王艷芳,相立,徐少卓,王森,王曉偉,陳學森,毛志泉,張民
(1山東農業大學化學與材料科學學院,山東泰安 271018;2山東農業大學園藝科學與工程學院/作物生物學國家重點實驗室,山東泰安 271018;3棗莊科技職業技術學院,山東棗莊 277500;4山東農業大學資源與環境學院,山東泰安 271018)
生物炭與甲殼素配施對連作平邑甜茶幼苗及土壤環境的影響
王艷芳1,相立2,徐少卓2,王森2,王曉偉3,陳學森2,毛志泉2,張民4
(1山東農業大學化學與材料科學學院,山東泰安 271018;2山東農業大學園藝科學與工程學院/作物生物學國家重點實驗室,山東泰安 271018;3棗莊科技職業技術學院,山東棗莊 277500;4山東農業大學資源與環境學院,山東泰安 271018)
【目的】研究生物炭與甲殼素配施對連作條件下平邑甜茶幼苗生物量、根系呼吸速率、根系保護酶和土壤環境的影響,為防治蘋果連作障礙提供依據。【方法】盆栽條件下,以蘋果常用砧木-平邑甜茶為試材,試驗設蘋果連作土壤作為對照(CK),用1‰甲殼素(w/w,T1)、2%生物炭(w/w,T2)、1‰甲殼素+2%生物炭(T3)以及溴甲烷滅菌(T4)處理蘋果連作土壤,共5個處理。采用常規方法測定不同處理對平邑甜茶幼苗生物量、根系呼吸速率及根系抗氧化酶活性的影響,同時用末端限制性片段長度多態性(T-RFLP)和實時熒光定量PCR測定不同處理土壤中真菌群落結構和尖孢鐮刀菌數量。【結果】T3和T4可顯著增加平邑甜茶幼苗株高、地莖和干鮮重,T3使平邑甜茶幼苗的株高、地徑、鮮重、干重分別增加了44.6%、33.0%、76.8%和77.1%,T4各指標分別增加了73.1%、76.9%、117.0%和123.7%;與對照相比,不同處理均使根系呼吸速率明顯提高,T1、T2、T3和T4處理的幼苗根系呼吸速率分別是對照的1.37、1.70、1.87和2.02倍;T4處理超氧化物歧化酶(SOD)活性最高,其次為T3處理,T2和T1處理也增加了SOD活性,所有處理都與對照達到了顯著差異;過氧化物酶(POD)和過氧化氫酶(CAT)活性變化與SOD變化趨勢一致,T4處理根系POD和CAT活性分別為對照的2.68和2.64倍,其次為T3,3種酶活分別為對照的2.52和2.18倍;與對照相比,T2、T3和T4均可顯著降低根系丙二醛(MDA)的含量,分別為對照的82.0%、61.9%和43.1%。T2和T3明顯提高細菌數量,細菌/真菌比值分別是對照的1.7和2.2倍,溴甲烷滅菌(T4)則使土壤中的細菌、真菌顯著降低,但是真菌降低的數量大于細菌的,因此,細菌/真菌比值高于對照;T4具有最高的多樣性、豐富度和均勻度指數,分別比對照增加了24.4%、41.3%和13.6%,其次是T3處理;溴甲烷滅菌、生物炭配施甲殼素處理土壤中尖孢鐮刀菌基因拷貝數均顯著低于連作土,說明連作土壤中尖孢鐮刀菌為主的有害真菌數量明顯減少;與對照相比,T3土壤中根皮苷、根皮素、肉桂酸、對羥基苯甲酸和間苯三酚含量分別降低了28.1%、30.6%、50.8%、33.6%和46.2%。【結論】生物炭與甲殼素配施相較于單施生物炭或者甲殼素,能更好的提高連作條件下平邑甜茶幼苗的生物量、根系呼吸速率和根系保護酶活性。并且二者配合施用優化了連作土壤的真菌群落結構,增加了土壤細菌/真菌比值,降低了土壤中尖孢鐮刀菌基因拷貝數,減少了酚酸類物質含量。因此,生物炭配施甲殼素能更好地緩解蘋果連作障礙。
蘋果連作障礙;生物炭;甲殼素;平邑甜茶幼苗
【研究意義】蘋果連作障礙是制約蘋果產業可持續發展的瓶頸之一。隨著蘋果樹齡的老化,果園需要不斷更新,受土地資源的限制,在更新的果園中,尤其是傳統優勢栽培地區的蘋果園,必然存在著新建果園的連作,進而面臨連作障礙的發生。前人研究認為連作土壤中的有害微生物[1-3]和酚酸類物質[4-6]是引起蘋果連作障礙的兩個重要因素。生物炭可吸附土壤中的酚酸類物質[7],而甲殼素能抑制、滅殺病原菌[8]。因此,研究二者復合施用減輕蘋果連作障礙的效果,對指導蘋果抗連作障礙栽培具有重要意義。【前人研究進展】土壤中酚酸類物質的積累是導致蘋果發生連作障礙的一個重要原因,這些酚酸類物質包括根皮苷、苯甲酸、對羥基苯甲酸、根皮素、丁香酸、香草酸、咖啡酸和阿魏酸等[4,6]。土壤濃度的根皮苷、根皮素、肉桂酸及對羥基苯甲酸能明顯抑制蘋果幼苗根系發育,破壞根系線粒體功能[4-5];王青青等[6]研究證明一定濃度根皮苷可降低TCA循環中相關酶活性,導致蘋果幼苗根系呼吸速率下降。土壤微生物種群結構、數量以及比例失調,土傳病害加重是引起蘋果連作障礙的另一個重要原因[1-2]。蘋果連作后,根際促生菌(PGPR)的多樣性、豐富度、均勻度等大大降低,即土壤微生物環境變差[1];用T-RFLP技術分析蘋果連作土壤中真菌群落結構,發現連作土壤中對病原菌有抑制作用的木霉菌屬(Trichoderma)數量大大降低,真菌群落結構明顯變化,使得蘋果根系易感染腐霉病[3]。種植前進行土壤溴甲烷熏蒸消除土傳病原菌,是國內外公認的防控蘋果連作障礙的最佳措施,但溴甲烷污染環境且對人體有害,已被禁止使用。輪作和選育抗性砧木也是行之有效的防控蘋果連作障礙的措施,但其耗時太長。【本研究切入點】生物炭具有較大的比表面積和孔隙,對土壤中的農藥殘留、多環芳烴和酚酸類物質都有很好的吸附效果[7,9-10]。甲殼素及其水解產物殼聚糖可以改善土壤結構,抑制病原菌生長[8],二者單一施用都能在一定程度上緩解蘋果連作障礙[7,11],但關于二者配施是否可以更顯著地改善蘋果連作土壤環境,促進幼苗生長,減輕蘋果連作障礙現象等未見報道。【擬解決的關鍵問題】本研究以蘋果連作土壤為對照,溴甲烷滅菌的連作土壤為高標準參照,研究生物炭和甲殼素配合施用對連作條件下盆栽平邑甜茶幼苗的生物量、根系呼吸速率、土壤真菌群落結構和尖孢鐮刀菌數量的影響,探索能替代溴甲烷的技術措施,以期為防控蘋果連作障礙提供理論依據和技術參考。
試驗于2014年3—10月在山東農業大學園藝科學與工程學院南校區試驗站進行。
1.1 試驗材料
供試材料為平邑甜茶(Malus hupehensisRehd.),于2014年4月30日選取長勢一致的6片真葉幼苗,移栽至裝有7.0 kg蘋果連作土的泥瓦盆中(外徑29 cm,內徑25 cm,深20 cm)。
生物炭采用炭化稻殼,購自安徽宣城家樂米業有限公司。甲殼素購自濟南阿波羅甲殼素肥業有限公司。
試驗用土取自山東省泰安市岱岳區夏張鎮王小莊村25年生蘋果園,砧木為八棱海棠(M.micromalus),土壤類型為棕壤土。土壤有機質含量為5.94 g·kg-1,速效磷95.68 mg·kg-1,速效鉀41.33 mg·kg-1,銨態氮2.46 mg·kg-1,硝態氮12.77 mg·kg-1,土壤pH為6.17。收集距樹干1 m、深5—40 cm范圍內的連作土壤,多點取樣混勻使用。
1.2 試驗設計
試驗共設置5個處理:連作土(CK)、1‰ 甲殼素(w/w, T1)、2%生物炭(w/w, T2)、1‰甲殼素+2%生物炭(T3)、連作土溴甲烷熏蒸(T4)。每個處理15盆,每盆定植幼苗2株。于2014年8月12日采樣,測定植株生物量、根系保護酶活性、丙二醛(MDA)含量,以及相應的土壤環境。每個處理取9盆,3個生物學重復。去掉表層土和盆周圍的土,將土混勻裝入黑色塑料袋帶回實驗室,過2 mm篩,取大約500 g土裝入封口袋,用于土壤微生物和酚酸類物質的測定。
1.3 測定項目與方法
1.3.1 根系呼吸速率 采用Oxy-Lab氧電極自動測定系統[12]測定根系呼吸速率。
1.3.2 丙二醛(MDA)含量 用分光光度法分別測定反應產物在600、532和450 nm下的吸光度,計算MDA含量[13]。
1.3.3 根系保護性酶活性 超氧化物歧化酶(SOD)活性采用氮藍四唑(NBT)光還原法測定[7];過氧化物酶(POD)的活性測定按OMRAN[14]的方法;過氧化氫酶(CAT)的活性按照趙世杰[13]的方法。
1.3.4 土壤微生物數量 土壤細菌、真菌、放線菌均用平板涂抹法測定,測定前計算水分系數。 細菌采用牛肉膏蛋白胨培養基,真菌采用馬丁氏培養基,放線菌采用高氏一號培養基[15]。
1.3.5 土壤總DNA和T-RFLP分析 參照尹承苗等[16]的方法。
1.3.6 土壤中尖孢鐮刀菌數量 根據蘋果尖孢鐮刀菌菌株測序結果,在GenBank進行Blast同源比對,根據NCBI基因庫中尖孢鐮刀菌保守序列用Premer Premier5.0軟件設計PCR引物,正向引物序列:GTGAACATACCACTTGTTGCCTC,反向引物序列:GAGTCCCAACACCAAGCTGTG,送上海生工生物工程技術服務有限公司合成。按照趙永坡等[17]的方法測定不同處理土壤中尖孢鐮刀菌的基因拷貝數。
1.3.7 土壤酚酸類物質含量 準確稱取過12目篩的風干土壤80 g,加入適量硅藻土,于燒杯中混合均勻。按照WANG等[7]的方法進行提取測定。
1.4 數據處理
試驗數據采用Microsoft Excel 2003進行數據整理,SPSS 19.0軟件進行方差和顯著性檢測分析。
2.1 不同處理對平邑甜茶幼苗干鮮重的影響
由表1可以看出,T3和T4可顯著增加平邑甜茶幼苗株高、地莖和干鮮重。T3使平邑甜茶幼苗的株高、地徑、鮮重、干重分別比對照增加了44.6%、33.0%、76.8%和77.1%;T4各指標分別增加了73.1%、76.9%、117.0%和123.7%。與對照相比,T1和T2也不同程度的促進了幼苗的生長,但是其效果不如T4處理效果好。

表1 不同處理對平邑甜茶幼苗生物量影響Table 1 Effects of different treatments on planting biomass of M. hupehensis Rehd. seedlings
2.2 對幼苗根系呼吸速率的影響
圖1顯示,CK、T1、T2、T3和T4處理的平邑甜茶幼苗根系呼吸速率分別為0.1593、0.219、0.2713、0.2978和0.3212 μmol O2·min-1·g-1FW,T1、T2、T3和T4處理的平邑甜茶幼苗根系呼吸速率分別是對照的1.37、1.70、1.87和2.02倍。
2.3 對幼苗根系保護酶SOD、POD、CAT活性和MDA含量的影響

圖1 不同處理對平邑甜茶幼苗根系呼吸速率的影響Fig. 1 Effects of different treatments on the respiration rate of seedling roots

圖2 不同處理對平邑甜茶幼苗根系保護酶活性和MDA的影響Fig. 2 Effects of different treatments on the antioxidant enzyme activities and the MDA content in root of seedlings
由圖2可以看出,不同處理對平邑甜茶幼苗根系SOD活性影響大小不一,其中以T4處理SOD活性最高,其次為T3,T2和T1處理也增加了SOD活性,并與對照達到了顯著差異;POD和CAT活性變化與SOD變化趨勢一致,均表現為T4使根系抗氧化酶活性最高。SOD、POD和CAT活性分別為對照的1.34、2.68和2.64倍;其次為T3,3種酶活分別為對照的1.21、2.52和2.18倍。與對照相比,T2、T3和T4均可顯著降低根系MDA的含量,分別為對照的82.0%、61.9%和43.1%。
2.4 對土壤微生物數量的影響
由圖3可以看出,連作土壤中單施甲殼素(T1),細菌和真菌數量都有所減少,但細菌/真菌比值比對照明顯提高;而生物炭(T2)以及甲殼素和生物炭二者復合配施(T3)明顯提高細菌數量,細菌/真菌比值分別是對照的1.7和2.2倍。溴甲烷滅菌(T4)則使土壤中的細菌、真菌顯著降低,但是真菌降低的數量大于細菌,因此,細菌/真菌比值顯著高于對照。

圖3 不同處理對土壤微生物數量的影響Fig. 3 Effects of different treatments on soil microorganisms
2.5 對土壤真菌多樣性的影響
根據T-RFLP的圖譜中OUT的數量、種類及豐度,分別計算了不同處理土壤的真菌多樣性指數(表2)。與對照相比,T1和T2使連作土壤中真菌的多樣性(香濃指數)、豐富度和均勻度明顯升高,但效果不如T3和T4。T4具有最高的多樣性、豐富度和均勻度指數,分別比對照增加了24.4%、41.3%和13.6%,其次是T3處理。辛普森指數是土壤中微生物優勢度的衡量指標,它與多樣性指數成倒數關系,所以,T4具有最低的辛普森指數。
2.6 對土壤中尖孢鐮刀菌基因拷貝數的影響
采用實時熒光定量 PCR 技術對不同處理下尖孢鐮刀菌基因拷貝數進行測定(圖4)。結果表明,溴甲烷滅菌、生物炭配施甲殼素處理土壤中尖孢鐮刀菌基因拷貝數均顯著低于連作土,說明連作土壤中尖孢鐮刀菌為主的有害真菌數量明顯減少。

圖4 不同處理對土壤尖孢鐮刀菌基因拷貝數的影響Fig. 4 Effects of different treatments on the copies of Fusarium oxysporum
2.7 對土壤中酚酸類物質含量的影響
由表3可以看出,連作條件下,土壤中的酚酸類物質含量是最高的,而溴甲烷滅菌和甲殼素處理對土壤中酚酸類物質含量的影響不明顯。生物炭處理以及生物炭配施甲殼素處理可明顯降低土壤中酚酸類物質的含量,但兩種處理之間根皮苷等酚酸含量差異不明顯。與對照相比,T3土壤中根皮苷、根皮素、肉桂酸、對羥基苯甲酸和間苯三酚含量分別降低了28.1%、30.6%、50.8%、33.6%和46.2%。
蘋果連作障礙的發生具有普遍性,隨著蘋果矮化密植栽培模式的建立,蘋果樹生命周期縮短,品種更新加快,老果園、苗圃的更新和連作栽培在所難免,這使得蘋果連作障礙問題越來越突出。引起連作障礙的原因復雜多樣,主要有微生物群落結構失衡[1],特別是有害真菌數量劇增[18]以及酚酸類化感物質積累等[4]。越來越多的研究者認為,導致作物連作障礙的因素之間存在協同作用。ZHOU等[19]將酚酸物質添加至土壤中后,進行黃瓜重茬栽培發現,土壤中有益微生物菌群數量大大減少,而尖孢鐮刀菌和疫霉菌等病原菌數量呈持續上升趨勢。ZHANG等[20]研究發現黃瓜根系分泌的酚酸類物質能促進尖孢鐮刀菌(Fusarium oxysporum)孢子萌發。土壤中有害微生物的增多又會促進根系分泌更多的酚酸類物質。因此,緩解連作障礙的措施主要集中于滅殺土壤中有害微生物或者降低土壤中酚酸類物質。目前,土壤化學消毒法(如溴甲烷消毒)是國內外公認的防治連作障礙有效措施,但因其污染環境且對人體有害,逐步被禁止使用。大量研究表明,綠肥、殼質粗粉、秸稈稻殼等植物殘體、堆肥、糞肥和生物炭等土壤添加劑[7,21-23]有利于提高土壤養分,降低土壤中有害物質,改善土壤的微生物體系以及團粒結構,提高土壤質量,增強土壤生態系統的穩定性,降低連作土壤中農作物病害的發生,從而緩解連作障礙。甲殼素在農業生產上可被作為植物病害抑制劑、植物生長調節劑以及農藥載體和種衣劑等[22],可顯著增加連作條件下平邑甜茶幼苗生物量,提高幼苗抗性[11]。生物炭具有較大的比表面積和孔隙,含有豐富的有機碳及礦物營養元素[24],因此,其既可吸附土壤中的重金屬離子和有機污染物[7,10,25],又可調控土壤微生物結構,抑制病原菌[26-27],進而提高作物的生物量。本試驗中,單施生物炭、甲殼素均能提高平邑甜茶幼苗株高、地莖和干鮮重,而二者復合施用效果更好。生物炭配施甲殼素對連作條件下蘋果幼苗的促進作用僅次于溴甲烷土壤消毒的效果。這可能一方面是甲殼素對土壤中有害微生物有一定的抑制作用;另一方面生物炭不僅自身能調控土壤微生物,而且還能通過吸附土壤中的有害酚酸類物質,減少有害微生物賴以生存的食源,進而降低土壤有害真菌的數量。

表2 對土壤真菌多樣性的影響Table 2 Effects of different treatments on the soil fungal diversity

表3 對土壤中酚酸類物質的影響Table 3 Effects of different treatments on the concentration of phenolic compounds in soil
根系呼吸作用是植株地下部代謝的中心,它對根系更新、養分的吸收以及植株生長發育具有重要意義。根系總呼吸速率變化趨勢因脅迫大小及時間而不同,通常較輕微脅迫會刺激植物的根系呼吸,而長時間處于嚴重的脅迫條件下會明顯降低[12]。POD、CAT、SOD是保護酶系統的主要酶,在植物遭受逆境時,SOD、POD和CAT等保護酶可通過清除活性氧等自由基來減輕對植物細胞膜的傷害作用,進而提高植物細胞對逆境脅迫的抵抗力[5]。本試驗發現生物炭與甲殼素配施的平邑甜茶幼苗根系呼吸速率僅次于溴甲烷熏蒸處理,明顯高于連作對照;同時二者配合施用可明顯提高根系SOD、POD和CAT活性,并且降低MDA含量。這表明生物炭配施甲殼素,可顯著減輕連作障礙對蘋果幼苗的脅迫。結合前人研究結果[7,24,26-27]推測,一方面可能是生物炭吸附了部分酚酸類化合物,降低了其有害濃度;另一方面可能與甲殼素和生物炭抑制土壤病原菌有關。二者配施很好的改善了土壤環境,有利于提高根系的生理功能。
作物連作后土壤微生物區系發生明顯變化,主要表現為土壤微生物種群結構、數量以及比例失調,土傳病害加重,某些病原菌微生物數量急劇增加,有益微生物大大減少,打破了原有的根際微生態平衡[1]。甲殼素是一類天然多糖類高分子化合物,對真菌有抑制作用[28],其降解液中的幾丁質酶對病原真菌也有抑制作用[29];生物炭的特殊孔隙結構和物質組成,使其能改善土壤結構,促進土壤微團聚體的形成,促進微生物種群發展,提高微生物活性。研究表明1%的桉木生物炭和0.5%的溫室廢棄物生物炭能顯著抑制黃瓜土壤中的立枯絲核菌,促進黃瓜的生長發育[27],在蘆筍連作土壤中添加生物炭后,叢枝菌根大量繁殖,而由尖孢鐮刀菌引起的蘆筍根腐病和冠腐病大大降低[26]。本研究采用平板涂布法結合T-RFLP、實時熒光定量PCR技術研究連作蘋果園土壤中微生物數量、真菌群落結構及尖孢鐮刀菌的基因拷貝數。結果發現,生物炭配施甲殼素能增加土壤中細菌數量,明顯提高細菌/真菌值,使土壤類型由真菌型向細菌型轉變。二者復合使用,提高了連作土壤中真菌的多樣性、均勻度和豐富度,并且極大的降低了土壤中尖孢鐮刀菌的基因拷貝數,使得連作土壤中病原菌數量減少,整個真菌群落結構往更利于幼苗生長的方向漸變。同時,生物炭還具有較強的吸附能力。蛇紋巖土中添加5%的木材生物炭,大大減少了土壤中生物可利用態鉻(Cr)、鎳(Ni)和錳(Mn),使得番茄生長率為對照的40倍之多[25];高比表面積、低可溶性有機碳含量的生物炭可有效吸附土壤中的滅草松等農藥殘留[10]。本試驗中,生物炭、生物炭復合甲殼素處理的連作土壤中根皮苷、根皮素等有害酚酸類物質明顯降低,推測是由于生物炭吸附了酚酸類物質,降低了這些化合物在土壤中的有效濃度。酚酸類物質含量的降低,既減少了這些化合物對蘋果幼苗的毒害作用[4],又減少了有害微生物的食源,因此使蘋果幼苗生物量較對照明顯增加。
生物炭與甲殼素配合施用可顯著提高連作條件下平邑甜茶幼苗的生物量、根系呼吸速率和根系保護酶活性,降低連作土壤中根皮苷等酚酸類物質的含量,減少連作土壤中有害真菌的數量,尤其是尖孢鐮刀菌的基因拷貝數。生物炭與甲殼素配施能緩解蘋果連作障礙,效果明顯高于單施生物炭或者甲殼素,并接近于溴甲烷熏蒸處理,且其環保綠色無污染。因此,在老果園更新建立連作果園時,可考慮用生物炭與甲殼素配施替代溴甲烷熏蒸技術。
[1] GUO H, MAO Z, JIANG H, LIU P, ZHOU B, BAO Z, SUI J, ZHOU X, LIU X. Community analysis of plant growth promoting rhizobacteria for apple trees.Crop Protection, 2014, 62: 1-9.
[2] YIM B, WINKELMANN T, DING G C, SMALLA K. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis-contribution to improved aboveground apple plant growth?Frontiers in microbiology, 2015: 6.
[3] WEERAKOON D M N, REARDON C L, PAULITZ T C, IZZO A D, MAZZOLA M. Long-term suppression ofPythium abappressoriuminduced byBrassica junceaseed meal amendment is biologically mediated.Soil Biology and Biochemistry, 2012, 51: 44-52.
[4] 王艷芳, 潘鳳兵, 展星, 王功帥, 張國棟, 胡艷麗, 陳學森, 毛志泉.連作蘋果土壤酚酸對平邑甜茶幼苗的影響. 生態學報, 2015, 35(19): 6566-6573.
WANG Y F, PAN F B, ZHAN X, WANG G S, ZHANG G D, HU Y L, CHEN X S, MAO Z Q.Effects of five kinds of phenolic acid on the function of mitochondria and antioxidant systems in roots ofMalus hupehensisRehd seedlings.Acta Ecologica Sinica, 2015, 35(19): 6566-6573.(in Chinese)
[5] 張兆波, 毛志泉, 朱樹華. 6 種酚酸類物質對平邑甜茶幼苗根系線粒體及抗氧化酶活性的影響. 中國農業科學, 2011, 44(15): 3177-3184.
ZHANG Z B, MAO Z Q, ZHU S H. Effects of phenolic acids on mitochondria and the activity of antioxidant enzymes in roots of seedlings ofMalus hupehensisRehd.Scientia Agricultura Sinica,2011, 44(15): 3177-3184. (in Chinese)
[6] 王青青, 胡艷麗, 周慧, 展星, 毛志泉, 朱樹華. 根皮苷對平邑甜茶根系TCA循環酶的影響. 中國農業科學, 2012, 45(15): 3108-3114.
WANG Q Q, HU Y L, ZHOU H, ZHAN X, MAO Z Q, ZHU S H. Effects of phlorizin on the tricarboxylic acid cycle enzymes of roots ofMalus hupehensisRehd.Scientia Agricultura Sinica, 2012, 45(15): 3108-3114. (in Chinese)
[7] WANG Y, PAN F, WANG G, ZHANG G, WANG Y, CHEN X, MAO Z. Effects of biochar on photosynthesis and antioxidative system ofMalus hupehensisRehd. seedlings under replant conditions.Scientia Horticulturae, 2014, 175: 9-15.
[8] AHMED A S, EZZIYYANI M, SáNCHEZ C P, CANDELA M E. Effect of chitin on biological control activity ofBacillusspp. andTrichoderma harzianumagainst root rot disease in pepper (Capsicum annuum) plants.European Journal of Plant Pathology, 2003, 109(6): 633-637.
[9] LIU L, CHEN P, SUN M, SHEN G, SHANG G. Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil.Journal of Soils and Sediments, 2015, 15(2): 313-322.
[10] CABRERA A, COX L, SPOKAS K, HERMOSíN M, CORNEJO J, KOSKINEN W. Influence of biochar amendments on the sorptiondesorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil.Science of the Total Environment, 2014, 470: 438-443.
[11] 王艷芳, 潘鳳兵, 付風云, 相立, 張先富, 陳學森, 沈向, 毛志泉.甲殼素對連作平邑甜茶生長, 光合及抗氧化酶的影響. 園藝學報, 2015, 42(1): 10-18.
WANG Y F, PAN F B, FU F Y, XIANG L, ZHANG X F, CHEN X S, SHEN X, MAO Z Q. Effects of chitin on growth, photosynthesis and antioxidative system ofMalus hupehensisseedlings under replant condition.Acta Horticulturae Sinica, 2015, 42(1): 10-18. (in Chinese)
[12] 高相彬, 趙鳳霞, 沈向, 胡艷麗, 郝云紅, 楊樹泉, 蘇立濤, 毛志泉.肉桂酸對平邑甜茶幼苗根系呼吸速率及相關酶活性的影響. 中國農業科學, 2009, 42(12): 4308-4314.
GAO X B, ZHAO F X, SHEN X, HU Y L, HAO Y H, YANG S Q, SU L T, MAO Z Q. Effects of cinnamon acid on respiratory rate and its related enzymes activity in roots of seedlings ofMalus hupehensisRehd.Scientia Agricultura Sinica, 2009, 42(12): 4308-4314. (in Chinese)
[13] 趙世杰, 史國安, 董新純. 植物生理學實驗指導. 中國農業科技出版社, 北京, 2002.
ZHAO S J, SHI G A, DONG X C.Experimental Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[14] OMRAN R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings.Plant Physiology, 1980, 65(2): 407-408.
[15] 沈萍, 陳向東. 微生物學實驗. 北京: 高等教育出版社, 2007.
SHEN P, CHEN X D.Experiment of Microbiology. Beijing: Higher Education Press, 2007. (in Chinese)
[16] 尹承苗, 王功帥, 李園園, 陳學森, 吳樹敬, 毛志泉. 連作蘋果園土壤真菌的TRFLP分析. 生態學報, 2014, 34(4): 837-846.
YIN C M, WANG G S, LI Y Y, CHEN X S, WU S J, MAO Z Q. Assessment of fungal diversity in apple replanted orchard soils by T-RFLP analysis.Acta Ecologica Sinica, 2014, 34(4): 837-846. (in Chinese)
[17] 趙永坡, 初雷霞, 岳開華, 李振方, 林文雄. 太子參根際尖孢鐮刀菌絕對熒光定量檢測方法的建立及其應用. 江西農業大學學報, 2014, 36 (5): 1127-1131.
ZHAO Y P, CHU L X, YUE K H, LI Z F, LIN W X. Establishment and application of qRT-PCR method for quantification ofFusarium oxysporumf. sp. inPseudostellaria heterophyllarhizosphere.Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(5): 1127-1131. (in Chinese)
[18] YIM B, SMALLA K, WINKELMANN T. Evaluation of apple replant problems based on different soil disinfection treatments-links to soil microbial community structure?Plant and Soil, 2013, 366(1): 617-631.
[19] ZHOU X, YU G, WU F. Soil phenolics in a continuously mono-cropped cucumber (Cucumis sativusL.) system and their effects on cucumber seedling growth and soil microbial communities.European Journal of Soil Science, 2012, 63(3): 332-340.
[20] ZHANG F, ZHU Z, YANG X, RAN W, SHEN Q. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere.Applied Soil Ecology, 2013, 72: 41-48.
[21] MAZZOLA M, HEWAVITHARANA S S, STRAUSS S L.Brassicaseed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation.Phytopathology, 2015, 105(4): 460-469.
[22] 蔣小姝, 莫海濤, 蘇海佳, 張小勇. 甲殼素及殼聚糖在農業領域方面的應用. 中國農學通報, 2013, 29 (6): 170-174.
JIANG X S, MO H T, SU H J, ZHAO X Y. The application of chitin and chitosan in agriculture.Chinese Agricultural Science Bulletin, 2013, 29(6): 170-174. (in Chinese)
[23] ZHANG Z, CHEN Q, YIN C, SHEN X, CHEN X, SUN H, MAO Z. The effects of organic matter on the physiological features ofMalus hupehensisseedlings and soil properties under replant conditions.Scientia Horticulturae, 2012, 146: 52-58.
[24] ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review.Plant and Soil, 2010, 337(1/2): 1-18.
[25] HERATH I, KUMARATHILAKA P, NAVARATNE A, RAJAKARUNA N, VITHANAGE M. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar.Journal of Soils and Sediments, 2015, 15(1): 126-138.
[26] ELMER W H, PIGNATELLO J J. Effect of biochar amendments on mycorrhizal associations andFusarium crownand root rot of asparagus in replant soils.Plant Disease, 2011, 95(8): 960-966.
[27] JAISWAL A K, ELAD Y, GRABER E R, FRENKEL O.Rhizoctonia solanisuppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration.Soil Biology and Biochemistry, 2014, 69: 110-118.
[28] 李倩, 諸葛玉平, 王建, 劉東雪, 張阿芳, 王立華. 幾種高分子有機肥原料對土壤生物學性質的影響. 水土保持學報, 2013, 27(4): 241-246.
LI Q, ZHUGE Y P, WANG J, LIU D X, ZHANG A F, WANG L H. Effects of several organic polymermaterials on soil biological characteristics.Journal of Soil and Water Conservation, 2013, 27(4): 241-246. (in Chinese)
[29] 張志紅, 彭桂香, 李華興, 蔡燕飛, 張新明, 趙蘭鳳. 生物肥與甲殼素和惡霉靈配施對香蕉枯萎病的防治效果. 生態學報, 2011, 31(4): 1149-1156.
ZHANG Z H, PENG G X, LI X H, CAI Y F, ZHANG X M, ZHAO L F. Effects on controlling banana Fusarium wilt by bio-fertilizer, chitosan, hymexazol and their combinations.Acta Ecologica Sinica, 2011, 31(4): 1149-1156. (in Chinese)
(責任編輯 趙伶俐)
Effects of Biochar and Chitin Combined Application on Malus hupehensis Rehd. Seedlings and Soil Environment Under Replanting Conditions
WANG YanFang2, XIANG Li1, XU ShaoZhuo1, WANG Sen1, WANG XiaoWei4, CHEN XueSen1, MAO ZhiQuan1, ZHANG Min3
(1College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, Shandong;2College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018;3Zaozhuang Vocational College of Science and Technology, Tengzhou 277500, Shandong;4College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong)
【Objective】 The experiment was conducted to explore the effects of biochar and chitin combined application on the plant biomass, root respiration rate, root protective enzymes and soil environment under replanting conditions, and to provide a basis for prevention of apple replanting disease (ARD). 【Method】 TheMalus hupehensisRehd. seedlings were planted in pots with apple replanting soil. The experiment included 5 treatments, which were the control (CK), 1‰ chitin (T1), 2% biochar (T2), 1‰ chitin + 2% biochar (T3) and methyl bromide sterilization (T4). The biomass, root respiration rate and protective enzymes activities ofM. hupehensisseedlings were measured by conventional method. The number of microorganism, fungal group structure and theFusarium oxysporumnumbers were detected by terminal restriction fragment length polymorphism (T-RFLP) and a real-time quantitative PCR detection system. 【Result】 The results showed that compared with the control, T3 and T4 significantly enhanced the plant height, ground diameter, fresh and dry weight, and that in T3 increased by 44.6%, 33.0%, 76.8% and 77.1%, and in T4 increased by 73.1%, 76.9%, 117.0% and 123.7%, respectively. T1, T2, T3 and T4 treatments made the root respiration rate increased significantly, which were 1.37, 1.70, 1.87 and 2.02 times more than the control. The four different treatments also increased the root activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and the increase reached a significant difference. The SOD, POD and CAT activities of T4 treatments were 1.34, 2.68 and 2.64 times compared with the control, and T3 were 1.21, 2.52 and 2.18 times, respectively. T2 and T3 improved the numbers of bacteria, enhanced the ratio of bacteria and fungi and made the soil become “bacterial soil”. The ratios of T3 and T4 were 1.7 and 2.2 times as large as the control, methyl bromide sterilization made the numbers of bacteria and fungi decreased significantly, and the fungi numbers decreased more than bacteria’s, so the bacteria/fungi ratio was higher than the control. T4 had the highest Shannon diversity index, evenness index and richness index, increased by 24.4%, 41.3% and 13.6% compared with CK, and the second was the T3 treatment. Compared with the control, T3 and T4 reduced the gene copie’s number ofF. oxysporum, which explained that theF. oxysporumharmful fungi number decreased significantly in replanting soils. Compared with CK, the concentration of phlorizin, phloretin, cinnamic acid, p-hydroxybenzoic acid and phloroglucinol reduced by 28.1%, 30.6%, 50.8%, 33.6% and 46.2% in T3, respectively.【Conclusion】The biochar and chitin combined application improved the condition in apple replanting soil better than solely biochar or chitin addition. The combined application improved theM. hupehensis.seedlings biomass, root respiration rate and root activity of protective enzymes. And the combined application optimized the soil fungi community structure, increased the soil bacteria/fungus ratio, and reduced theF. oxysporumgene copy numbers and contents of phenolic acids. Therefore, biochar and chitin combined application can better relieve ARD.
apple replant disease; biochar; chitin;Malus hupehensisRehd. seedlings
10.3864/j.issn.0578-1752.2017.04.011
2016-06-13;接受日期:2016-08-19
國家現代農業產業技術體系建設專項(CARS-28)、山東省高校科技計劃(J15LF06)、泰安市科技發展計劃(201340629)
聯系方式:王艷芳,E-mail:wyanfang@126.com。通信作者毛志泉,E-mail:mzhiquan@sdau.edu.cn。通信作者張民,E-mail:minzhang-2002@163.com