3): 369-385.
[76] WASTIE R L. Inheritance of Fungal Diseases of Tubers. Wallingford: CAB International, 1994.
[77] VLEESHOUWERS V G, RAFFAELE S, VOSSEN J H, CHAMPOURET N, OLIVA R, SEGRETIN M E, RIETMAN H, CANO L M, LOKOSSOU A, KESSEL G, PEL M A, KAMOUN S. Understanding and exploiting late blight resistance in the age of effectors. Annual Review of Phytopathology, 2011, 49: 507-531.
[78] Black W, Mastenbroek C, Mills W R, Peterson L C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica, 1953, 2(3):173-179.
[79] VAN DER LEE T, TESTA A, VAN'T KLOOSTER J, VAN DEN BERG-VELTHUIS G, GOVERS F. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10, and R11 potato lines. Molecular Plant-Microbe Interactions, 2001, 14(12): 1444-1452.
[80] PARK T H, VLEESHOUWERS V G A A, JACOBSEN E, VAN DER VOSSEN E, VISSER R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): A perspective of cisgenesis. Plant Breeding, 2009, 128(2): 109-117.
[81] VAN DER VOSSEN E A, GROS J, SIKKEMA A, MUSKENS M, WOUTERS D, WOLTERS P, PEREIRA A, ALLEFS S. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal, 2005, 44(2): 208-222.
[82] PARK T H, GROS J, SIKKEMA A, VLEESHOUWERS V G, MUSKENS M, ALLEFS S, JACOBSEN E, VISSER R G, VAN DER VOSSEN E A. The late blight resistance locus Rpi-bib3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Molecular Plant-Microbe Interactions, 2005, 18(7): 722-729.
[83] SONG J, BRADEEN J M, NAESS S K, RAASCH J A, WIELGUS S M, HABERLACH G T, LIU J, KUANG H, AUSTIN-PHILLIPS S, BUELL C R, HELGESON J P, JIANG J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9128-9133.
[84] DANAN S, VEYRIERAS J B, LEFEBVRE V. Construction of apotato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biology, 2011, 11: 16.
[85] GEBHARDT C. Bridging the gap between genome analysis and precision breeding in potato. Trends in Genetics, 2013, 29(4): 248-256.
[86] CHAMPOURET N. Functional genomics of Phytophthora infestans effectors and Solanum resistance genes[D]. Wageningen: Wageningen University, 2010.
[87] ZHANG K, XU J, DUAN S G, PANG W F, BIAN C S, LIU J, JIN L. NBS profiling identifies potential novel locus from Solanum demissum that confers broad-spectrum resistance to Phytophthora infestans. Journal of Integrative Agriculture, 2014, 13(8): 1662-1671. [88] BALLVORA A, ERCOLANO M R, WEISS J, MEKSEM K, BORMANN C A, OBERHAGEMANN P, SALAMINI F, GEBHARDT C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal, 2002, 30(3): 361-371.
[89] LOKOSSOU A A, PARK T H, VAN ARKEL G, ARENS M, RUYTER-SPIRA C, MORALES J, WHISSON S C, BIRCH P R, VISSER R G, JACOBSEN E, VAN DER VOSSEN E A. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Molecular Plant-Microbe Interactions, 2009, 22(6): 630-641.
[90] HUANG S, VAN DER VOSSEN E A, KUANG H, VLEESHOUWERS V G, ZHANG N, BORM T J, VAN ECK H J, BAKER B, JACOBSEN E, VISSER R G. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal, 2005, 42(2): 251-261.
[91] LI G, HUANG S, GUO X, LI Y, YANG Y, GUO Z, KUANG H, RIETMAN H, BERGERVOET M, VLEESHOUWERS V G, VAN DER VOSSEN E A, QU D, VISSER R G, JACOBSEN E, VOSSEN J H. Cloning and characterization of R3b: Members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Molecular Plant-Microbe Interactions, 2011, 24(10): 1132-1142.
[92] OOSUMI T, ROCKHOLD D R, MACCREE M M, DEAHL K L, MCCUE K F, BELKNAP W R. Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes. American Journal of Potato Research, 2009, 86(6): 456-465.
[93] LOKOSSOU A A, RIETMAN H, WANG M, KRENEK P, VAN DER SCHOOT H, HENKEN B, HOEKSTRA R, VLEESHOUWERS V G, VAN DER VOSSEN E A, VISSER R G, JACOBSEN E, VOSMAN B. Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Molecular Plant-Microbe Interactions, 2010, 23(9): 1206-1216.
[94] VLEESHOUWERS V G, RIETMAN H, KRENEK P, CHAMPOURET N, YOUNG C, OH S K, WANG M, BOUWMEESTER K, VOSMAN B, VISSER R G, JACOBSEN E, GOVERS F, KAMOUN S, VAN DER VOSSEN E A. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE, 2008, 3(8): e2875.
[95] WANG M, ALLEFS S, BERG R G, VLEESHOUWERS V G A A, VOSSEN E A G, VOSMAN B. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.
[96] FOSTER S J, PARK T H, PEL M, BRIGNETI G, SLIWKA J, JAGGER L, VAN DER VOSSEN E, JONES J D. Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight. Molecular Plant-Microbe Interactions, 2009, 22(5): 589-600.
[97] ?LIWKA J, ?WI?TEK M, TOMCZY?SKA I, STEFA?CZYK E, CHMIELARZ M, ZIMNOCH-GUZOWSKA E. Influence of genetic background and plant age on expression of the potato late blight resistance gene Rpi-phu1 during incompatible interactions with Phytophthora infestans. Plant Pathology, 2013, 62(5): 1072-1080.
[98] BARKER H. Extreme resistance to potato virus V in clones of Solanum tuberosum that are also resistant to potato viruses Y and A: Evidence for a locus conferring broad-spectrum potyvirus resistance. Theoretical and Applied Genetics, 1997, 95(8): 1258-1262.
[99] JONES R A C. Strain group specific and virus specific hypersensitive reactions to infection with potyviruses in potato cultivars. Annals of Applied Biology, 1990, 117(1): 93-105.
[100] HAMALAINEN J H, KEKARAINEN T, GEBHARDT C, WATANABE K N, VALKONEN J P. Recessive and dominant genes interfere with the vascular transport of potato virus A in diploid potatoes. Molecular Plant-Microbe Interactions, 2000, 13(4): 402-412.
[101] DE JONG W, FORSYTH A, LEISTER D, GEBHARDT C, BAULCOMBE D C. A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theoretical and Applied Genetics, 1997, 95(1): 246-252.
[102] MARCZEWSKI W, HENNIG J, GEBHARDT C. The potato virus S resistance gene Ns maps to potato chromosome VIII. Theoretical and Applied Genetics, 2002, 105(4): 564-567.
[103] TOMMISKA J T, H?M?L?INEN H J, WATANABE N K, VALKONEN T J P. Mapping of the gene Nxphuthat controlshypersensitive resistance to potato virus X in Solanum phureja IvP35. Theoretical and Applied Genetics, 1998, 96(6): 840-843.
[104] MARCZEWSKI W, FLIS B, SYLLER J, STRZELCZYK-?YTA D, HENNIG J, GEBHARDT C. Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theoretical and Applied Genetics, 2004, 109(8): 1604-1609.
[105] VELáSQUEZ A C, MIHOVILOVICH E, BONIERBALE M. Genetic characterization and mapping of major gene resistance to potato leafroll virus in Solanum tuberosum ssp. andigena. Theoretical and Applied Genetics, 2007, 114(6): 1051-1058.
[106] H?M?L?INEN H J, WATANABE N K, VALKONEN T J P, ARIHARA A, PLAISTED L R, PEHU E, MILLER L, SLACK A S. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theoretical and Applied Genetics, 1997, 94(2): 192-197.
[107] BRIGNETI G, GARCIA-MAS J, BAULCOMBE C D. Molecular mapping of the potato virus Y resistance gene Rystoin potato. Theoretical and Applied Genetics, 1997, 94(2): 198-203.
[108] FINKERS-TOMCZAK A, BAKKER E, DE BOER J, VAN DER VOSSEN E, ACHENBACH U, GOLAS T, SURYANINGRAT S, SMANT G, BAKKER J, GOVERSE A. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). Theoretical and Applied Genetics, 2011, 122(3): 595-608.
[109] GEBHARDT C, MUGNIERY D, RITTER E, SALAMINI F, BONNEL E. Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theoretical and Applied Genetics, 1993, 85(5): 541-544.
[110] KREIKE C M, KONING J R A, VINKE J H, OOIJEN J W, STIEKEMA W J. Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theoretical and Applied Genetics, 1994, 88(6): 764-769.
[111] VAN DER VOORT R J, WOLTERS P, FOLKERTSMA R, HUTTEN R, VAN ZANDVOORT P, VINKE H, KANYUKA K, BENDAHMANE A, JACOBSEN E, JANSSEN R, BAKKER J. Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theoretical and Applied Genetics, 1997, 95(5): 874-880.
[112] BRADSHAW E J, HACKETT A C, MEYER C R, MILBOURNE D, MCNICOL W J, PHILLIPS S M, WAUGH R. Identification of AFLP and SSR markers associated with quantitative resistance to Globodera pallida (Stone) in tetraploid potato (Solanum tuberosum subsp. tuberosum) with a view to marker-assisted selection. Theoretical and Applied Genetics, 1998, 97(1): 202-210.
[113] ROUPPE VAN DER VOORT J, VAN DER VOSSEN E, BAKKER E, OVERMARS H, VAN ZANDVOORT P, HUTTEN R, KLEIN LANKHORST R, BAKKER J. Two additive QTLs conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theoretical and Applied Genetics, 2000, 101(7): 1122-1130.
[114] JACOBS J M E, ECK H J, HORSMAN K, ARENS P F P, VERKERK-BAKKER B, JACOBSEN E, PEREIRA A, STIEKEMA W J. Mapping of resistance to the potato cyst nematode Globodera rostochiensis from the wild potato species Solanum vernei. Molecular Breeding, 1996, 2(1): 51-60.
[115] LEISTER D, BALLVORA A, SALAMINI F, GEBHARDT C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14(4): 421-429.
[116] KREIKE C M, KONING J R A, VINKE J H, OOIJEN J W, GEBHARDT C, STIEKEMA W J. Mapping of loci involved in quantitatively inherited resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1. Theoretical and Applied Genetics, 1993, 87(4): 464-470.
[117] KREIKE C M, KOK-WESTENENG A A, VINKE J H, STIEKEMA W J. Mapping of QTLs involved in nematode resistance, tuber yield and root development in Solanum sp. Theoretical and Applied Genetics, 1996, 92(3): 463-470.
[118] VAN DER VOORT R J, LINDEMAN W, FOLKERTSMA R, HUTTEN R, OVERMARS H, VAN DER VOSSEN E, JACOBSEN E, BAKKER J. A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theoretical and Applied Genetics, 1998, 96(5): 654-661.
[119] TUNG P X. Genetic variation for bacterial wilt resistance in a population of tetraploid potato. Euphytica, 1992, 61(1): 73-80.
[120] YU Y, YE W, HE L, CAI X, LIU T, LIU J. Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Reports, 2013, 32(11): 1687-1701.
[121] KIM-LEE H, MOON J S, HONG Y J, KIM M S, CHO H M. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. American Journal of Potato Research, 2005, 82(2): 129-137.
[122] CHEN L, GUO X, XIE C, HE L, CAI X, TIAN L, SONG B, LIU J.Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theoretical and Applied Genetics, 2013, 126(7): 1861-1872.
[123] FOCK I, COLLONNIER C, LAVERGNE D, VANIET S, AMBROISE A, LUISETTI J, KODJA H, SIHACHAKR D. Evaluation of somatic hybrids of potato with Solanum stenotomum after a long-term in vitro conservation. Plant Physiology & Biochemistry, 2007, 45(3/4): 209-215.
[124] CHUNG Y S, HOLMQUIST K, SPOONER D M, JANSKY S H. A test of taxonomic and biogeographic predictivity: Resistance to soft rot in wild relatives of cultivated potato. Phytopathology, 2011, 101(2): 205-212.
[125] WANNER L A, KIRK W W. Streptomyces – from basic microbiology to role as a plant pathogen. American Journal of Potato Research, 2015, 92(2): 236-242.
[126] KHATRI B B, TEGG R S, BROWN P H, WILSON C R. Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathology, 2011, 60(4): 776-786.
[127] WILSON C R, TEGG R S, WILSON A J, LUCKMAN G A, EYLES A, YUAN Z Q, HINGSTON L H, CONNER A J. Stable and extreme resistance to common scab of potato obtained through somatic cell selection. Phytopathology, 2010, 100(5): 460-467.
[128] SALAMAN R N. The inheritance of colour and other characters in the potato. Journal of Genetics, 1910, 1(1): 7-46.
[129] JONG H D. Inheritance of anthocyanin pigmentation in the cultivated potato: A critical review. American Potato Journal, 1991, 68(9): 585-593.
[130] GEBHARDT C, RITTER E, DEBENER T, SCHACHTSCHABEL U, WALKEMEIER B, UHRIG H, SALAMINI F. RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical and Applied Genetics, 1989, 78(1): 65-75.
[131] VAN ECK H J, JACOBS J M E, DIJK J, STIEKEMA W J, JACOBSEN E. Identification and mapping of three flower colour loci of potato (S. tuberosum L.) by RFLP analysis. Theoretical and Applied Genetics, 1993, 86(2): 295-300.
[132] DE JONG W S, EANNETTA N T, DEJONG D M, BODIS M. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theoretical and Applied Genetics, 2004, 108(3): 423-432.
[133] DE JONG W S, DE JONG D M, DE JONG H, KALAZICH J, BODIS M. An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 2003, 107(8): 1375-1383.
[134]JUNG C S, GRIFFITHS H M, DE JONG D M, CHENG S, BODIS M, DE JONG W S. The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theoretical and Applied Genetics, 2004, 110(2): 269-275.
[135] ZHANG Y, CHENG S, JONG D M, GRIFFITHS H, HALITSCHKE R, DE JONG W S. The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 2009, 119(5): 931-937.
[136] JUNG C S, GRIFFITHS H M, JONG D M, CHENG S, BODIS M, KIM T S, DE JONG W S. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics, 2009, 120(1): 45-57.
[137] MASSON M F. Mapping, combining abilites, heritabilities and heterosis with 4x × 2x crosses in potato. Madison: University of Wisconsin-Madison, 1985.
[138] DE JONG H, BURNS V J. Inheritance of tuber shape in cultivated diploid potatoes. American Journal of Potato Research, 1993, 70: 267-283.
[139] LI L, PAULO M J, STRAHWALD J, LüBECK J, HOFFERBERT H R, TACKE E, JUNGHANS H, WUNDER J, DRAFFEHN A, EEUWIJK F, GEBHARDT C. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics, 2008, 116(8): 1167-1181.
[140] SCHREIBER L, NADER-NIETO A C, SCHONHALS E M, WALKEMEIER B, GEBHARDT C. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). Genes Genomes Genetics, 2014, 4(10): 1797-1811.
[141] WIBERLEY-BRADFORD A E, BUSSE J S, JIANG J, BETHKE P C. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Research Notes, 2014, 7: 801.
[142] LIN Y, LIU T, LIU J, LIU X, OU Y, ZHANG H, LI M, SONNEWALD U, SONG B, XIE C. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and sucrose nonfermenting1-related protein kinase. Plant Physiology, 2015, 168(4): 1807-1819.
[143] URBANY C, STICH B, SCHMIDT L, SIMON, BERDING H, JUNGHANS H, NIEHOFF K, BRAUN A, TACKE E, HOFFERBERT H, LüBECK J, STRAHWALD J, GEBHARDT C. Associationgenetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration. BMC Genomics, 2011, 12(1): 1-14.
[144] MONNEVEUX P, RAMíREZ D A, PINO M. Drought tolerance in potato (S.tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Science, 2013, 205-206: 76-86.
[145] WEISZ R, KAMINSKI J, SMILOWITZ Z. Water deficit effects on potato leaf growth and transpiration: Utilizing fraction extractable soil water for comparison with other crops. American Potato Journal, 1994, 71(12): 829-840.
[146]ANITHAKUMARI A M, DOLSTRA O, VOSMAN B, VISSER R G F, LINDEN C G. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica, 2011, 181(3): 357-369.
[147] KONDRAK M, MARINCS F, ANTAL F, JUHASZ Z, BANFALVI Z. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biology, 2012, 12: 74.
[148] ZHANG N, YANG J, WANG Z, WEN Y, WANG J, HE W, LIU B, SI H, WANG D. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS ONE, 2014, 9(4): e95489.
[149] STONE J M, PALTA J P, BAMBERG J B, WEISS L S, HARBAGE J F. Inheritance of freezing resistance in tuber-bearing Solanum species: Evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(16): 7869-7873.
[150] AHN Y, ZIMMERMAN J L. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant, Cell & Environment, 2006, 29(1): 95-104.
[151] SIMKO I, COSTANZO S, HAYNES K G, CHRIST B J, JONES R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics, 2004, 108(2): 217-224.
[152] BRADSHAW J E, MACKAY G R. Breeding Strategies for Clonally Propagated Potatoes. Wallingford: Cab International, 1994.
[153] 金黎平, 楊宏福. 馬鈴薯遺傳育種中的染色體倍性操作. 農業生物技術學報, 1996, 1: 70-75.
JIN L P, YANG H F. Chromosomal manipulation in potato genetics and breeding. Journal of Agricultutal Biotechnology, 1996, 1: 70-75. (in Chinese)
[154] HOUGAS R W, PELOQUIN S J. The potential of potato haploids in breeding and genetic research. American Journal of Potato Research, 1958, 35: 701-707.
[155] HOUGAS R W, PELOQUIN S J, GABERT A C. Effect of seed-partent and pollinator on frequency of haploids in Solannum tuberosum. Crop Science, 1964, 4: 593-595.
[156] HERMSEN J G T, VERDENIUS J. Selection from Solanum tuberosum group phureja of genotypes combining high-frequency haploid induction with homozygosity for embryo-spot. Euphytica, 1973, 22(2): 244-259.
[157] HOUGAS R W, PELOQUIN S J. Crossability of Solannum tuberosum haploids with diploid Solanum species. European Potato Journal, 1960, 3: 325-330.
[158] CHASE S C. Analytical breeding of Solanum tuberosum. Canadian Journal of Genetics and Cytology, 1963, 5: 359-363.
[159] YEH B P, PELOQUIN S J, HOUGAS R W. Meiosis in Solanum tuberosum haploids and haploid-haploid F1hybrids. Canadian Journal of Genetics and Cytology, 1964, 6: 393-402.
[160] 屈冬玉, 朱德蔚, 王登社, 高占旺, Ramanna M S, Jacobsen E. 馬鈴薯2n配子發生的遺傳分析. 園藝學報, 1995, 22(1): 61-66. QU D Y, ZHU D W, WANG D S, GAO Z W, RAMANNA M S, JACOBSEN E. Genetic analysis of 2n pollen formation in potato. Acta Horticulturae Sinica, 1995, 22(1): 61-66. (in Chinese)
[161] STELLY D M, PELOQUIN S J, PALMER R G, CRANE C F. Mayer’s hemalum-methy salicylate: A stain-clearing technique for observations within whole ovules. Stain Technology, 1984, 59: 155-161.
[162] ERAZZú L E, CAMADRO E L. Direct and indirect detection of 2n eggs in hybrid diploid families derived from haploid tbr × wild species crosses. Euphytica, 2006, 155(1): 57-62.
[163] WEBER B, JANSKY S. Resistance to Alternaria solani in hybrids between a Solanum tuberosum haploid and S. raphanifolium. Phytopathology, 2012, 102: 214-221.
[164] QU D, ZHU D, RAMANNA M S, JACOBSEN E. A comparison of progeny from diallel crosses of diploid potato with regard to the frequencies of 2n-pollen grains. Euphytica, 1995, 92(3): 313-320.
[165] MURPHY A M, JONG H, TAI G C C. Transmission of resistance to common scab from the diploid to the tetraploid level via 4x-2x crosses in potatoes. Euphytica, 1995, 82(3): 227-233.
[166] PARK T H, KIM J B, HUTTEN R C B, VAN ECK H J, JACOBSEN E, VISSER R G F. Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genetics, 2007, 176(1): 85-94.
[167] MENDIBURU A O, PELOQUIN S J. The significance of 2n gametesin potato breeding. Theoretical and Applied Genetics, 1977, 49(2): 53-61.
[168] WEISZ R, KAMINSKI J, SMILOWITZ Z. Interspecific somatic hybrids Solanum villosum (+) S. tuberosum, resistant to Phytophthora infestans. Journal of Plant Physiology, 2013, 170(17): 1541-1548.
[169] THIEME R, RAKOSY-TICAN E, NACHTIGALL M, SCHUBERT J, HAMMANN T, ANTONOVA O, GAVRILENKO T, HEIMBACH U, THIEME T. Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Reports, 2010, 29(10): 1187-1201.
[170] LUO Z W, HACKETT C A, BRADSHAW J E, MCNICOL J W, MILBOURNE D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001, 157(3): 1369-1385.
[171] ZHANG L H, MOJTAHEDI H, KUANG H, BAKER B, BROWN C R. Marker-assisted selection of columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop Science, 2007, 47(5): 2021-2026.
[172] KASAI K, MORIKAWA Y, SORRI V A, VALKONEN J P, GEBHARDT C, WATANABE K N. Development of SCAR markers to the PVY resistance gene Ryadgbased on a common feature of plant disease resistance genes. Genome, 2000, 43(1): 1-8.
[173] SORRI A V, WATANABE N K, VALKONEN T J P. Predicted kinase-3a motif of a resistance gene analogue as a unique marker for virus resistance. Theoretical and Applied Genetics, 1999, 99(1): 164-170.
[174] FULLADOLSA A C, NAVARRO F M, KOTA R, SEVERSON K, PALTA J P, CHARKOWSKI A O. Application of marker assisted selection for potato virus Y resistance in the university of wisconsin potato breeding program. American Journal of Potato Research, 2015, 92(3): 444-450.
[175] MORI K, SAKAMOTO Y, MUKOJIMA N, TAMIYA S, NAKAO T, ISHII T, HOSAKA K. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica, 2011, 180(3): 347-355.
[176] SZAJKO K, STRZELCZYK-?YTA D, MARCZEWSKI W. Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: Mapping and marker-assisted selection validation for PVY resistance in potato breeding. Molecular Breeding, 2014, 34(1): 267-271.
[177]WITEK K, STRZELCZYK-?YTA D, HENNIG J, MARCZEWSKI W. A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-f sto and Ns. Molecular Breeding, 2006, 18(3): 273-275.
[178] MARCZEWSKI W, STRZELCZYK-?YTA D, HENNIG J, WITEK K, GEBHARDT C. Potato chromosomes IX and XI carry genes for resistance to potato virus M. Theoretical and Applied Genetics, 2006, 112(7): 1232-1238.
[179] KIM H, LEE H, JO K, MORTAZAVIAN S M M, HUIGEN D J, EVENHUIS B, KESSEL G, VISSER R G F, JACOBSEN E, VOSSEN J H. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theoretical and Applied Genetics, 2012, 124(5): 923-935.
[180] XU J, WANG J, PANG W F, BIAN C S, DUAN S G, LIU J, HUANG S, JIN L, QU D. The potato R10 resistance specificity to late blight is conferred by both a single dominant R gene and quantitative trait loci. Plant Breeding, 2013, 132(4): 407-412.
[181] COLTON L M, GROZA H I, WIELGUS S M, JIANG J. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Science, 2006, 46(2): 589-594.
[182] WANG M, ALLEFS S, BERG R G, VLEESHOUWERS V G A A, VOSSEN E A G, VOSMAN B. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.
[183] ZHU S, LI Y, VOSSEN J H, VISSER R G F, JACOBSEN E. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Research, 2012, 21(1): 89-99.
[184] SANETOMO R, HOSAKA K. A maternally inherited DNA marker, descended from Solanum demissum (2n = 6x = 72) to S. tuberosum (2n = 4x = 48). Breeding Science, 2011, 61(4): 426-434.
[185] 朱文文, 徐建飛, 李廣存, 段紹光, 劉杰, 卞春松, 龐萬福, De Jong W, 金黎平. 馬鈴薯塊莖形狀基因CAPS標記的開發與驗證. 作物學報, 2015, 41(10): 1529-1536.
ZHU W W, XU J F, LI G C, DUAN S G, LIU J, BIAN C S, PANG W F, DE JONG W, JIN L P. Development and verification of a CAPS marker linked to tuber shape gene in potato. Acta Agronomica Sinica, 2015, 41(10): 1529-1536. (in Chinese)
[186] MILCZAREK D, FLIS B, PRZETAKIEWICZ A. Suitability of molecular markers for selection of potatoes resistant to Globodera spp. American Journal of Potato Research, 2011, 88(3): 245-255.
[187] WHITWORTH J L, NOVY R G, HALL D G, CROSSLIN J M, BROWN C R. Characterization of broad spectrum potato virus Y resistance in a Solanum tuberosum ssp. andigena-derived population and select breeding clones using molecular markers, grafting, and field inoculations. American Journal of Potato Research, 2009, 86(4):286-296.
[188] BERNARDO R. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Science, 2008, 48(5): 1649-1664.
[189] HEFFNER E L, LORENZ A J, JANNINK J L, SORRELLS M E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Science, 2010, 50(5): 1681-1690
[190] MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829.
[191] WONG C K, BERNARDO R. Genomewide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theoretical and Applied Genetics, 2008, 116(6): 815-824.
[192] ZHONG S, DEKKERS J C, FERNANDO R L, JANNINK J L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: A Barley case study. Genetics, 2009, 182(1): 355-364.
[193] VOS P, UITDEWILLIGEN J, VOORRIPS R, VISSER, R, VAN ECK H. Development and analysis of a 20K SNP array for potato (Solanum tuberosum ): An insight into the breeding history. Theoretical and Applied Genetics, 2015, 128(12): 2387-2401.
[194] WALTZ E. USDA approves next-generation GM potato. Nature Biotechnology, 2015, 33(1): 12-13.
[195] PERLAK F J, STONE T B, MUSKOPF Y M, PETERSEN L J, PARKER G B, MCPHERSON S A, WYMAN J, LOVE S, REED G, BIEVER D, FISCHHOFF D A. Genetically improved potatoes: Protection from damage by Colorado potato beetles. Plant Molecular Biology, 1993, 22(2): 313-321.
[196] REED G L, JENSEN A S, RIEBE J, HEAD G, DUAN J J. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: Comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata, 2001, 100(1): 89-100.
[197] LAWSON E C, WEISS J D, THOMAS P E, KANIEWSKI W K. NewLeaf Plus? Russet Burbank potatoes: replicase-mediated resistance to potato leafroll virus. Molecular Breeding, 2001, 7(1): 1-12.
[198] SOUBRIER F, CAMERON B, MANSE B, SOMARRIBA S, DUBERTRET C, JASLIN G, JUNG G, CAER C L, DANG D, MOUVAULT J M, SCHERMAN D, MAYAUX J F, CROUZET J. pCOR: A new design of plasmid vectors for nonviral gene therapy. Gene Therapy, 1999, 6(8): 1482-1488.
[199] SCHOUTEN H J, KRENS F A, JACOBSEN E. Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Reports, 2006, 7(8): 750-753.
[200] OLIVEIRA P H, MAIRHOFER J. Marker-free plasmids for biotechnological applications - implications and perspectives. Trends Biotechnology, 2013, 31(9): 539-547.
[201] JACOBSEN E, SCHOUTEN H J. Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Research, 2008, 51(1): 75-88.
[202] JANSEN R, EMBDEN J D A V, GAASTRA W, SCHOULS L M. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575.
[203] HUANG S, WEIGEL D, BEACHY R N, LI J. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109-111.
[204] LEDFORD H. CRISPR, the disruptor. Nature, 2015, 522(7554): 20-24.
[205] BUTLER N M, ATKINS P A, VOYTAS D F, DOUCHES D S. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE, 2015, 10(12): e0144591.
[206] WANG S, ZHANG S, WANG W, XIONG X, MENG F, CUI X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 2015, 34(9): 1473-1476.
[207] GAO F, SHEN X Z, JIANG F, WU Y, HAN C. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nature Biotechnology, 2016, 34(7): 768-773.
[208] ALMEKINDERS C J M, MERTENS L, LOON J P, LAMMERTS VAN BUEREN E T. Potato breeding in the Netherlands: A successful participatory model with collaboration between farmers and commercial breeders. Food Security, 2014, 6(4): 515-524.
[209] VAN BUEREN E T L. A collaborative breeding strategy for organic potatoes in the Netherlands. Ecology and Farming: International IFOAM-Magazine, 2010, 2: 50-53.
[210] VAN BUEREN L E T, ENGELEN C, HUTTEN R. Participatory potato breeding model involving organic farmers and commercial breeding companies in the Netherlands. Corvallis: 7 t h Organic Seed Growers Conference, 2014.
[211] TIEMENS-HULSCHER M, DELLEMAN J, EISING J, VAN BUEREN E T L. Potato Breeding: A practical Manual for the Potato Chain. Den Haag: Ardappelwereld BV, 2013.
(責任編輯 李莉)
Advances and Perspectives in Research of Potato Genetics and Breeding
XU JianFei, JIN LiPing
(Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing 100081)
Potato, the third most important food crop, plays a key role in global and China’s food security. Improvement of varieties is a base for sustainable development of potato industry. Potatoes frequently suffer from diverse biotic and abiotic stress, so it is urgent to breed new varieties with better disease resistance, stress tolerance, tuber yield and quality as well as specific usage to meet the needs of potato processing and people nutrition. Potato breeding is a system combining germplasm evaluation and utilization, major traits genetics analysis, breeding technology application and variety extension and crop management together. Within a global conservation strategy there are about 65,000 accessions. Using a homozygous doubled-monoploid potato clone, 86% of the 844-megabase genome sequence are revealed and assembled, and 39,031 protein-coding genes are predicted. At present, re-sequencing of potato accessions is in process. Common cultivated potato is an asexual propagation tetraploid with tetrasomic inheritance and high heterozygosity. Nevertheless, inheritance of many major traits involving plant development and morphology, tuber quality, disease resistance and stress tolerance are revealed. A lot of genes determining potato major traits aremapped and cloned. Potato breeding technology involves conventional breeding, ploidy manipulation, marker-assisted selection, genetic engineering and promising genomic selection for complex traits. Since 1949, China potato breeding has achieved great progress that is reflected on growth of number of registered varieties. Dutch potato breeding ranks among the best in world and participatory potato breeding model is a successful practice for commercial breeding. In the future, it is a trend to breed superior and specific purpose varieties based on improvement of integrated breeding technology, innovation of breeding model and germplasm utilization.
potato; breeding; genetics; perspectives; advances
2016-08-10;接受日期:2017-01-17
國家現代農業產業技術體系建設專項(CARS-10)
聯系方式:徐建飛,E-mail:xujianfei@caas.cn。通信作者金黎平,E-mail:jinliping@caas.cn