沈林, 周紅玲
(黃淮學院數學科學系,河南 駐馬店463000)
?
一類脈沖反應擴散系統的行波和傳播速度
沈林, 周紅玲*
(黃淮學院數學科學系,河南 駐馬店463000)
討論了開放環境中一類具有固定脈沖時刻的反應擴散系統的傳播速度和行波解。在空間分布均勻條件下, 給出了正常數解存在和穩定的條件。得到了脈沖反應擴散系統傳播速度的具體表達形式,當滿足一定條件時,傳播速度大于零,該速度也是系統存在行波解的最小速度。以水流速度為參數對系統進行了數值模擬,結果表明通過控制擴散系數、水流速度、離散和連續時間的死亡率和出生率,可實現生物種群的傳播和持久生存。
脈沖反應擴散系統; 傳播速度; 行波
現階段,生物種群的傳播和持久生存備受研究者的青睞,大多數研究者在假設生物種群的擴散、出生和死亡連續地依賴于時間和空間的前提下,利用反應擴散方程進行建模,并成功地模擬了部分生物種群在開放環境中的傳播和持久生存。但是,大多數魚類和小型昆蟲的繁衍是與季節息息相關的,而且這些生物的繁衍階段與生長階段相比是極短的[1-2],因此, 單純利用反應擴散方程不能很好地描述生物的繁衍。針對生物種群離散的出生率,Lewis 等[3]建立了如下脈沖反應擴散系統
(1)
其中,d為擴散系數,α<0為種群的死亡率,r反映種群間的競爭,Nn(x)為第n代繁衍前在x點的種群密度,g(Nn)為繁衍后在x點的種群密度,τ為每一代的生長周期,一個周期生物種群只繁衍一次。本文在上面系統中加入水流速度(風速),并假設g(N)為Beverton-Holt函數[4],可得到下面脈沖反應擴散系統
(2)

計算可得:
定理1


證明

綜上可得:

又因為
以此類推,可得

脈沖反應擴散系統(2)的線性化系統為
(3)



進而可得






通過驗證可知Nn+1(x)=Q[Nn(x)]滿足H1 ~ H5 。
H1:當Nn(x)∈[0,β]時,Nn+1(x)=Q[Nn(x)]∈[0,β] 。
所以,Ty{Q[Nn(x)]}=Q{Ty[Nn(x)]} 。
H3:存在區間[0,β],當u∈[0,β]時,Q(u)>u,且Q(0)=0,Q(β)=β。
H4:由比較原理可知,u≤v時,Q(u)≤Q(v)。
H5:因為g(u)為可微函數,且Qτ在[0,β]是完備的,所以Q在[0,β]也是完備的。
綜上,利用Weinberger在文獻[5]中的結論,可得到定理2。
本節主要研究流水速度對種群傳播的影響,各個參數的具體取值見表1。

表1 參數取值

圖1 當q=0.5時,行波解的數值模擬Fig.1 A numerical approximation to traveling waves with q=0.5

圖2 當q=1時,行波解的數值模擬Fig.2 A numerical approximation to traveling waves with q=1

圖3 當q=3.3時,行波解的數值模擬Fig.3 A numerical approximation to traveling waves with q=3.3

圖4 當q=10時,行波解的數值模擬Fig.4 A numerical approximation to traveling waves with q=10
討論了一類具有脈沖出生與連續死亡的單種群動力學系統,給出了系統傳播速度的具體表達形式,借助傳播速度得到了該系統行波解[7-11]存在的條件,同時,研究了水流速度對行波解的影響,所得結論對于現實的生態平衡保護是十分有益的。
[1]WECKERLY F W. Matrix population models: construction, analysis and interpretation [J]. Natural Resource Modeling,2001,14(4): 593-595.
[2]VASILYEVA O, LUTSCHER F, LEWIS M. Analysis of spread and persistence for stream insects with winged adult stages[J]. Journal of Mathematical Biology, 2016, 72(4):851-875.
[3] LEWIS M A, LI B. Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models[J]. Bulletin of Mathematical Biology, 2012, 74(10):2383-2402.
[4] ESKOLA H T M, GERITZ S A H. On the mechanistic derivation of various discrete-time population models [J]. Bulletin of Mathematical Biology, 2007, 69:329-346.
[5]WEINBERGER H F. Long-time behavior of a class of biological models[J]. Siam Journal on Mathematical Analysis, 1982, 13(3):353-396.
[6] MüLLER K. The colonization cycle of freshwater insects[J]. Oecologia, 1982, 52(2):202-207.
[7] JIN Y, LEWIS M A. Seasonal influence on population spread and persistence in streams: Critical domain size[J]. SIAM Journal on Applied Mathematics. 2011, 71(4):1241-1262.
[8] JIN W, SMITH H, THIEME H R. Persistence and critical domain size for diffusing populations with two sexes and short reproductive season[J]. Journal of Dynamics and Differential Equations. 2016, 28(3):689-705.
[9] LIN Y, WANG Q R. Spreading speed and traveling wave solutions in impulsive reaction-diffusion models[J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 23(1/2/3):185-191.
[10]RAWAL N, SHEN W, ZHANG A. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats[J]. Discrete & Continuous Dynamical Systems, 2015, 35(4): 1609-1640.
[11]LIANG X, ZHAO X Q. Spreading speeds and traveling waves for abstract monostable evolution systems[J]. Journal of Functional Analysis, 2010, 259(4):857-903.
Traveling waves and spreading speed to impulsive reaction-diffusion models
SHEN Lin, ZHOU Hong-ling*
(Department of Mathematics, Huanghuai University, Zhumadian 463000,China)
∶In this paper, an impulsive reaction-diffusion model with fixed moments of impulses in an unbounded domain was proposed, and the existence of spreading speed and traveling wave solutions for the model were established. First, the existence and the stability of the positive constant solutions were proved in ODE system. Second, the explicit formula of spreading speed to impulsive reaction-diffusion model was given. When certain conditions were satisfied, the spreading speed was greater than zero, which was the minimum speed of the traveling wave solutions. Finally, the numerical simulation of the system was carried out with the velocity of the water flow. The results reveal that the spread and persistence dynamics of the biotic population can be realized through the control of diffusion coefficient, flow velocity, mortality and birthrate corresponding to discrete time and continuous time respectively.
∶impulsive reaction-diffusion models; spreading speed; traveling waves
2017-08-03
國家自然科學基金(11371164);國家自然科學基金委員會河南省人民政府人才培養聯合基金(U1304104)
沈林(1983—), 男, 講師, 研究方向為偏微分方程及其可視化。
*通信作者,周紅玲。E-mail:8210s@163.com
O175.26
A
1002-4026(2017)03-0088-06