999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于自由基配體的Dy配合物的設(shè)計(jì)、合成、結(jié)構(gòu)及磁性

2017-07-05 13:56:20胡鵬肖鳳屏植中強(qiáng)杜鳳翔鄧肖娟黃國(guó)洪張淼蘇芬王莉娜

胡鵬 肖鳳屏 植中強(qiáng) 杜鳳翔 鄧肖娟 黃國(guó)洪 張淼蘇芬 王莉娜

(1肇慶學(xué)院化學(xué)化工學(xué)院,肇慶526061)(2北京聯(lián)合大學(xué)北京市生物質(zhì)廢棄物資源化利用重點(diǎn)實(shí)驗(yàn)室,北京聯(lián)合大學(xué)生物工程學(xué)院,北京100101)

胡鵬*,1肖鳳屏1植中強(qiáng)1杜鳳翔*,2鄧肖娟1黃國(guó)洪1張淼1蘇芬1王莉娜1

(1肇慶學(xué)院化學(xué)化工學(xué)院,肇慶526061)
(2北京聯(lián)合大學(xué)北京市生物質(zhì)廢棄物資源化利用重點(diǎn)實(shí)驗(yàn)室,北京聯(lián)合大學(xué)生物工程學(xué)院,北京100101)

以氮氧自由基為配體,合成了2例未見(jiàn)文獻(xiàn)報(bào)道的氮氧自由基-稀土配合物[Dy(hfac)3(NIT-C3H5)(H2O)]與[Dy(hfac)3(NITC3H5)]n(hfac=六氟乙酰丙酮,NIT-C3H5=2-環(huán)丙烷基-4,4,5,5-四甲基-2-咪唑啉-3-氧化-1-氧基自由基)。單晶結(jié)構(gòu)分析表明配合物1為單核結(jié)構(gòu),單斜晶系P21/c空間群;配合物2為一維結(jié)構(gòu),單斜晶系P21/c空間群。交流磁化率測(cè)試結(jié)果表明配合物2虛部表現(xiàn)出頻率依賴(lài),這表明配合物2是單鏈磁體。

氮氧自由基;鏑;晶體結(jié)構(gòu);磁性

0 Introduction

Combination of different spin carriers within the same molecular entity is a widely employed strategy becausethe orthogonality of the magnetic orbitals of two different spin carriers,which lead to a ferromagnetic interaction,can be reached much more easily than the accidental orthogonality within the homospin systems;andeven if the magnetic coupling is antiferromagnetic,the resulting spin can be big enough when a large spin(5/2,7/2)interacts with a small one,such as a spin 1/2[4].Numbers SCMs and SMMswere prepared by this strategy[17-18].Among them metal-radical strategy that combining paramagnetic organic molecules with metal ions give rise to complexes with different structures and magnetic properties have been received more and more attention since the discovery of the first radical-4f SMM by Gatteschis group[19].Stable radical ligand can generate typically stronger intramolecular magnetic exchange coupling.The strong exchange coupling between lanthanides and radicals generally leads to superior SMMs.In 2011,a binuclear Tbcomplex bridged by a N2·3-radical has been reported with a record blocking temperature of 13.9 K[20-21].For the past few years,various organic radicals such as nitronyl nitroxide,verdazyl and semiquinone radicals have been reported[22-28].Nitronyl nitroxide(NIT)family of radicals are the most important type of radical ligand due to their relatively stable and easy to obtain derivativeswith substituents containing donor atoms.

In an effort to further study the magnetic properties of metal-radical complexes,we decided to choose the nitronyl nitroxide radical NIT-C3H5as ligand(NIT-C3H5=2-cyclopropyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)(Scheme 1)to construct radical-4f complex.Finally we have successfully prepared one zero-dimensionalstructure lanthanide-nitronyl nitroxide complex[Dy(hfac)3(NIT-C3H5)(H2O)]and one one-dimensional structure lanthanide-nitronyl nitroxide complex[Dy(hfac)3(NIT-C3H5)]n(hfac=hexavfluoroacetylacetonate,NIT-C3H5=2-cyclopropyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide).Magnetic studiesshow that complex 2 shows the presence of frequencydependent signals at low temperature suggesting that it behaves as SCMs.

Scheme 1 NIT-C3H5

1 Experimental

1.1 M aterials and measurements

All the starting chemicals were obtained from Aldrich and used without further purification.The radical ligand NIT-C3H5was prepared according to literaturemethod[29].Elemental analyses(C,H,N)were determined by Perkin-Elmer 240 elemental analyzer. The infrared spectra were recorded from KBr pellets in the range of 4 000~400 cm-1with a Bruker Tensor 27 IR spectrometer.Themagneticmeasurementswere carried out with MPMSXL-7 SQUID magnetometer. Diamagnetic corrections were made with Pascal′s constants for all the constituent atoms.

1.2 Synthesis of[Dy(hfac)3(NIT-C3H5)(H2O)](1)

Dy(hfac)3·2H2O(0.081 9 g 0.1 mmol)was added to 25 mL n-heptane and heated to reflux for 0.5 h. The solution was cooled to 50℃,then a solution of NIT-C3H5(0.019 7 g 0.1 mmol)in CH2Cl2(3 mL)was added and stirred for 1 min.The resulting mixture was cooled to room temperature filtrated then keep the solution in the fridge.The temperature was keptbetween 2 to 5℃for several days to give crystals suitable for X-ray analysis with a 52%yield.Anal. Calcd.for C25H22F18DyN2O9(%):C 30.05,H 2.22,N 2.80;Found(%):C 30.07,H 2.16,N 2.89.IR(KBr, cm-1):1 652(s),1 499(s),1 364(m),1 262(s),1 203(s), 1 149(s),803(m),663(m).

1.3 Synthesis of[Dy(hfac)3(NIT-C3H5)]n(2)

Dy(hfac)3·2H2O(0.081 9 g 0.1 mmol)was added to 25mL n-heptane and heated heated to reflux for 3 h. The solution was subsequently cooled to 70℃,then a solution of NIT-C3H5(0.019 7 g 0.1mmol)in CH2Cl2(3 mL)was added and stirred for 5 min.The solution was then cooled to room temperature,filtrated and the filtrate was evaporated at room temperature for several days to give crystals suitable for X-ray analysis,with a 47%yield.Anal.Calcd.for C25H20F18DyN2O8(%):C 30.06,H 2.05,N 2.85;Found(%):C 30.09,H 2.03, N 2.81.IR(KBr,cm-1):1 653(s),1 502(s),1 258(s), 1 201(s),1 145(s),802(m),661(m).

應(yīng)用在線(xiàn)設(shè)計(jì)軟件(http://www.oligoengine.com)設(shè)計(jì)獲得針對(duì)HSP27基因的siRNA(HSP27-siRNA)。HSP27-siRNA正 義 鏈 序 列為 5’-AAGACCAAGGAUGGCGUGGUGdT-dT-3’,反義鏈序列為 5’-CACCACGCCAUCCUUGGUCUUdTdT-3’;同時(shí)設(shè)計(jì)了一條與HSP27基因無(wú)同源性的陰性對(duì)照(negative control,NC)-siRNA,NC-siRNA正義鏈序列為 5’-TTCTCCGAACGTGTCACGTdTdT-3’,反義鏈序列為5’-ACGUGACACGUUCGGAGAAdTdT-3’。

1.4 X-ray crystallographic study

X-ray single-crystal diffraction data for complexes 1 and 2 were collected using a Rigaku Saturn CCD diffractometer at 293 K and 113 K,respectively, equipped with graphite-monochromated Mo Kαradiation(λ=0.071 073 nm).Crystalsize of complexes 1 and 2 are 0.20 mm×0.20 mm×0.18 mm and 0.24 mm×0.2 mm×0.16mm,respectively.The structureswere solved by directmethods by using the program SHELXS-97[30]and refined by full-matrix least-squaresmethods on F2with the use of the SHELXL-97[31]program package. Anisotropic thermal parameters were assigned to all non-hydrogen atoms.The hydrogen atoms were set in calculated positions and refined as riding atomswith a common fixed isotropic thermal parameter.Disordered C and F atoms were observed for both complexes.The restraints of SPLIT,DELU and ISOR were applied for the three complexes to keep the disordered molecules reasonable.Pertinent crystallographic data and structure refinement parameters for complexes 1 and 2 were listed in Table 1 and 2.

CCDC:1533515,1;1533514,2.

Table 1 Crystal data and structure refinement for 1 and 2

Table 2 Selected bond distances(nm)and angles(°)for 1 and 2

2 Results and discussio n

2.1 Crystal structure of comp lex 1

As shown in Fig.1,complex 1 crystallizes in the monoclinic space group P21/c.The central Dyions areeight-coordinated in square antiprism(D4d)geometry (Table S1).Six oxygen atoms from three hfacmolecules with the Dy-O bond lengths in the range of 0.226 0(6)~0.245 4(5)nm.The other two oxygen atoms are from one radical molecule and one water molecule respectively.The bond length of Dy(1)-O(8)radis0.230 7(3) nm and Dy(1)-O(7)wateris 0.228 6(5)nm.The nitronyl nitroxide radical act as monodentate ligand to Dyion through one N-O group,the N(1)-O(8)bond lengths are 0.129 8(9)nm while the uncoordinated N(2)-O(9) bond lengthsare0.129 9(12)nm,which are comparable to those of reported radical-Lncomplexes[32-35].

Fig.1 Molecular structure of complex 1

2.2 Crystal structure of com plex 2

Fig.2 Molecular structure of complex 2

As shown in Fig.2,complex 2 crystallizes in the monoclinic space group P21/c.The central Dyions are eight-coordinated in trigonal dodecahedron(D2d)geometry(Table S2).Six oxygen atoms from three hfac molecules with the Dy-O bond lengths in the range of 0.231 4(2)~0.235 5(2)nm.The other two oxygen atoms are from two radical molecules with the Dy(1)-O(8) and Dy(1)-O(7)bond length of 0.234 1(3)nm and 0.236 1(3)nm,respectively.The nitronyl nitroxide radicals act as bridging ligands to Dyion through N-O group,the N(1)-O(8)and N(2)-O(7)bond lengths are0.128 3(4)nm 0.128 6(4)nm,which are comparable to those of reported radical-Dycomplexes.Selected bond lengths and angles of complex 1 and 2 are listed in Table 2.

2.3 M agnetic properties of comp lex 1

The temperature dependence of the magnetic susceptibilities 1 and 2 were measured from 300 to 2.0 K in an applied field of 1 kOe and the magnetic behaviors of complex 1 are shown in Fig.3.At 300 K theχMT value of 1 is 12.32 cm3·K·mol-1.This value is close to the expected value 14.45 cm3·K·mol-1(uncoupled system of one Dyion(f9electron configuration,χMT=14.17 cm3·K·mol-1)plus one organic radical(S=1/2,χMT=0.375 cm3·K·mol-1)).Upon cooling, theχMT value gradually decreases and reaches to the value of 11.13 cm3·K·mol-1at 18 K.Below 18 K,the χMT rapidly increases to 11.82 cm3·K·mol-1at 6 K then decreases on further cooling and reaches to the value of 11.46 cm3·K·mol-1at 2.0 K.The decrease of χMT upon lowering of the temperature in the hightemperature range is most probably governed by depopulation of the DyStark sublevels.The increase ofχMT at low temperature suggests the presence of ferromagnetic interaction between the Dyions and the coordinated NO group of the organic radical.

The field dependences of magnetizations for complex 1 have been determined at 2 K in the range of 0~70 kOe(Fig.3).Upon increasing in the applied field M increases up to 7.02Nβat 70 kOe,which does not reach the saturation values,indicating the presence ofamagnetic anisotropy and/or low-lying excited states in the system,which corresponds to the reported results[35].The M value ofa single Dyin high applied field is usually around 5.23Nβ[36].The experimental results revealing ferromagnetic interactions between Dyand radical.

Fig.3 Temperature dependence ofχMT for complex 1(left)and field dependence ofmagnetization of 1 at2.0 K(right)

Alternating current(ac)susceptibility measurements for complex 1 were carried out in low temperature regime under a zero dc field to investigate the dynamics of the magnetization.As shown in Fig.4 there are no obvious frequency dependent out-ofphase signals.We do not think that complex 1 express SMM behavior at low temperature.Thismay due to the small energy barrier which could not prevent the inversion of spin.

2.4 M agnetic properties of com plex 2

For complex 2,at 300 K,theχMT value is 14.58 cm3·K·mol-1.This value is close to the expected value of 14.45 cm3·K·mol-1(uncoupled system of one Dyion(f9electron configuration,χMT=14.17 cm3· K·mol-1)plus one organic radical(S=1/2,χMT=0.375 cm3·K·mol-1)).Upon cooling,theχMT value remains almost unchanged down to 50 K.Below this temperature,theχMT value decreasesmarkedly and reaches avalue of 1.43 cm3·K·mol-1at 2.0 K.For the present 1D magnetic system,both nearest-neighbor(NN) metal-radical magnetic coupling and next-nearestneighbor(NNN)metal-metalor radical-radicalmagnetic interactions coexist.These NN exchange interactions are always ferromagnetic for heavy lanthanides,while the NNN interactions are always antiferromagnetic[18]. The magnetic behavior of complex 2 can be ascribed to the combination of possible magnetic interactions and the depopulation of the Dy ions Stark levels.A strictly theoretical treatment ofmagnetic properties for this system is still a difficult task due to the large anisotropy of Dyion.

Fig.4 Temperature dependence of the in-phase and outof-phase components of ac susceptibility for 1 in zero dc field with an oscillation of 3.5 Oe

The field dependences of magnetizations for complex 2 is typical of ametamagnetic system with a sigmoidal curve.As show in Fig.5,the magnetization curve reveals two-step field induced transition.The first step is probably corresponds to the weak antiferromagnetic next-nearest-neighbor(NNN)interactions between chains.The spin flip transition at around 6 kOe,then as themagnetic field increases,M increases steadily to reach 8.41Nβat 70 kOe.This step is probably nearest-neighbor(NN)ferromagnetic interactions between the Dyand the radical.

Alternating current(ac)susceptibility measurements for complex 2 were carried out in low temperature regime under a zero dc field to investigate the dynamics of the magnetization.As shown in Fig.6, complex 2 exhibits frequency dependent out-of-phase signals indicating that it behaves as SCM.

Fig.5 Temperature dependence ofχMT for complex 2(left)and field dependence ofmagnetization of 2 at 2.0 K(right)

Fig.6 Temperature dependence of the in-phase(left)and out-of-phase(right)components of ac susceptibility for 2 in zero dc field with an oscillation of 3.5 Oe

3 Conclusions

Supporting information isavailable athttp://www.wjhxxb.cn

[1]Kahn O.Molecular Magnetism.New York:VCH Publishers Inc.,1993:1-23

[2]Moller S,Perlov C,Jackson W,et al.Nature,2003,426:166-169

[3]Kahn M L,Sutter JP,Golhen S,et al.J.Am.Chem.Soc., 2000,122:3413-3421

[4]Zhang P,Guo Y N,Tang JK.Coord.Chem.Rev.,2013,257: 1728-1737

[5]Graham M J,Zadrozny JM,Shiddiq M,et al.J.Am.Chem. Soc.,2014,136:7623-7626

[6]Ruiz-Molina D,Mas-TorrentM,Gómez J,et al.Adv.Mater., 2003,15:38-45

[7]Liu JL,Wu JY,Chen Y C,et al.Angew.Chem.Int.Ed., 2014,53:12966-12970

[8]Chatelain L,Walsh JPS,Pecaut J,et al.Angew.Chem.Int. Ed.,2014,53:13434-13439

[9]Zhang P,Zhang L,Wang C.J.Am.Chem.Soc.,2014,136: 4484-4489

[10]Liang W,Shores M P,Bockrath M,et al.Nature,2002,417: 725-729

[11]Bogani L,WernsdorferW.Nat.Mater.,2008,7:179-186

[12]Liu Y,Chen C,Tong M L,et al.J.Am.Chem.,Soc.,2016, 138:5441-5450

[13]Ding Y S,Chilton N F,Zheng Y Z.Angew.Chem.Int.Ed., 2016,55:16071-16074

[14]Shao D,Shi L,Zhang S L,et al.CrystEngComm,2016,18: 4150-4157

[15]Bogani L,Sangregorio C,SessoliR,etal.Angew.Chem.Int. Ed.,2005,44:5817-5821

[16]Bernot K,Luzon J,Bogani L,et al.J.Am.Chem.Soc., 2009,131:5573-5579

[17]Yao B,Guo Z,Zhang X,et al.Cryst.Growth Des.,2017,17: 95-99

[18]Li C,Sun J,Yang M,et al.Cryst.Growth Des.,2016,16: 7155-7162

[19]PonetiG,Bernot K,Bogani L,et al.Chem.Commun.,2007: 1807-1809

[20]Rinehart JD,Fang M,EvansW J,et al.J.Am.Chem.Soc., 2011,133:14236-14239

[21]Rinehart JD,Fang M,EvansW J,et al.Nat.Chem.,2011, 3:538-542

[22]Chernick E T,Casillas R,Zirzlmeier J,et al.J.Am.Chem. Soc.,2015,137:857-863

[23]Mailman A,Winter SM,Wong JW L,et al.J.Am.Chem. Soc.,2015,137:1044-1049

[24]Wang X F,Hu P,Li Y G,et al.Chem.Asian J.,2015,10: 325-330

[25]Zhu M,Hu P,Li Y,et al.Chem.Eur.J.,2014,20:13356-13364

[26]Wang Z X,Zhang X,Zhang Y Z,et al.Angew.Chem.Int. Ed.,2014,53:11567-11570

[27]Gould C A,Darago L E,Gonzalez M I,et al.Angew.Chem. Int.Ed.,2017,56:1-6

[28]Caneschi A,GatteschiD,LaliotiN,etal.Angew.Chem.Int. Ed.,2001,40:1760-1793

[29]Ullman E F,Osiecki J H,Boocock D G B,et al.J.Am. Chem.Soc.,1972,94:7049-7059

[30]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Germany,1997. [31]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structures,University of G?ttingen,Germany,1997. [32]Zhou N,Ma Y,Wang C,et al.Dalton Trans.,2009:8489-8492

[33]Li L L,Liu S,Zhang Y,et al.Dalton Trans.,2015,44:6118-6125

[34]HU Peng(胡鵬),GAO Yuan-Yuan(高媛媛),XIAO Feng-Yi (肖鳳儀),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2017,37:33-40

[35]Hu P,Zhu M,Mei X.Dalton Trans.,2012,41:14651-14656

[36]Guo Y N,Xu G F,Guo Y,et al.Dalton Trans.,2011,40: 9953-9963

HU Peng*,1XIAO Feng-Ping1ZHIZhong-Qiang1DU Feng-Xiang*,2
DENG Xiao-Juan1HUANG Guo-Hong1ZHANGMiao1SU Feng1WANG Li-Na1
(1Chemical Engineering College,Zhaoqing University,Zhaoqing,Guangdong 526061,China)
(2Key Laboratory of BiomassWaste Resource Utilization,Biochemical Engineering College, Beijing Union University,Beijing 100101,China)

Two Dy-nitronylnitroxide radical complexes[Dy(hfac)3(NIT-C3H5)(H2O)]and[Dy(hfac)3(NIT-C3H5)]n(NIT-C3H5=2-cyclopropyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide,hfac=hexafluoroacetylacetonate),have been successfully prepared with different synthetic condition.Single crystal X-ray crystallographic analyses reveal that complex 1 is mononuclear complex which crystallize in the P21/c space group while complex 2 is onedimensional complex which crystallize in the P21/c space group as well.Magnetic studies reveal that complex 2 exhibits frequency-dependence of ac magnetic susceptibilities,indicating that it behaves as single-chain magnet. CCDC:1533515,1;1533514,2.

nitronyl nitroxide radical;dysprosium;crystal structure;magnetic properties

O614.342

A

1001-4861(2017)07-1273-07

10.11862/CJIC.2017.149

2017-02-24。收修改稿日期:2017-05-17。

北京市朝陽(yáng)區(qū)協(xié)同創(chuàng)新項(xiàng)目(No.XC1608)、北京聯(lián)合大學(xué)科研啟動(dòng)項(xiàng)目和廣東省大創(chuàng)項(xiàng)目(No.201610580046))資助。*

。E-mail:hp8286799@zqu.edu.cn;1656054217@qq.com

主站蜘蛛池模板: 欧美综合一区二区三区| 高清久久精品亚洲日韩Av| 欧美h在线观看| 亚洲国模精品一区| 成人毛片在线播放| 国产一区二区三区日韩精品| 国产亚洲精品精品精品| 日韩精品无码一级毛片免费| 日韩第九页| 欧美成人一级| 992Tv视频国产精品| 国产18页| 免费一极毛片| 亚洲日韩AV无码一区二区三区人 | 午夜国产精品视频黄| 国产老女人精品免费视频| 中文字幕欧美日韩高清| 91免费观看视频| 亚洲人在线| 丝袜久久剧情精品国产| 日日拍夜夜嗷嗷叫国产| 成人无码区免费视频网站蜜臀| 天天激情综合| 综合五月天网| 日韩在线中文| 无码高潮喷水在线观看| 国产乱人伦偷精品视频AAA| 国产精品99在线观看| 欧美日韩午夜| 国产91精品调教在线播放| 中文无码伦av中文字幕| 日韩精品无码一级毛片免费| 久久香蕉欧美精品| 蜜臀AV在线播放| 97超爽成人免费视频在线播放| 成人福利在线免费观看| 97人人做人人爽香蕉精品| 欧美精品三级在线| 国产无码制服丝袜| 国产日本一线在线观看免费| 亚洲中文字幕国产av| 欧美日韩精品综合在线一区| 国产呦视频免费视频在线观看| 就去吻亚洲精品国产欧美| 国产视频入口| 国产精品伦视频观看免费| 国产精品999在线| 1769国产精品视频免费观看| 国产欧美精品一区aⅴ影院| 精品在线免费播放| 亚洲精品无码人妻无码| 88av在线| 少妇精品在线| 456亚洲人成高清在线| 亚洲天堂久久| 日本久久久久久免费网络| 亚洲国产日韩在线成人蜜芽| 伊人精品成人久久综合| 亚洲男人天堂网址| 国产鲁鲁视频在线观看| 日本黄色a视频| 国产成+人+综合+亚洲欧美| 午夜a视频| 成人精品免费视频| 亚洲AⅤ无码国产精品| 国产伦精品一区二区三区视频优播| 国产资源站| 欧美色99| 欧美成a人片在线观看| 欧美性色综合网| 国产欧美一区二区三区视频在线观看| 欧美成人国产| 色偷偷一区二区三区| 午夜毛片免费观看视频 | 精品欧美一区二区三区久久久| 国产裸舞福利在线视频合集| 激情在线网| 欧美午夜小视频| 午夜毛片免费观看视频 | 亚洲欧洲一区二区三区| 天堂亚洲网| 国产免费久久精品99re不卡|