3.2 赤泥團(tuán)聚體重組有機(jī)碳分布
赤泥自然風(fēng)化過程中團(tuán)聚體重組有機(jī)碳(HFOC)含量變化見表3。不同堆存時(shí)間赤泥團(tuán)聚體HPOC含量變化范圍分別為5.36—5.69、7.46—8.49、11.06—12.11 g/kg。A、B區(qū)域赤泥均表現(xiàn)為2—1 mm團(tuán)聚體HFOC含量最高,<0.05 mm團(tuán)聚體HFOC含量最低。C區(qū)域赤泥中0.25—0.05 mm團(tuán)聚體HFOC含量最高,2—1 mm團(tuán)聚體HFOC含量最低。各粒徑不同堆存時(shí)間A、B、C組赤泥團(tuán)聚體HFOC含量均達(dá)到差異顯著水平(P<0.05)。各粒徑赤泥團(tuán)聚體HFOC含量均表現(xiàn)為A

表3 自然風(fēng)化過程中團(tuán)聚體重組有機(jī)碳(HFOC)含量
不同小寫字母表示顯著差異(P<0.05)
赤泥自然風(fēng)化過程中團(tuán)聚體重組有機(jī)碳(HFOC)分配比例見表4。不同堆存時(shí)間赤泥團(tuán)聚體HPOC分配比例變化范圍分別為99.29%—99.47%、99.13%—99.64%、97.94%—99.23%。不同堆存時(shí)間赤泥均表現(xiàn)為1—0.25 mm團(tuán)聚體HFOC分配比例最低,A、B組赤泥0.25—0.05 mm團(tuán)聚體HFOC分配比例最高,C組赤泥2—1 mm團(tuán)聚體HFOC分配比例最高。自然風(fēng)化過程中赤泥團(tuán)聚體HFOC分配比例差異均達(dá)到顯著水平(P<0.05)。

表4 自然風(fēng)化過程中團(tuán)聚體重組有機(jī)碳(HFOC)分配比例
不同小寫字母表示顯著差異(P<0.05)
赤泥團(tuán)聚體有機(jī)碳以重組有機(jī)碳為主,將2—0.25 mm團(tuán)聚體重組經(jīng)過六偏磷酸鈉分散為3種顆粒:團(tuán)聚體內(nèi)粗顆粒,團(tuán)聚體內(nèi)細(xì)顆粒,和礦物結(jié)合態(tài)顆粒。各顆粒有機(jī)碳含量見圖1。2—1 mm和1—0.25 mm赤泥團(tuán)聚體中主要以粗顆粒和礦物結(jié)合態(tài)顆粒為主,細(xì)顆粒有機(jī)碳含量最低。隨著堆存時(shí)間增加,粗顆粒有機(jī)碳含量增加最為顯著,而細(xì)顆粒和礦物結(jié)合態(tài)顆粒有機(jī)碳含量變化并不明顯。赤泥大團(tuán)聚體重組不同顆粒有機(jī)碳中,細(xì)顆粒有機(jī)碳分配比例最低,礦物結(jié)合態(tài)顆粒有機(jī)碳分配比例次之,粗顆粒有機(jī)碳分配比例最高。隨著堆存時(shí)間的增加,赤泥大團(tuán)聚體重組有機(jī)碳中細(xì)顆粒有機(jī)碳分配比例逐漸降低。
3.3 赤泥顆粒有機(jī)碳分布
赤泥自然風(fēng)化過程中團(tuán)聚體顆粒有機(jī)碳(POC)含量變化見表5。不同堆存時(shí)間赤泥團(tuán)聚體POC含量變化范圍分別為1.21—1.85、2.62—2.95、3.52—4.15 g/kg。赤泥顆粒有機(jī)碳含量在2—1 mm團(tuán)聚體中最高,在0.25—0.05 mm團(tuán)聚體中最少。各粒徑不同堆存時(shí)間A、B、C組赤泥團(tuán)聚體POC含量均達(dá)到差異顯著水平(P<0.05)。各粒徑赤泥團(tuán)聚體POC含量均表現(xiàn)為A

表5 自然風(fēng)化過程中團(tuán)聚體顆粒有機(jī)碳(POC)含量
不同小寫字母表示顯著差異(P<0.05)
赤泥自然風(fēng)化過程中團(tuán)聚體顆有機(jī)碳(POC)分配比例見表6。不同堆存時(shí)間赤泥團(tuán)聚體POC分配比例變化范圍分別為21.24—28.65%、20.46—27.28%、25.64—29.16%。不同堆存時(shí)間赤泥顆粒有機(jī)碳在2—1 mm團(tuán)聚體中分配比例最高,<0.05 mm團(tuán)聚體中次之,在0.25—0.05 mm團(tuán)聚體中分配比例最低。
3.4 赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳分布
本文對(duì)2—1 mm,1—0.25 mm,0.25—0.05 mm和<0.05 mm赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳的物理組分進(jìn)行相關(guān)分析(圖2)。自然風(fēng)化過程中赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳含量均呈增加趨勢(shì)。赤泥各粒級(jí)團(tuán)聚體內(nèi)顆粒有機(jī)碳含量由高到低依次為2—1 mm,1—0.25 mm,<0.05 mm,0.25—0.05 mm。赤泥團(tuán)聚體內(nèi)各顆粒有機(jī)碳中,礦物結(jié)合有機(jī)碳(Mineral<0.05mm)含量最高,其后依次為閉蓄態(tài)顆粒有機(jī)碳(oPOM1.6—2.0),游離顆粒有機(jī)碳(fPOM<1.6),礦物結(jié)合有機(jī)碳(Mineral>0.05 mm),閉蓄態(tài)顆粒有機(jī)碳(oPOM<1.6)含量最低。

圖1 赤泥大團(tuán)聚體重組不同顆粒有機(jī)碳含量及分配比例Fig.1 The content and proportion of organic carbon in the scattered aggregate of the residue aggregate

團(tuán)聚體組成/mmAggregatesize顆粒有機(jī)碳分配比例POCproportion/%ABC2—128.65±1.32b27.28±1.35a29.16±1.08c1—0.2525.78±1.08b23.45±1.64a26.48±1.46c0.25—0.0521.24±0.64b20.46±1.21a25.64±1.22c<0.0528.46±1.48c26.72±1.43a28.12±0.98b
不同小寫字母表示顯著差異(P<0.05)
對(duì)于>0.05 mm各粒級(jí)赤泥團(tuán)聚體,礦物結(jié)合有機(jī)碳(Mineral>0.05 mm)分配比例最高,達(dá)到40%—50%。對(duì)于<0.05 mm粒級(jí)團(tuán)聚體,礦物結(jié)合有機(jī)碳(Mineral<0.05 mm)分配比例最高,達(dá)到40%—45%。上述結(jié)果表明,礦物結(jié)合有機(jī)碳是赤泥團(tuán)聚體內(nèi)最主要的顆粒有機(jī)碳。

圖2 赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳含量及分配比例Fig.2 The content and proportion of particle organic carbon in residue aggregate
4 討論
4.1 自然風(fēng)化過程對(duì)赤泥團(tuán)聚體有機(jī)碳物理組分的影響
土壤團(tuán)聚體輕組有機(jī)碳是由處于不同分解階段的植物殘?bào)w、真菌菌絲、微生物殘骸以及一些吸附在有機(jī)碳碎片上的礦物顆粒組成,其化學(xué)成分多為碳水化合物、蛋白、多酚和烷基化合物等,對(duì)于土壤結(jié)構(gòu)的形成和穩(wěn)定,尤其是大團(tuán)聚體(>0.25 mm)的穩(wěn)定具有重要的作用,能夠表征土壤物質(zhì)循環(huán)[26]。不同分解階段的地上凋落物和地下根系是土壤輕組有機(jī)碳的主要來源[27],赤泥堆場(chǎng)上植被極難存活,僅在堆存20年的赤泥堆場(chǎng)上發(fā)現(xiàn)有少量草本植物入侵。因此,赤泥團(tuán)聚體中輕組有機(jī)碳含量極低,分配比例也較少,有機(jī)碳組分以重組有機(jī)碳為主。相比于A、B區(qū)域,C區(qū)域赤泥團(tuán)聚體中輕組有機(jī)碳含量和分配比例略微增加,主要原因可能是該區(qū)域有少量植物生長,其殘?bào)w和根系對(duì)赤泥中輕組有機(jī)碳的含量有一定的影響,但影響較小。因此隨著堆存時(shí)間的增加,赤泥輕組有機(jī)碳分配比例整體上變化并不明顯。自然堆存過程中,赤泥理化性質(zhì)逐漸改善,鹽堿性降低,微生物群落結(jié)構(gòu)和數(shù)量可能得到顯著增加,微生物殘骸也可能是導(dǎo)致赤泥團(tuán)聚體輕組有機(jī)碳含量和分配比例增加的原因。
土壤重組有機(jī)碳是由輕組有機(jī)碳經(jīng)過徹底分解后殘留或者新合成的、以芳香族物質(zhì)為主的有機(jī)物,主要存在于有機(jī)-無機(jī)復(fù)合體中,結(jié)構(gòu)較為穩(wěn)定[28]。因此,重組有機(jī)碳對(duì)于土壤系統(tǒng)變化的反應(yīng)較輕組有機(jī)碳慢,但它能夠更好地反映土壤保持有機(jī)碳的能力。自然風(fēng)化過程中,赤泥總有機(jī)碳含量顯著增加,而部分有機(jī)碳含量的增加來源于微生物的新陳代謝活動(dòng)以及植物根系和植物殘?bào)w,因此在有植物生長的區(qū)域,重組有機(jī)碳分配比例較其他區(qū)域略低。同時(shí),赤泥團(tuán)聚體中重組和輕組有機(jī)碳含量之和略低于赤泥總有機(jī)碳含量,這可能是由于赤泥團(tuán)聚體有機(jī)碳在進(jìn)行物理分組過程中,部分有機(jī)碳被清洗掉,主要為易溶于鹽溶液(NaI)的有機(jī)碳,即鹽溶性有機(jī)碳[29]。對(duì)赤泥重組有機(jī)碳分散后的各有機(jī)碳含量分析結(jié)果表明,重組有機(jī)碳主要分布在礦物結(jié)合態(tài)顆粒和粗顆粒中。粗顆粒在形成過程中,需要更多有機(jī)碎片的膠結(jié),因此粗顆粒中有機(jī)碳含量較高。礦物結(jié)合態(tài)顆粒與粘粒能夠相互作用,而粘粒能夠保護(hù)有機(jī)碳不被分解,因此礦物結(jié)合態(tài)顆粒具有較高的穩(wěn)定性,同時(shí)粘粒更容易吸附難以被微生物分解的疏水性有機(jī)質(zhì),促使礦物結(jié)合態(tài)有機(jī)碳更為穩(wěn)定[30]。
土壤顆粒有機(jī)碳含量反映了土壤中非保護(hù)有機(jī)碳的數(shù)量,其分配比例反映了土壤中非保護(hù)性有機(jī)碳的相對(duì)數(shù)量。顆粒有機(jī)碳比例越高,有機(jī)碳中不穩(wěn)定部分越高。顆粒有機(jī)碳受外界條件的影響很敏感,提高土壤顆粒有機(jī)碳含量對(duì)于提高團(tuán)聚體穩(wěn)定性和緩解大氣二氧化碳濃度上升至關(guān)重要[31]。研究表明,森林(0—30 cm)土壤顆粒有機(jī)碳分配比例為55%—68%[32]。本研究中,赤泥團(tuán)聚體顆粒有機(jī)碳分配比例為20%—30%,表明赤泥中有機(jī)碳不穩(wěn)定部分較低,赤泥團(tuán)聚體穩(wěn)定性較差。隨著堆存時(shí)間的增加,赤泥團(tuán)聚體顆粒有機(jī)碳分配比例呈現(xiàn)上升趨勢(shì),表明赤泥中不穩(wěn)定性有機(jī)碳含量逐漸增加,有利于提高赤泥團(tuán)聚體穩(wěn)定性。顆粒有機(jī)碳主要來源于新鮮枯落物的輸入,與新鮮植物殘?bào)w的分解速度有關(guān)[15]。在A和B區(qū)域赤泥堆場(chǎng)無植物生長,在C區(qū)域赤泥堆場(chǎng)也僅由少量植物生長。因此,隨著堆存時(shí)間的增加,盡管赤泥顆粒有機(jī)碳含量逐漸增加,顆粒有機(jī)碳分配比例變化并不明顯。
土壤有機(jī)碳庫分為周轉(zhuǎn)時(shí)間較短的活性碳庫和周轉(zhuǎn)時(shí)間較長的穩(wěn)定碳庫,土壤有機(jī)碳庫的變化主要表現(xiàn)為活性有機(jī)碳庫的變化。輕組有機(jī)碳和顆粒有機(jī)碳代表了土壤有機(jī)碳中的非保護(hù)性組分,其活性較強(qiáng),而重組有機(jī)碳屬于土壤穩(wěn)定碳庫[21]。赤泥團(tuán)聚體中輕組有機(jī)碳分配比例極低,以重組有機(jī)碳為主,這表明研究區(qū)域赤泥團(tuán)聚體有機(jī)碳較為穩(wěn)定。隨著堆存時(shí)間的增加,赤泥輕組有機(jī)碳和顆粒有機(jī)碳分配比例基本保持不變,表明赤泥有機(jī)碳庫變化較小,赤泥保持有機(jī)碳能力較強(qiáng)。
4.2 自然風(fēng)化過程對(duì)赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳的影響
土壤團(tuán)聚體內(nèi)顆粒有機(jī)碳對(duì)于微團(tuán)聚體形成和穩(wěn)定,以及微團(tuán)聚體對(duì)有機(jī)碳儲(chǔ)備和穩(wěn)定具有重要作用。Six等[33]研究表明,土壤微團(tuán)聚體保護(hù)的顆粒有機(jī)碳能夠形成一個(gè)有機(jī)碳庫,對(duì)于外界生態(tài)系統(tǒng)的變化較為敏感,是描述土壤有機(jī)碳儲(chǔ)備的指標(biāo)。
隨著堆存時(shí)間的增加,赤泥團(tuán)聚體內(nèi)游離顆粒有機(jī)碳含量顯著增加,這表明自然風(fēng)化過程促進(jìn)赤泥團(tuán)聚體內(nèi)游離顆粒有機(jī)碳含量的增加。同時(shí),赤泥團(tuán)聚體游離顆粒有機(jī)碳(fPOM)含量隨粒徑的減小呈現(xiàn)下降趨勢(shì),在2—1 mm和1—0.25 mm粒級(jí)團(tuán)聚體中含量最高。此研究結(jié)果與Saha等[34]等一致,認(rèn)為土壤團(tuán)聚體游離顆粒有機(jī)碳含量的比例依賴于土壤團(tuán)聚體顆粒的大小,且土壤團(tuán)聚體內(nèi)游離顆粒有機(jī)碳含量主要積累于>1 mm大團(tuán)聚體中。在土壤中,游離顆粒有機(jī)碳含量主要取決于分解速度,以及凋落物的多少[35],微生物的活性可能更有利于土壤游離顆粒有機(jī)碳在土壤中的積累[36]。自然風(fēng)化過程中,赤泥堆場(chǎng)原生植物極少,微生物的活性對(duì)于游離顆粒有機(jī)碳的積累作用可能更為明顯。在C區(qū)域赤泥堆場(chǎng)出現(xiàn)少量草本植物的生長,植物根系的存在和葉片的凋落也影響著赤泥團(tuán)聚體內(nèi)游離顆粒有機(jī)碳的含量和分布。
土壤閉蓄態(tài)顆粒有機(jī)碳(oPOM)是有機(jī)碳中相對(duì)不穩(wěn)定的組分,是土壤全碳變化的一個(gè)重要指標(biāo)[37]。研究結(jié)果表明,赤泥團(tuán)聚體閉蓄顆粒有機(jī)碳含量(oPOM<1.6+ oPOM1.6—2.0)高于赤泥團(tuán)聚體游離顆粒有機(jī)碳含量。Golchin等[38]通過對(duì)澳大利亞五種自然土壤有機(jī)碳分析,發(fā)現(xiàn)包含在密度組分中的有機(jī)物質(zhì)的分解程度的增加順序?yàn)閒POM隨著堆存時(shí)間的增加,赤泥團(tuán)聚體內(nèi)礦物結(jié)合有機(jī)碳含量逐漸增加,在赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳組分中,礦物結(jié)合有機(jī)碳分配比例最高,這表明自然風(fēng)化過程對(duì)赤泥團(tuán)聚體內(nèi)礦物結(jié)合有機(jī)碳分布特征具有一定影響,赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳逐漸趨于穩(wěn)定。赤泥團(tuán)聚體內(nèi)礦物結(jié)合有機(jī)碳含量隨著團(tuán)聚體粒徑減少而逐漸下降,這一結(jié)果符合土壤團(tuán)聚體等級(jí)形成概念,微團(tuán)聚體與粘粒在有機(jī)質(zhì)和多價(jià)陽離子粘結(jié)條件下形成較大一級(jí)的團(tuán)聚體,因此大團(tuán)聚體中有機(jī)碳含量高于微團(tuán)聚體[39]。礦物結(jié)合有機(jī)碳比閉蓄顆粒有機(jī)碳更為穩(wěn)定,不易被微生物分解,因此在本研究中,赤泥團(tuán)聚體內(nèi)礦物結(jié)合有機(jī)碳分配比例最高。團(tuán)聚體內(nèi)礦物結(jié)合有機(jī)碳貢獻(xiàn)率的變化取決于土壤母質(zhì),赤泥堆場(chǎng)在氣候條件及微生物等外界因素作用下,理化性質(zhì)發(fā)生了較大改變,因此其貢獻(xiàn)率也出現(xiàn)了很大的變化。自然風(fēng)化過程中,赤泥理化性質(zhì)得到改良,微生物對(duì)活性有機(jī)碳的分解,使得赤泥團(tuán)聚體內(nèi)礦物結(jié)合有機(jī)碳含量顯著增加,分配比例也呈上升趨勢(shì)。本研究中赤泥團(tuán)聚體內(nèi)礦物結(jié)合有機(jī)碳(Mineral<0.05 mm)的貢獻(xiàn)率在微團(tuán)聚體中比大團(tuán)聚體中更為明顯,這與一些土壤有機(jī)碳含量較低的農(nóng)田土壤的相關(guān)研究結(jié)果類似,礦物結(jié)合有機(jī)碳(Mineral<0.05 mm)多存在于<0.25 mm團(tuán)聚體中[33]。
自然風(fēng)化過程不僅提高了赤泥總有機(jī)碳含量,也增加了赤泥團(tuán)聚體水平中有機(jī)碳不同組分的含量,對(duì)赤泥團(tuán)聚體各有機(jī)碳物理組分分配比例產(chǎn)生極大的影響。隨著堆存時(shí)間的增加,赤泥活性有機(jī)碳庫變化較小,且以穩(wěn)定有機(jī)碳庫為主,赤泥有機(jī)碳趨于穩(wěn)定。自然風(fēng)化過程改變了赤泥有機(jī)碳組分的結(jié)構(gòu)、穩(wěn)定和功能,影響了赤泥碳庫的穩(wěn)定,對(duì)于赤泥物理結(jié)構(gòu)的改變和鄉(xiāng)土植物的自然定植具有重要意義。
5 結(jié)論
(1)自然風(fēng)化過程中,赤泥輕重組有機(jī)碳組分含量顯著增加,重組有機(jī)碳分配比例均在97%以上,以粗顆粒有機(jī)碳和礦物結(jié)合態(tài)顆粒有機(jī)碳為主,細(xì)顆粒有機(jī)碳含量最低;
(2)赤泥團(tuán)聚體顆粒有機(jī)碳分配比例為20%—30%,隨著堆存時(shí)間的增加,赤泥團(tuán)聚體顆粒有機(jī)碳分配比例呈現(xiàn)上升趨勢(shì);
(3)隨著堆存時(shí)間的增加,赤泥團(tuán)聚體內(nèi)顆粒有機(jī)碳各組分含量逐漸升高。礦物結(jié)合有機(jī)碳分配比例最高,其次是閉蓄態(tài)顆粒有機(jī)碳,游離態(tài)顆粒有機(jī)碳分配比例最低。
[1] Pan X L, Yu H Y, Tu G F. Reduction of alkalinity in bauxite residue during Bayer digestion in high-ferrite diasporic bauxite. Hydrometallurgy, 2015, 151: 98- 106.
[2] Santini T C, Kerr J L, Warren L A. Microbially-driven strategies for bioremediation of bauxite residue. Journal of Hazardous Materials, 2015, 293: 131- 157.
[3] Liu W C, Chen X Q, Li W X, Yu Y F, Yan K. Environmental assessment, management and utilization of red mud in China. Journal of Cleaner Production, 2014, 84: 606- 610.
[4] Xue S G, Zhu F, Kong X F, Wu C, Huang L, Huang N, Hartley W. A review of the characterization and revegetation of bauxite residues (red mud). Environmental Science and Pollution Research, 2016, 23(2): 1120- 1132.
[5] Kaur N, Phillips I, Fey M V. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: the effect on growth of kikuyu grass and fate of applied nutrients. Science of the Total Environment, 2016, 550: 362- 371.
[6] Jones B E H, Haynes R J. Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation. Critical Reviews in Environmental Science and Technology, 2011, 41(3): 271- 315.
[7] Zhu F, Zhou J Y, Xue S G, Hartley W, Wu C, Guo Y. Aging of bauxite residue in association of regeneration: a comparison of methods to determine aggregate stability & erosion resistance. Ecological Engineering, 2016, 92: 47- 54.
[8] Courtney R, Harrington T. Growth and nutrition ofHolcuslanatusin bauxite residue amended with combinations of spent mushroom compost and gypsum. Land Degradation & Development, 2012, 23(2): 144- 149.
[9] Jones B E H, Haynes R J, Phillips I R. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium. Journal of Environmental Management, 2012, 95(1): 29- 38.
[10] Banning N C, Sawada Y, Phillips I R, Murphy D V. Amendment of bauxite residue sand can alleviate constraints to plant establishment and nutrient cycling capacity in a water-limited environment. Ecological Engineering, 2014, 62: 179- 187.
[11] Bradshaw A. The use of natural processes in reclamation-advantages and difficulties. Landscape and Urban Planning, 2000, 51(2-4): 89- 100.
[12] Young I W R, Naguit C, Halwas S J, Renault S, Markham J H. Natural revegetation of a boreal gold mine tailings pond. Restoration Ecology, 2013, 21(4): 498- 505.
[13] Santini T C, Fey M V. Spontaneous vegetation encroachment upon bauxite residue (red mud) as an indicator and facilitator of in situ remediation processes. Environmental Science & Technology, 2013, 47(21): 12089- 12096.
[14] Zhu F, Xue S G, Hartley W, Huang L, Wu C, Li X F. Novel predictors of soil genesis following natural weathering processes of bauxite residues. Environmental Science and Pollution Research, 2016, 23(3): 2856- 2863.
[15] 朱鋒, 韓福松, 薛生國, 郭穎, 李萌, 廖嘉欣. 氧化鋁赤泥堆場(chǎng)團(tuán)聚體的分形特征. 中國有色金屬學(xué)報(bào), 2016, 26(6): 1316- 1323.
[16] Courtney R, Harrington T, Byrne K A. Indicators of soil formation in restored bauxite residues. Ecological Engineering, 2013, 58: 63- 68.
[17] Gr?fe M, Klauber C. Bauxite residue issues: IV. old obstacles and new pathways forinsituresidue bioremediation. Hydrometallurgy, 2011, 108(1- 2): 46- 59.
[18] 吳敏, 劉淑娟, 葉瑩瑩, 張偉, 王克林, 陳洪松. 喀斯特地區(qū)坡耕地與退耕地土壤有機(jī)碳空間異質(zhì)性及其影響因素. 生態(tài)學(xué)報(bào), 2016, 36(6): 1619- 1627.
[19] 雷利國, 江長勝, 郝慶菊. 縉云山土地利用方式對(duì)土壤輕組及顆粒態(tài)有機(jī)碳氮的影響. 環(huán)境科學(xué), 2015, 36(7): 2669- 2677.
[20] 陳茜, 梁成華, 杜立宇, 陳新之, 王峰. 不同施肥處理對(duì)設(shè)施土壤團(tuán)聚體內(nèi)顆粒有機(jī)碳含量的影響. 土壤, 2009, 41(2): 258- 263.
[21] 張軍科, 江長勝, 郝慶菊, 吳艷, 謝德體. 耕作方式對(duì)紫色水稻土輕組有機(jī)碳的影響. 生態(tài)學(xué)報(bào), 2012, 32(14): 4379- 4387.
[22] Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil and Tillage Research, 2003, 70(2): 107- 119.
[23] 耿瑞霖, 郁紅艷, 丁維新, 蔡祖聰. 有機(jī)無機(jī)肥長期施用對(duì)潮土團(tuán)聚體及其有機(jī)碳含量的影響. 土壤, 2010, 42(6): 908- 914.
[24] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56(3): 777- 783.
[25] Golchin A, Oades J M, Skjemstad J O, Clarke P. Study of free and occluded particulate organic matter in soils by solid state13C Cp/MAS NMR spectroscopy and scanning electron microscopy. Australian Journal of Soil Research, 1994, 32(2): 285- 309.
[26] Sheng H, Zhou P, Zhang Y Z, Kuzyakov Y, Zhou Q, Ge T D, Wang C H. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology and Biochemistry, 2015, 88: 148- 157.
[27] Liu M Y, Chang Q R, Yang X Y. Soil carbon fractions under different land use types in the tablelands of the Loess Plateau. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1418- 1425.
[28] Tan Z, Lal R, Owens L, Izaurralde R C. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research, 2007, 92(1- 2): 53- 59.
[29] 廖敏, 彭英, 陳義, 謝曉梅, 吳春艷, 唐旭, 劉玉學(xué), 楊生茂. 長期不同施肥管理對(duì)稻田土壤有機(jī)碳庫特征的影響. 水土保持學(xué)報(bào), 2011, 25(6): 129- 133, 138- 138.
[30] Marín-Spiotta E, Gruley K E, Crawford J, Atkinson E E, Miesel J R, Greene S, Cardona-Correa C, Spencer R G M. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry, 2014, 117(2- 3): 279- 297.
[31] Beguería S, Angulo-Martínez M, Gaspar L, Navas A. Detachment of soil organic carbon by rainfall splash: experimental assessment on three agricultural soils of Spain. Geoderma, 2015, 245- 246: 21- 30.
[32] 董洪芳, 于君寶, 管博. 黃河三角洲堿蓬濕地土壤有機(jī)碳及其組分分布特征. 環(huán)境科學(xué), 2013, 34(1): 288- 292.
[33] Six J, Elliott E T, Paustian K, Doran J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1997, 62(5): 1367- 1377.
[34] Saha D, Kukal S S, Sharma S. Land use impacts on SOC fractions and aggregate stability in Typic Ustochrepts of Northwest India. Plant & Soil, 2011, 339(1- 2): 457- 470.
[35] van Lützow M, K?gel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 2006, 57(4): 426- 445.
[36] John B, Yamashita T, Ludwig B, Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 2005, 128(1- 2): 63- 79.
[37] Conant R T, Six J, Paustian K. Land use effects on soil carbon fractions in the southeastern United States. II. changes in soil carbon fractions along a forest to pasture chronosequence. Biology and Fertility of Soils, 2004, 40(3): 194- 200.
[38] Golchin A, Oades J M, Skjemstad J O, Clarke P. Soil structure and carbon cycling. Australian Journal of Soil Research, 1994, 32(5): 1043- 1068.
[39] Bronick C J, Lal R. Soil structure and management: a review. Geoderma, 2005, 124(1/2): 3- 22.
Effects of natural weathering processes on the distribution characteristics of organic carbon and its composition in bauxite residue aggregates
ZHU Feng1,2, LI Meng1, XUE Shengguo1,2,*, ZOU Qi1, WU Hao1, WANG Qiongli1
1SchoolofMetallurgyandEnvironment,CentralSouthUniversity,Changsha410083,China2ChineseNationalEngineeringResearchCenterforControlandTreatmentofHeavyMetalPollution,CentralSouthUniversity,Changsha410083,China
Revegetation is regarded as a promising approach for large-scale remediation of bauxite residue in disposal areas. Formation of an aggregate structure and the dynamic processes of the organic pool are essential factors for achieving revegetation due to the high alkalinity, salinity and poor physical structure of the residues. The physical fractionation of organic carbon may identify specific organic carbon pools that are responsible for carbon management and control. Physical density fractionation facilitates the separation of soil organic carbon fractions and their associated mineral particles from different locations. Spontaneous vegetation encroachment upon bauxite residue at a disposal area in Central China, over a 20-year period, has revealed that natural soil-forming processes may convert the residues to a soil-like medium. Residue samples from three different stacking ages (1 year, 10 years and 20 years) were collected in order to determine the effects of natural soil-forming processes on aggregate formation and organic carbon fractions. The contents and distribution ratios of light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), particulate organic carbon (POC) and POC intra-residue aggregates were determined in this study. The results indicated that the content of organic carbon fractions in bauxite residue increased significantly under natural soil-forming processes. The proportion of LFOC of the total organic carbon was 0.36%—2.06%. With increasing stacking age, the distribution ratio of LFOC increased. Most organic carbon (97.24%—99.11%) was held in the HFOC, which indicated that organic carbon dynamics in the residues were controlled by the behavior of this fraction. In the HFOC, coarse POC and mineral-combined organic carbon predominated, whereas the distribution ratio of fine POC was relatively small. POC content was highest in 2—1 mm residue aggregates and lowest was in the 0.25—0.05 mm residue aggregate ranges in the three different stacking ages 1.21—1.85 g/kg (1 year), 2.62—2.95 g/kg (10 years), and 3.52—4.15 g/kg (20 years). Mean weight diameter was positively correlated with total organic carbon, LFOC, HFOC, and POC (r=0.908**, 0.908**, 0.889**, 0.793**respectively;P< 0.01). The content of free POC, occluded POC, and mineral-combined POC (Mineral: Mineral>0.05 mmand Mineral<0.05 mm) decreased with decrease in aggregate sizes. The order in a diminishing sequence for the distribution ratio of POC intra-residue aggregate size was 2—1 mm, 1—0.25 mm, <0.05 mm, and 0.25—0.05 mm. Among these, mineral-combined POC was the major fraction, and the proportion of free POC was the lowest. Natural soil-forming processes increased total organic carbon and fraction contents, and further enhanced the stability of organic carbon in bauxite residues, which was beneficial for organic carbon sequestration. The findings of this study may provide a theoretical basis for understanding carbon sequestration and contribute to improving the physical structure of bauxite residue.
bauxite residue; natural weathering processes; light fraction organic carbon; heavy fraction organic carbon; particulate organic carbon; soil formation
國家自然科學(xué)基金面上資助項(xiàng)目(41371475);國家公益性(環(huán)保)行業(yè)科研專項(xiàng)資助項(xiàng)目(201509048)
2016- 05- 20;
2016- 08- 29
10.5846/stxb201605200976
*通訊作者Corresponding author.E-mail: sgxue70@hotmail.com;sgxue@csu.edu.cn
朱鋒,李萌,薛生國,鄒奇,吳昊,王瓊麗.自然風(fēng)化過程對(duì)赤泥團(tuán)聚體有機(jī)碳組分的影響.生態(tài)學(xué)報(bào),2017,37(4):1174- 1183.
Zhu F, Li M, Xue S G, Zou Q, Wu H, Wang Q L.Effects of natural weathering processes on the distribution characteristics of organic carbon and its composition in bauxite residue aggregates.Acta Ecologica Sinica,2017,37(4):1174- 1183.