999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Hadamard-like inequality

2017-06-01 12:20:57WANGJupingGUODongxingCAOHongyanWANGShulingZHANGChichen

WANG Juping, GUO Dongxing, CAO Hongyan, WANG Shuling, ZHANG Chichen

(Shanxi Medical University, Department of Mathematics, Taiyuan 030001)

On the Hadamard-like inequality

WANG Juping, GUO Dongxing, CAO Hongyan, WANG Shuling, ZHANG Chichen*

(Shanxi Medical University, Department of Mathematics, Taiyuan 030001)

In this paper, a problem called Hadamard-like inequality proposed by Minghua Lin is partially proved. It is directly proved that it holds forn=4 and fails forn=2,3. For a special case of tri-diagonal matrices it is proved to hold for anyn≥3. Finally, a new Hadamard-like inequality that holds for all Hermitian matrices of ordern(?n≥2) is generated.

determinant; Hadamard-like inequality; Hermitian matrices

1Introduction

As the cornerstone of algebra and the important tool of other disciplines, the determinant looks like a magic cube which presents lots of difficult mathematical problems. It also greatly enriches the theory of algebra. In the history of mathematics, many scholars are interested in studying determinant problems and get many world-famous achievements. As early as in 1893, the famous mathematician Hadamard proposed the following well-known inequality:

Lemma 1(Hadamard inequality)[1]. LetA=(aij)bearealsymmetricpositivedefinitematrixofordern.Thendet(A)≤a11a22…annanddet(A)=a11a22…annifandonlyifA=(aij)isadiagonalmatrixorthereexistsarow(column)iszero.

In1907,FishergaveasharperinequalitycalledFisherinequalitywhichmakestheHadamardinequalitybecomeitsspecialcase.TheFisherinequalitycanbestatedasfollows:

Lateron,variousformsofdeterminantinequalitiesarepresented.SuchasthefamousSchurdeterminantinequality,theM.Marcusdeterminantinequality,andtheOppenheimdeterminantinequality.

In2013,IMAGE51of“TheBulletinoftheInternationalLinearAlgebraSociety”[3]releasedadeterminantinequalityandasksforsolving.Inorderforexpression,werewritethisproblem:

Problem (Minghua Lin)[3]. LetA=(aij)bearealsymmetricpositivedefinitematrixofordernandletA(i)bethesubmatrixobtainedfromAbydeletingthei-throwandi-thcolumn.Showthatthefollowinginequalityholdsforn≥4andfailsforn=2,3:

(1)

In2014,MinghuaLingavethesolutiononIMAGE53ofthebulletin[4],heprovedtheproblemaccordingtotheresultofMerris[5]andpointedoutheisstilllookingforthedirectproof.

Inthisarticle,wedirectlyprovethattheinequality(1)holdsforn=4andfailsforn=2, 3.Andthenweprovethatforaclassoftri-diagonalmatrices,theinequality(1)holdsforn≥3.WealsogiveanewHadamard-likeinequalitythatholdsforallHermitianmatricesofordern(n≥1).

Throughout this paper,A(i,j)(i,j=1,2,…,n,i≠j)standsforthesubmatrixofAobtainedfromAbydeletingthei-throwandj-thcolumn.Especially,inordertobeconsistentwiththeoriginalproposition,weuseA(i)(i=1,2,…,n)todenotethesubmatrixofAobtainedfromAbydeletingthei-throwandi-thcolumn.Sincethematrixthatwediscussissymmetric,aji=aij(i,j=1,2,…,n)alwaysbetrue.

2The proof of Hadamard-like inequality failing for n=2,3 and holding for n=4

In fact, (1)’s reverse inequality holds forn=2.Thefollowingistheproof.

and

ThusL≤RandL=Rifandonlyifa12=0.

Next,weprovethattheHadamard-likeinequalityholdsforn=4,themethodofproofisstillprimary.

det(A)=a11detA(1)-a12detA(1,2)+a13detA(1,3)-a14detA(1,4).

BecauseofLandRcontainingthesameelementa11detA(1),soweonlyneedtoprovethefollowinginequality:

(2)

Bythecalculationruleofthedeterminant,wehavethefollowingresults:

a23a14a34+a13a24a34-a24a14a33),

a12a24a34-a22a13a44+a22a14a34-a14a23a24)

and

a12a24a33-a22a13a34+a14a22a33+a13a23a24).

Sowededucethat

-a12detA(1,2)+a13detA(1,3)-

a14detA(1,4) =2a12a13a23a44+

2a12a14a24a33+2a13a14a22a34-

2a12a14a23a34-2a12a13a24a34

(3)

Andsince

and

Wededucethat

a22detA(2)+a33detA(3)+a44detA(4) =

3a11a22a33a44+2a13a14a22a34+2a12a14a33a24+

(4)

By(2)~(4)Δcan be simplified as follows:

2(a12a13a24a34+a12a14a23a34+a13a14a23a24)+

(a12a34-a14a23)2+(a14a23-a13a24)2-

Next,wedetermineΔis whether positive or not.

SinceAisarealsymmetricpositivedefinitematrixandtheprincipalminorsofAisgreaterthanzero,thenwecanget

So

and

SoΔ≥0.

Thus we complete the proof.

Then

detA(1)=7, detA(2)=1, detA(3)=0.75, detA(4)=0.25, and det(A)=0.75.

3The proof of Hadamard-like inequality holding for a kind of special matrix

Firstly,wegiveaformulaofthegeneraltermofanbythefollowing:

an=(λ-m)xn-1+myn-1,

where

and

Proof According to the calculation rule of determinant, we can get the recursion formula ofan:an=λan-1-b2an-2.

Letan-xan-1=y(an-1-xan-2),thenan=(x+y)an-1-xyan-2.Wededucethat

(5)

bn-1=an-xan-1=b1yn-2=(λ2-b2-λx)yn-2.

(6)

Further,consideringan-myn-1=x(an-1-myn-2),wehave

an-xan-1=yn-2(my-mx).

(7)

cn=an-myn-1=c1xn-1=(λ-m)xn-1.

(8)

Soan=(λ-m)xn-1+myn-1.

Thus,wecompletetheproof.

TheLemma3essentiallyprovidesacomputationalmethodforakindoftri-diagonalmatrix.

Sinceaiidet(Ai)=λai-1an-i,wededucethat

Thus,weonlyneedtoprovethefollowinginequalityholds:

(n-1)λn+an-2λan-1-(n-2)λn=

λn+an-2λan-1≥0.

(9)

AccordingtoLemma3,λ=x+yandan=(λ-m)xn-1+myn-1,then(9)canbesimplifiedinthefollowinginequality:

(x+y)n+(λ-m)xn-1+myn-1-

(x+y)n-xn-xn-1y+mxn-1-

(10)

Sincex+y=λ,xy=b2,wecangetλ2-4b2=(x+y)2-4xy=(x-y)2and

λ2-2b2=(x+y)2-2xy=x2+y2.

Consequently,

Andbecauseof

and

Thus,wecancontinuetocalculate(10),wehave

(x+y)n+(λ-m)xn-1+myn-1-

(x+y)n-xn-xn-1y+mxn-1-

(x+y)n-xn-3xn-1y-2xn-2y2-

2xn-2y2-2xy3(xn-4+…yn-4)-

y2(xn-2+…yn-2)=

(11)

Thus,wecompletetheproof.

Example 2 IfA5hastheformasthebeginningofthischapter,letλ=3andb=1,thenA5ispositivedefinitematrix.Bythecalculationruleofthedeterminant,wecanget:L=4×35+144=1116andR=2×3×55+2×3×3×21+2×3×64=900.SoL>R.

Thus, (1)holdsforA5.

4 A new Hadamard-like inequality holding for all Hermitian matrices of order n (?n≥2 )

In this section, we give a derivative result that derived from our research process for the Hadamard-like inequality.

Lemma 4[2]LetA=(aij)beasemidefinitematrixofordern.Ifitsdiagonalelementsare

Lemma 5[2]LetA=(aij)beHermitianmatrixofordernandBbeitsmorderprincipalsubmatrix.Iftheireigenvaluesareλ1≥λ2≥…≥λnandμ1≥μ2≥…≥μmrespectively,then

λj≥μj≥λj+n-m,j=1,2,…,m.

Lemma 6[2]LetA=(aij)beHermitianmatrixofordern.Ifitseigenvaluesareλ1,λ2,…,λn,then(a11,a22,…,ann)(λ1,λ2,…,λn).

Now,westateournewinequality.

Letμ1i≥μ2i≥…≥μn-1i(i=1,2,…,n)betheeigenvaluesofA(i)andλ1≥…≥λnbetheeigenvaluesofA=(aij),thenbyLemma5,wehaveλj≥μji≥λj+1,where

j=1,2,…,n-1,i=1,2,…,n.

Consequently,wehave

(12)

(13)

By(12)and(13),wecandeducethat

(14)

Thuswecompletetheproof.

[1] HOM R A, JOHNSON C R. Matrix Analysis [M]. Cambridge: Cambridge University Press, 1985.

[2] ZHAN X Z. Matrix Theory[M]. Beijing: Higher Education Press(In Chinese), 2008.06.

[3] The Bulletin of the International Linear Algebra Society.IMAGE51.Fall 2013,41.[EB/OL] http://ilasic.org/IMAGE/.

[4] The Bulletin of the International Linear Algebra Society.IMAGE53.Fall 2014,45.[EB/OL] http://ilasic.org/IMAGE/.

[5] MERRIS R.Oppenheim’s inequality for the second immanant[J]. Canad Math Bull 1987, 30:367-369.

[6] ZHANG F. Matrix theory: basic results and techniques [J]. 2nd ed. New York: Springer,, 2011.

[7] CHEN S. Some determinantal inequalities for Hadamard product of matrices [J]. Linear Algebra Appl, 2003, 368: 99-106.

2016-08-23.

山西省重點課題研究項目(SSKLZDKT2014084).

1000-1190(2017)01-0012-06

關于Hadamard-like不等式

王菊平, 郭東星, 曹紅艷, 王淑玲, 張持晨

(山西醫科大學 數學教研室, 太原 030001)

給出了由林明華提出的Hadamard-like不等式問題的部分證明,用直接的方法證明了該不等式當n=2, 3 時不成立,當n=4 時成立以及對于特殊的三對角矩陣,該不等式當n≥3 時恒成立.最后,文中給出了一種新的Hadamard-like不等式,此種不等式對于任意的Hermitian矩陣當n≥2 成立.

Hadamard-like不等式; 行列式;Hermitian矩陣

O151

A

*通訊聯系人.E-mail:zhangchichen@sina.com.

主站蜘蛛池模板: 五月婷婷伊人网| 在线中文字幕网| 久久99精品久久久久纯品| AV网站中文| 在线永久免费观看的毛片| 国产剧情无码视频在线观看| 精品视频在线一区| 亚洲综合色在线| 亚洲一级毛片在线观播放| 亚洲日韩精品伊甸| 婷婷午夜影院| 亚洲天堂777| 日韩色图在线观看| 国产激情无码一区二区APP| 国产免费人成视频网| Aⅴ无码专区在线观看| 在线免费亚洲无码视频| 久久精品人人做人人| 视频二区中文无码| 国产精品一线天| 国产福利2021最新在线观看| 亚洲女人在线| 91麻豆国产视频| 国产在线视频导航| 亚洲第一视频网| 国产区精品高清在线观看| 国产第一页免费浮力影院| 国产精品夜夜嗨视频免费视频| 亚洲精品在线观看91| 九九热精品视频在线| 国产精品自在在线午夜区app| 高清视频一区| 91精品久久久无码中文字幕vr| 日韩精品专区免费无码aⅴ | 网友自拍视频精品区| 欧美日韩午夜| 亚洲视频免费在线| 国产95在线 | 欧美成人影院亚洲综合图| 蜜桃视频一区二区| 国产在线观看人成激情视频| 在线观看免费人成视频色快速| 在线视频亚洲欧美| 97超爽成人免费视频在线播放| 亚洲无码久久久久| 成人综合网址| 99在线观看精品视频| 国产内射在线观看| 欧美精品影院| 久久国产香蕉| 亚洲欧洲日产国产无码AV| 免费在线视频a| 久久精品视频一| 无码专区第一页| 久久精品国产电影| 97在线碰| 亚洲国产欧洲精品路线久久| 久久综合久久鬼| 国产中文一区a级毛片视频 | 精品91视频| 久久久成年黄色视频| 国产产在线精品亚洲aavv| 久久久久久午夜精品| 国产精品亚洲天堂| 免费观看无遮挡www的小视频| 91亚洲精品国产自在现线| 狠狠综合久久久久综| 亚洲精品自在线拍| 动漫精品中文字幕无码| 国产成人精品无码一区二| 久久久久中文字幕精品视频| 欧美日韩成人| 久久96热在精品国产高清| 欧美精品在线看| 日韩在线视频网| 伊人蕉久影院| av性天堂网| 婷婷亚洲视频| 夜色爽爽影院18禁妓女影院| 中文字幕欧美成人免费| 亚洲欧美成人在线视频| 国产sm重味一区二区三区|