吳付科 張維海
摘要
從所應用的主要方法出發,回顧了隨機連續系統的各種穩定性理論結果,并探討了這些穩定性之間的關系.關鍵詞隨機系統;隨機微分方程;幾乎處處穩定性;矩穩定性;依概率穩定性;分布穩定性;隨機鎮定
中圖分類號P393
文獻標志碼A
收稿日期20170416
資助項目國家自然科學基金(61473125);國家自然科學優秀青年基金(11422110)
作者簡介
吳付科,男,博士,教授,2011年入選教育部新世紀優秀人才支持計劃,2014年獲得基金委優秀青年基金資助,主要從事隨機微分方程以及相關領域的研究.wufuke@hust.edu.cn
1前言及穩定性介紹
隨機現象廣泛存在于生物、金融、通信及控制等領域,是影響系統性質的重要因素.當一個系統受到隨機波動的干擾時,結果將變得更加多樣和復雜.比如:在生物系統中,隨機因素往往是生物多樣性的關鍵因素[12],同時,適當的隨機因素也能誘導系統產生新的穩定狀態[34]或導致種群產生穩定分布[5],另一方面,過強的隨機沖擊也能導致種群滅絕[67].由此可見,隨機因素的引入使系統產生了豐富的研究課題,研究隨機因素對系統的影響對于揭示系統運行的機制具有重要意義.由于這些隨機系統往往需要用隨機微分方程描述,因此從數學的角度來討論隨機微分方程的性質及其應用就變得至關重要.
自從It引進隨機積分以來的半個多世紀里,隨機微分方程獲得了迅速的發展,當Lyapunov 方法被引入隨機微分方程之后,隨機微分方程的穩定性理論獲得了快速發展,在Arnold[8]、Friedman[9]、Khasminskii[10]、Kushner[1113]和毛學榮教授[1416]及其他學者的努力下,隨機穩定性理論及其應用已經形成了一個龐大的理論體系,在自動控制、生物化學反應、通信和制造領域具有重要的應用價值.本文的主要目的是從所利用的方法出發,回顧近年來隨機微分方程穩定性理論的發展、研究的方法和一些應該注意的研究課題.
本文利用如下記號:|·|表示n維歐式空間Rn的范數,如果A 是向量或者矩陣,則A′表示其轉置,如果A 是矩陣,其跡范數表示為A′A,R+=[0,∞).
(Ω,F,{Ft}t≥0,P)表示一個完備的概率空間,{Ft}t≥0是一個滿足通常條件(即遞增、右連續且包含所有的零概率集)的σ代數流.w(t)是定義于這個概率空間上的m維Brown運動,不失一般性,假定{Ft}t≥0就是w(t)生成的自然流,即Ft=σ(w(s):0≤s≤t).用Lp(Ω,F,P)表示隨機變量x的集合滿足E|x|p<∞.
本文從研究隨機穩定性的常用方法出發,回顧方程(1)的各種穩定性結果.為了使結果更加聚焦,本文不考慮帶有控制項和Markov切換項的問題,雖然這些問題也同樣具有豐富的成果和重要的意義.又因為筆者的知識范圍所限,對于后面三種穩定性相對較為熟悉一些,因此本文主要考慮p階矩穩定性、幾乎處處穩定性和依分布穩定性.但是在穩定性之間的關系討論時,也討論了依概率穩定性與其他三種穩定性的關系.因為每種穩定性都有海量的文獻,也有很多的綜述文章,比如文獻[17]等,所以本文在回顧這些穩定性結果的時候,主要從所利用的方法出發,討論同類的方法在當前文獻中的應用.
2幾乎處處穩定性
幾乎處處穩定性也就是軌道穩定性,刻畫隨機微分方程解的軌道的漸近性質,主要的方法是基于It公式基礎上的Lyanpunov函數方法,運用的技術主要是指數鞅不等式、大數定理或半鞅收斂定理等,或者在一定的條件下通過p階矩穩定性得到.關于通過矩穩定性得出幾乎處處穩定性的問題,將在后面在穩定性之間的關系中描述,此處重點回顧指數鞅不等式、大數定理和半鞅收斂定理的技術在幾乎處處穩定性研究中的應用.首先回顧如下基于指數鞅不等式的結果(參考文獻[16]):
定理1假設存在一個函數V∈C2,1(Rn×R+;R+)和常數p>0,c1>0,c2∈R,c3>0,使得對任意的x≠0和t≥0,
2)借助于LF,G,可以建立隨機系統精確能觀性、精確能檢測性的PBH判據,從而將線性系統理論中關于完全能觀性、完全能檢測性的PBH判據推廣到隨機系統[5051,58];
3)借助于微分同胚變換,將一個非線性的隨機時不變系統轉化為一個線性隨機系統[59],然后借助于LF,G,同樣可以討論非線性隨機時不變系統的區域穩定性問題,這是一個值得探索的方向;
4) 若隨機系統中帶有控制變量u,則可以考慮隨機系統的極點型配置問題.文獻[5051]中提出了一些未解決的問題,值得探索.
4依分布穩定性
隨機過程的分布穩定性本質上說明隨機過程的統計特性(比如隨機過程的期望、方差和矩等)不隨時間的變化而改變.如果隨機過程是遍歷的,則穩定分布就可以看做這個隨機過程的極限分布.本文主要回顧兩類研究分布穩定性的方法,第一類方法由Khasminskii基于Markov過程的常返性所建立的理論(參考文獻 [23]第四章),對于方程(1),決定它的解過程的Markov性及其常返性,主要體現為如下假設:
定理13在假設2成立的條件下,如果λ1>λ2,方程(1)的解過程x(t)存在一個唯一的穩定分布(不變測度)μ,并且這個不變測度是指數混合的(exponentially mixing).
對于基于第一類方法的分布穩定性,毛學榮教授[5]利用其建立了隨機LotkaVolterra種群方程的穩定分布的存在唯一性,劉紅等[60]考慮了帶有切換的LotkaVolterra利他種群系統的遍歷性和正常返性的問題,關于隨機種群系統的不變測度更進一步的討論可以參考文獻[61].
對于基于第二類方法的分布穩定性,張希承教授建立了非Lipschitz條件下的不變測度的存在性和指數遍歷性結果[62],席福寶教授[63]討論了狀態依賴的切換擴散過程的Feller性和指數遍歷性問題,王健教授討論了Levy過程驅動的OrnsteinUhlenbeck過程的不變測度的存在性和指數遍歷性問題[64].
由于以上兩種方法都基于隨機過程的Markov性,延遲系統的解不滿足Markov性,因此建立隨機延遲系統的不變測度和遍歷性很長時間沒有進展,在Mohammed考慮隨機泛函微分方程中解映射的適應性、Markov性等基礎上[65],鮑建海等[6069]通過一系列文章建立各種隨機延遲和泛函微分方程并討論了隨機偏微分方程中解映射的不變測度的存在性和遍歷性問題.文獻[70]建立了無窮延遲的隨機泛函微分方程的解映射的不變測度和遍歷性結果.
5各種穩定性之間的關系
由于隨機性的引入,導致了隨機序列的收斂性更加多樣,各種穩定性之間既互有聯系,又有強弱的不同,因此有了更加豐富的結果.根據經典的概率論和隨機過程知識,以上各種穩定性之間關系如下(參考文獻[71]):
定理14以上四種穩定性關系如下:
1)幾乎處處穩定性依概率穩定性;
2)p階矩穩定性依概率穩定性;
3)依概率穩定性依分布穩定性;
4)依概率穩定性存在一個子序列有幾乎處處穩定性.
在某些條件下,上面有的關系是可逆的,比如:如果一個隨機變量依分布收斂到一個常數(退化分布),那么這個收斂性也是依概率收斂的;如果存在一個隨機變量y∈Lp(Ω,F,P)并且對任意的t≥0,隨機過程|x(t)|≤y,則此時幾乎處處穩定性是最強的穩定性.根據控制收斂定理,幾乎處處穩定性可以得出p階矩穩定性,而且進一步,依分布穩定性也可以得出p階矩穩定性.
在隨機系統中,有一個值得注意的結果是如果對方程(1)的系數施加一定的條件,則從這個方程的平凡解的p階矩穩定性可以得出幾乎處處穩定性(參考文獻[16]),結果可以描述如下:
6結束語
由于篇幅和筆者的知識范圍所限,本文仍然有較多的重要結果沒有涉及.對于延遲系統,Yorke的方法和隨機Razumikhin定理是研究延遲系統的一個重要的穩定性原理,毛學榮教授[7374]建立了隨機形式的Razumikhin定理,據此得出了p階矩穩定性,但是如何直接利用Razuminskii定理的思想建立幾乎處處穩定性仍然是一個沒有解決的問題.
參考文獻
References
[1]Ozbudak E M,Thattai M,Kurtser I,et al.Regulation of noise in the expression of a single gene[J].Nature genetics,2002,31:6973
[2]Thattai M,Van Oudenaarden A.Stochastic gene expression in fluctuating environments[J].Genetics,2004,167:523530
[3]Kepler T B,Elston T C.Stochasticity in transcriptional regulation:origins,consequences,and mathematical representations[J].Biophysical Journal,2001,81:31163136
[4]Turcotte M,GarciaOjalvo J,Süel G M.A genetic timer through noiseinduced stabilization of an unstable state[J].Proceedings of the National Academy of Sciences,2008,105:1573215737
[5]Mao X.Stationary distribution of stochastic population systems[J].Systems & Control Letters,2011,60(6):398405
[6]Mao X.Delay population dynamics and environmental noise[J].Stochastics and Dynamics,2005,5(2):149162
[7]Wu F,Yin G.Environmental noises produce suppression and extinction in stochastic LotkaVolterra model with infinite delay[J].Journal of Mathematical Analysis and Applications,2012,396:772785
[8]Arnold L.Stochastic differential equations:Theory and applications[M].New York:Wiley,1972
[9]Friedman A.Stochastic differential equations and applications[M].New York:Academic Press,1975
[10]Khasminskii R Z.Stochastic stability of differential equations[M].Berlin:SpringerVerlag,2012
[11]Kushner H J.Stochastic stability and control[M].New York:Academic Press,1967
[12]Kushner H J.Approximation and weak convergence methods for random processes,with applications to stochastic systems theory[M].Cambridge:MIT Press,1984
[13]Kushner H J.Weak convergence methods and singularly perturbed stochastic control and filtering problems[M].Boston:Birkhuser,1990
[14]Mao X.Stability of stochastic differential equations with respect to semimartingales[J].Longman Scientific and Technical,1991,35(2):267277
[15]Mao X.Exponential stability of stochastic differential equations[M].New York:Marcel Dekker,1994
[16]Mao X.Stochatic differential equations and applications[M].Chichester:Horwood Publishing,1997
[17]Teel A R,Subbaraman A,Sferlazza A.Stability analysis for stochastic hybrid systems:A survey[J]Automatica,2014,50(10):24352456
[18]Zhang H,Wu Z,Xia Y.Exponential stability of stochastic systems with hysteresis switching[J].Automatica,2014,50(2):599606
[19]Mao X,Song Q,Yang D.A note on exponential almost sure stability of stochastic differential equation[J].Bulletin of the Korean Mathematical Society,2014,51(1):221227
[20]Caraballo T,Hammami M A,Mchiri L.Practical asymptotic stability of nonlinear stochastic evolution equation[J].Stochastic Analysis and Applications,2014,32(1):7787
[21]Barbata A,Zasadzinski M,Ali H S,et al.Exponential observer for a class of onesided Lipschitz stochastic nonlinear systems[J].IEEE Transactions on Automatic Control,2015,60(1):259264
[22]Zong X,Wu F,Yin G,et al.Almost sure and pthmoment stability and stabilization of regimeswitching jump diffusion systems[J].SIAM Journal on Control and Optimization,2014,52(4):25952622
[23]Hale J K,Lunel S M V.Introduction to functional differential equations[M].New York:SpringerVerlag,1993
[24]LaSalle J P.Stability theory of ordinary differential equations[J].Journal of Differential Equations,1968,4:5765
[25]Mao X.Stochastic versions of the LaSalle theorem[J].Journal of Differential Equations,1999,153:175195
[26]Mao X.Some contributions to stochastic asymptotic stability and boundedness via multiple Lyapunov functions[J].Journal of Mathematical Analysis and Applications,2001,260:325340
[27]Gihman I I,Skorokhod A V.The theory of stochastic processes I[M].Heideberg:SpringerVerlag,2004
[28]Liptser R Sh,Shiryayev A N.Theory of martingales[M].Dordrecht:Kluwer Academic Publishers,1989
[29]Caraballo T,GarridoAtienza M J,Real J.Stochastic stabilization of differential systems with general decay rate[J].System & Control Letters,2003,48:397406
[30]Wu F,Hu S,Huang C.Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay[J].System & Control Letters,2010,59:195202
[31]Basin M,Rodkina A.On delaydependent stability for a class of nonlinear stochastic systems with multiple state delays[J].Nonlinear Analysis:Theory,Methods & Applications,2008,68(8):21472157
[32]Rodkina A,Basin M.On delaydependent stability for a class of nonlinear stochastic delaydifferential equations[J].Mathematics of Control,Signals and Systems,2006,18(2):187197
[33]Mao X.Attraction,stability and boundedness for stochastic differential delay equations[J].Nonlinear Analysis,2001,47:47954806
[34]Shen Y,Luo Q,Mao X.The improved LaSalletype theorems for stochastic functional differential equations[J].Journal of Mathematical Analysis and Applications,2006,318(1):134154
[35]Wu F,Hu S.Attraction,stability and robustness for stochastic functional differential equations with infinite delay[J].Automatica,2011,47:22242232
[36]Blythe S,Mao X,Liao X.Stability of stochastic delay neural networks[J].Journal of Franklin Institute,2001,338:481495
[37]Yuan C,Mao X.Attraction and stochastic asymptotic stability and boundedness of stochastic functional differential equations with respect to semimartingales[J].Stochastic Analysis and Applications,2006,24:11691184
[38]Huang C,Cao J.Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays[J].Neurocomputing,2009,72(13):33523356
[39]Li M,Deng F.Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with Lévy noise[J].Nonlinear Analysis(Hybrid Systems),2017,24:171185
[40]Mao X.Stability and stabilisation of stochastic differential delay equations[J].IET Control Theory & Applications,2007,1(6):15511566
[41]Zhao X,Deng F.A new type of stability theorem for stochastic systems with application to stochastic stabilization[J].IEEE Transactions on Automatic Control,2016,61(1):240245
[42]Liu W,Mao X.Almost sure stability of the EulerMaruyama method with random variable stepsize for stochastic differential equations[M].Numerical Algorithms,2016:120
[43]Wu F,Mao X,Szpruch L.Almost sure exponential stability of numerical solutions for stochastic delay differential equations[J].Numerische Mathematik,2010,115:681697
[44]Zhang W,Lin X,Chen B.LaSalletype theorem and its applications to infinite horizon optimal control of discretetime nonlinear stochastic systems[J].IEEE Transactions on Automatic Control,2017,62:250272
[45]Appleby J A D,Cheng J,Rodkina A.Characterisation of the asymptotic behaviour of scalar linear differential equations with respect to a fading stochastic perturbation[J].Discrete & Continuous Dynamical Systems,2011,3(3):7990
[46]Chen W,Guan Z,Lu X.Delaydependent exponential stability of uncertain stochastic systems with multiple delays:An LMI approach[J].Systems & Control Letters,2005,54(6):547555
[47]Xu S,Lam J,Mao X,et al.A new LMI condition for delaydependent robust stability of stochastic timedelay systems[J].Asian Journal of Control,2005,7(4):419423
[48]Liao X,Chen G,SanchezE N.Delaydependent exponential stability analysis of delayed neural networks:an LMI approach[J].Neural networks,2002,15(7):855866
[49]Da Prato G,Zabczyk J.Stochastic equations in infinite dimensions,encyclopedia of mathematics and its applications[M].Cambridge:Cambridge University Press,1992
[50]Zhang W,Chen B S.On stabilization and exact observability of stochastic systems with their applications[J].Automatica,2004,40(1):8794
[51]Zhang W,Zhang H,Chen B S.Generalized Lyapunov equation approach to statedependent stochastic stabilization/detectability criterion[J].IEEE Trans Automat Control,2008,53(7):16301642
[52]Hou T,Zhang W,Ma H.Essential instability and essential destabilisation of linear stochastic systems[J].IET Control Theory and Applications,2011,5(2):334340
[53]黃琳.穩定性理論[M].北京:北京大學出版社,1992
HUANG Lin.Stability theories[M].Beijing:Peking University Press,1992
[54]Zhang W,Xie L.Interval stability and stabilization of linear stochastic systems[J].IEEE Trans Automat Control,2009,54(4):810815
[55]Chilali M,Gahinet P,Apkarian P.Robust pole placement in LMI regions[J].IEEE Trans Automat Control,1999,44(12):22572270
[56]Gutman S,Jury E I.A general theory for matrix root clustering in subregions of the complex plan[J].IEEE Trans Automat Control,1981,26(4):853863
[57]Zhang W,Chen B S.Hrepresentation and applications to
generalized Lyapunov equations and linear stochastic systems[J].IEEE Trans Automat Control,2012,57(12):30093022
[58]Hou T,Ma H,Zhang W.Spectral tests for observability and detectability of periodic Markov jump systems with nonhomogeneous Markov chain[J].Automatica,2016,63(1):175181
[59]Pan Z.Differential geometric condition for feedback complete linearization of stochastic nonlinear system[J].Automatica,2001,37:145149
[60]Liu H,Li X,Yang Q.The ergodicity property and positive recurrence of a multigroup LotakVolterra mutualistic system with regime switching[J].System & Control Letters,2013,62:805810
[61]Nguyen D H,Yin G.Coexistence and exclusion of stochastic competitive LotkaVolterra models[J].Journal of Differential Equations,2017,262(3):11921225
[62]Zhang X.Exponential ergodicity of nonLipschitz stochastic differential equations[J].Proceeding of the American Mathematical Society,2009,137(1):329337
[63]Xi F.Feller property and exponential ergodicity of diffusion processes with statedependent switching[J].Science in China Series A:Mathematics,2008,51(3):329342
[64]Wang J.On the exponential ergodicity of Lévydriven OrnsteinUhlenbeck processes[J].Journal of Applied Probability,2012,49(4):9901004
[65]Mohammed S E A.Stochastic functional differential equations[J].Pitman Advanced Pub Program,1984,18(2):6364
[66]Bao J,Wang F Y,Yuan C.Bismut formulae and applications for functional SPDEs[J].Bulletin des Sciences Mathèmatiques,2013,137:509522
[67]Bao J,Yin G,Yuan C.Ergodicity for functional stochastic differential equations and applications[J].Nonlinear Analysis,2014,98:6682
[68]Bao J,Yin G,Yuan C,et al.Exponential ergodicity for retarded stochastic differential equations[J].Applied Analysis,2014,93:23302349
[69]Bao J,Yin G,Yuan C.Stationary distributions for retarded stochastic differential equations without dissipativity[J].Stochastics,2017,89(2):530549
[70]Wu F,Yin G,Mei H.Stochastic functional differential equations with infinite delay:Existence and uniqueness of solutions,solution maps,Markov properties,and ergodicity[J].Journal of Differential Equations,2017,262(3):12261252
[71]Shiryaev A N.Probability[M].New York:SpringerVerlag,1996
[72]Karatzas I,Shreve S E.Brownian motion and stochastic calculus[M].New York:SpringerVerlag,2012
[73]Mao X.Razumikhintype theorems on exponential stability of stochastic functionaldifferential equations[J].Stochastic Processes and Their Applications,1996,65(2):233250
[74]Mao X.Razumikhintype theorems on exponential stability of neutral stochastic functionaldifferential equations[J].SIAM Journal on Mathematical Analysis,1997,28(2):389401
Abstract
From aspects of the research methods,this paper reviews various classes of stability results of continuous stochastic systems,and discusses the relationship among these stabilities under different conditions.
Key wordsstochastic systems;stochastic differential equations;almost sure stability;moment stability;stability in probability;stationary distribution;stochastic stabilization