陳立佳, 王靚亮, 王寶森(. 沈陽工業大學 材料科學與工程學院, 沈陽 0870; . 寶鋼股份研究院 焊接與表面技術研究所, 上海 0900)
材料科學與工程
Incoloy 825鎳基合金的低周疲勞行為*
陳立佳1, 王靚亮1, 王寶森2
(1. 沈陽工業大學 材料科學與工程學院, 沈陽 110870; 2. 寶鋼股份研究院 焊接與表面技術研究所, 上海 201900)
為了研究Incoloy 825鎳基合金的循環應力響應行為和低周疲勞行為,在室溫和760 ℃下進行外加總應變幅控制下的疲勞實驗,確定了合金在不同溫度下的應變疲勞參數.利用透射電子顯微鏡和掃描電子顯微鏡分析了合金疲勞變形后的位錯亞結構與斷口形貌.結果表明,室溫下合金呈現先循環硬化后循環軟化的特征,而在760 ℃下合金則呈現先循環硬化后循環軟化或循環穩定的特征.在不同溫度下合金的塑性應變幅、彈性應變幅與斷裂時的載荷反向周次之間均呈現單斜率線性關系,并分別服從Coffin-Manson和Basquin公式.在室溫和760 ℃下合金的低周疲勞變形機制主要為平面滑移,且疲勞裂紋均以穿晶方式萌生和擴展.
Incoloy 825鎳基合金; 低周疲勞; 循環應力響應; 疲勞壽命; 位錯亞結構; 平面滑移; 疲勞裂紋; 穿晶斷裂

本文在室溫和760 ℃下對Incoloy 825鎳基合金進行了低周疲勞實驗,分析了該合金的低周疲勞行為.同時對合金疲勞變形區的位錯亞結構和疲勞斷口形貌進行觀察,以期為Incoloy 825鎳基合金在上述兩個溫度下的抗疲勞失效設計提供必要的理論依據.
實驗材料為Incoloy 825鎳基合金,其化學成分為:w(C)=0.025%,w(Cr)=23.5%,w(Fe)=21%,w(Mo)=3.5%,w(Cu)=3%,w(Ti)=1.2%,w(Co)=1%,w(Si)=0.5%,w(Al)=0.2%,余量為Ni.低周疲勞試樣的幾何尺寸如圖1所示(單位:mm),且試樣厚度為12 mm.

圖1 低周疲勞試樣的幾何尺寸Fig.1 Geometry of low-cycle fatigue specimen

利用JEM-2100型透射電子顯微鏡(TEM)觀察疲勞變形區的微觀結構.在TEM樣品制備過程中利用SYJ-150A型低速金剛石切割機在距離斷口表面約1 mm處沿與加載軸垂直的方向切取薄片,且薄片厚度約為0.5 mm.將該薄片研磨約至50 μm后,利用TenuPol-5型雙噴減薄儀進行減薄處理,選用10%HClO4+90%CH3OH(體積分數)混合溶液作為電解液,雙噴電壓為22 V,溫度控制為-25 ℃.利用S-3400N型掃描電子顯微鏡(SEM)觀察疲勞斷口形貌.
2.1 循環應力響應行為
圖2為Incoloy 825鎳基合金在室溫和760 ℃下的循環應力響應曲線.由圖2a可見,當外加總應變幅為0.4%~0.8%時,合金的室溫循環應力響應行為呈現出先循環硬化后循環軟化的特征.由圖2b可見,當外加總應變幅為0.25%、0.3%和0.4%時,合金在760 ℃下同樣呈現先循環硬化后循環軟化的特征;而當外加總應變幅為0.5%、0.6%和0.7%時,合金呈現先循環應變硬化后循環穩定的循環應力響應行為,直至由于裂紋萌生與擴展導致合金應力快速下降.
2.2 低周疲勞壽命行為


圖2 Incoloy 825鎳基合金的循環應力響應曲線Fig.2 Cyclic stress response curves of Incoloy 825 nickel-based alloy

圖3 Incoloy 825鎳基合金的總應變幅疲勞壽命曲線Fig.3 Total stain amplitude versus fatigue life curves of Incoloy 825 nickel-based alloy
對于總應變幅控制的疲勞實驗而言,總應變幅Δεt/2是由塑性應變幅Δεp/2和彈性應變幅Δεe/2構成的.塑性應變幅、彈性應變幅與載荷反向周次之間的關系可分別采用Coffin-Manson和Basquin公式進行描述,即

(1)

(2)

Δσ/2=K′(Δεp/2)n′
(3)
式中:Δσ/2為循環應力幅;K′為循環強度系數;n′為循環應變硬化指數.


2.3 低周疲勞區微觀結構觀察與分析
圖6為Incoloy 825鎳基合金在室溫下低周疲勞變形后的位錯組態.由圖6a可見,當外加總應變幅為0.4%時,合金內部的位錯分布較為均勻,且大多以單根彎曲位錯線的形式存在,同時并未觀察到明顯的位錯纏結,因而證實在低周疲勞變形后期合金發生了循環軟化.由圖6b可見,當外加總應變幅為0.6%時,可以觀察到合金內部存在高密度位錯區,且部分區域產生了位錯纏結,從而對可動位錯產生了阻礙作用,因而在低周疲勞變形初期合金發生了循環硬化.由圖6c可見,當外加總應變幅為0.8%時,可以觀察到合金內部的位錯分布較為均勻,且可以在晶界附近觀察到大量平行滑移帶,合金呈現出典型平面滑移特征,表明在室溫下當外加總應變幅為0.8%時,合金的疲勞變形機制為平面滑移.

圖5 Incoloy 825鎳基合金的循環應力應變曲線Fig.5 Cyclic stress-strain curves of Incoloy 825 nickel-based alloy

表1 Incoloy 825鎳基合金的應變疲勞參數Tab.1 Strain fatigue parameters of Incoloy 825 nickel-based alloy
圖7為Incoloy 825鎳基合金在760 ℃下低周疲勞變形后的位錯組態.由圖7a可見,當外加總應變幅為0.25%時,合金內部位錯分布較為密集,位錯密度較高,位錯與位錯之間產生了強烈的交互作用并產生了位錯交割,從而對可動位錯產生了阻礙作用,因此,在低周疲勞變形初期合金發生了循環硬化.由圖7b可見,當外加總應變幅為0.3%時,合金內部存在彎曲的位錯線,位錯交叉且密集分布,位錯密度較大,位錯與位錯之間產生交互作用并形成了位錯交割,增大了位錯的運動阻力,因而合金在疲勞變形初期發生了循環硬化.由圖7c可見,當外加總應變幅為0.4%時,合金內部存在位錯塞積群,位錯運動受到阻礙作用,因而合金在疲勞變形初期同樣發生了循環硬化.不過,合金大部分區域中位錯分布得較為均勻,位錯密度與外加總應變幅為0.3%時的情況相比相對較低,且大部分位錯形態較為平直,位錯之間并未發生相互纏結.另外,位錯重構導致位錯組態較為簡單,因此,當外加總應變幅為0.4%時,合金可在疲勞變形后期發生循環軟化.由圖7d可見,當外加總應變幅為0.5%時,位錯較為平直,但是位錯分布較為密集,位錯密度較高,且位錯與位錯之間產生了較為強烈的交互作用并形成了位錯交割,故合金在疲勞變形初期發生了循環硬化.此外,當外加總應變幅為0.5%時,也可以在合金內部觀察到由高密度位錯為邊界而構成的胞狀亞結構(見圖7e),這有利于合金在疲勞變形初期發生循環硬化.由圖7f可見,當外加總應變幅為0.7%時,合金內部存在孿晶界,同時在孿晶內部可以觀察到胞狀亞結構,且位錯并未越過孿晶界,故孿晶界對位錯運動產生阻礙作用,因而合金在疲勞變形初期發生了循環硬化.

圖6 Incoloy 825鎳基合金室溫低周疲勞變形后的位錯組態
Fig.6 Dislocation configurations in Incoloy 825 nickel-based alloy after low-cycle fatigue deformation at room temperature

圖7 Incoloy 825鎳基合金在760 ℃下低周疲勞變形后的位錯組態 Fig.7 Dislocation configurations in Incoloy 825 nickel-based alloy after low-cycle fatigue deformation at 760 ℃
如前所述,Incoloy 825鎳基合金在室溫下呈現出先循環硬化后循環軟化的循環應力響應行為,而在760 ℃的溫度條件下當外加總應變幅分別為0.25%、0.3%和0.4%時,Incoloy 825鎳基合金呈現出先循環硬化后循環軟化的循環應力響應行為,而當外加總應變幅分別為0.5%、0.6%和0.7%時,Incoloy 825鎳基合金則呈現出先循環硬化后循環穩定的循環應力響應行為.究其原因可知,循環硬化主要由位錯與位錯之間、位錯與晶界或孿晶界之間的交互作用造成的,而循環軟化則主要與疲勞變形過程中的位錯重構有關.實際上,低周疲勞形變過程是循環硬化因素與循環軟化因素同時存在又不斷相互競爭的過程,當循環硬化效應與循環軟化效應相互抵消時,合金在低周疲勞變形期間的循環應力幅基本保持穩定不變,即呈現出穩定的循環應力響應行為.
2.4 低周疲勞斷口形貌觀察與分析
圖8為Incoloy 825鎳基合金在疲勞源區的SEM圖像.由圖8可見,在不同溫度和不同外加總應變幅下疲勞裂紋均以穿晶方式萌生于試樣的自由表面,且在裂紋源區呈現出較為明顯的放射狀紋理.
圖9為Incoloy 825鎳基合金在不同溫度和不同外加總應變幅下疲勞擴展區的SEM圖像.由圖9a、b可見,在室溫下當外加總應變幅為0.4%和0.8%時,疲勞裂紋擴展區較為平整,并存在較為清晰的疲勞條帶,表明疲勞裂紋以穿晶方式進行擴展.由圖9c、d可見,在760 ℃下當外加總應變幅分別為0.25%和0.7%時,疲勞裂紋擴展區存在較為清晰的疲勞條帶,表明疲勞裂紋亦是以穿晶方式進行擴展的.綜上所述,在室溫和760 ℃下盡管外加總應變幅不同,但合金的疲勞裂紋均是以穿晶方式進行擴展的,且當外加總應變幅較低時,疲勞條帶間距較窄,而當外加總應變幅較高時,疲勞條帶間距則較寬.
通過以上實驗分析可以得到如下結論:
1) 當在室溫下進行低周疲勞變形時,Incoloy825鎳基合金呈現先循環硬化后循環軟化的特點;在760 ℃下進行疲勞變形時合金則呈現先循環硬化后循環軟化或循環穩定的特征.

圖8 Incoloy 825鎳基合金在疲勞源區的SEM圖像Fig.8 SEM images of fatigue crack initiation sites for Incoloy 825 nickel-based alloy
2) 在室溫和760 ℃下Incoloy 825鎳基合金的塑性應變幅、彈性應變幅與斷裂時的載荷反向周次之間均呈現出單斜率線性關系,并分別服從Coffin-Manson和Basquin公式,而其塑性應變幅與循環應力幅之間亦呈單斜率線性關系,并可用指數定律進行描述.

圖9 Incoloy 825鎳基合金在疲勞裂紋擴展區的SEM圖像Fig.9 SEM images of fatigue crack propagation regions for Incoloy 825 nickel-based alloy
3) 室溫下Incoloy 825鎳基合金疲勞變形區的位錯分布較為均勻,且位錯密度較低,部分區域形成位錯纏結,且在晶界附近存在平行滑移帶,呈現平面滑移特征;而760 ℃下Incoloy 825鎳基合金疲勞變形區的位錯密度較高,并可形成胞狀亞結構,且孿晶界可對位錯運動造成阻礙作用.
4) 室溫和760 ℃下Incoloy 825鎳基合金的低周疲勞裂紋均以穿晶方式萌生于疲勞試樣的自由表面,并均以穿晶方式進行擴展.
[1]馮勇,何德良,龔德勝,等.國產825合金的耐腐蝕性能研究 [J].中國腐蝕與防護學報,2013,33(2):164-170.
(FENG Yong,HE De-liang,GONG De-sheng,et al.Corrosion resistance properties of domestic 825 alloy [J].Journal of Chinese Society for Corrosion Protection,2013,33(2):164-170.)
[2]張麗娜,董建新,張麥倉,等.油井管用鐵鎳基耐蝕合金研究 [J].世界鋼鐵,2013,13(1):54-63.
(ZHANG Li-na,DONG Jian-xin,ZHANG Mai-cang,et al.Review on iron-nickel base corrosion resistant alloys used in oil country tubular goods [J].World Iron & Steel,2013,13(1):54-63.)
[3]王凱旋,楊瑞成,呂學飛,等.通用性鎳基耐蝕合金的研制 [J].蘭州理工大學學報,2005,31(6):28-31.
(WANG Kai-xuan,YANG Rui-cheng,Lü Xue-fei,et al.Development of versatile Ni-base corrosion resistant alloy [J].Journal of Lanzhou University of Technology,2005,31(6):28-31.)
[4]王成,巨少華,荀淑玲,等.鎳基耐蝕合金研究進展 [J].材料導報,2009,23(3):71-76.
(WANG Cheng,JU Shao-hua,XUN Shu-ling,et al.Progress in research on nickel-based corrosion resistant alloys [J].Materials Review,2009,23(3):71-76.)
[5]冷利,陳立佳,車欣.時效態Al-Zn-Mg-Cu-Zr-Sc合金的組織與疲勞性能 [J].沈陽工業大學學報,2016,38(3):280-285.
(LENG Li,CHEN Li-jia,CHE Xin.Microstructures and fatigue properties of aged Al-Zn-Mg-Cu-Zr-Sc alloy [J].Journal of Shenyang University of Technology,2016,38(3):280-285.)
[6]張瑩,張義文,張娜,等.粉末冶金高溫合金FGH97的低周疲勞斷裂特征 [J].金屬學報,2010,46(4):444-450.
(ZHANG Ying,ZHANG Yi-wen,ZHANG Na,et al.Fracture character of low cycle fatigue of P/M superalloy FGH97 [J].Acta Metallurgica Sinica,2010,46(4):444-450.)
[7]楊健,董建新,張麥倉,等.新型鎳基粉末高溫合金FGH98的高溫疲勞裂紋擴展行為研究 [J].金屬學報,2013,49(1):71-80.
(YANG Jian,DONG Jian-xin,ZHANG Mai-cang,et al.High temperature fatigue crack growth behavior of a novel powder metallurgy superalloy FGH98 [J].Acta Metallurgica Sinica,2013,49(1):71-80.)
[8]王歡,袁超,郭建亭,等.GH4698合金的疲勞裂紋擴展行為 [J].中國有色金屬學報,2015,25(1):23-29.
(WANG Huan,YUAN Chao,GUO Jian-ting,et al.Fatigue crack growth behavior of GH4698 alloy [J].The Chinese Journal of Nonferrous Metals,2015,25(1):23-29.)
[9]Wang X G,Liu J L,Jin T,et al.Deformation mecha-nisms of a nickel-based single-crystal superalloy during low-cycle fatigue at different temperatures [J].Scripta Materialia,2015,99:57-60.
[10]Shui L,Liu P.Low-cycle fatigue behavior of a nickel base single crystal superalloy at high temperature [J].Rare Metal Materials and Engineering,2015,44(2):288-292.
[11]Harders H,Malow T.Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy [J].Acta Mechanica Solida Sinica,2008,21(4):289-297.
[12]Li P,Li Q Q,Jin T,et al.Effect of Re on low-cycle fatigue behaviors of Ni-based single-crystal super-alloys at 900°C [J].Materials Science & Engineering A,2014,603:84-92.
[13]Shi Z X,Wang X G,Liu S Z,et al.Low cycle fatigue properties and microstructure evolution at 760 ℃ of a single crystal superalloy [J].Progress in Natural Science:Materials International,2015,25(1):78-83.
[14]Ye D,Ping D,Wang Z,et al.Low cycle fatigue behavior of nickel-based superalloy GH4145/SQ at ele-vated temperature [J].Materials Science & Engineering A,2004,373(1/2):54-64.
[15]Chu Z,Yu J,Sun X,et al.Tensile property and deformation behavior of a directionally solidified Ni-base superalloy [J].Materials Science & Engineering A,2010,527(12):3010-3014.
(責任編輯:尹淑英 英文審校:尹淑英)
Low-cycle fatigue behavior of Incoloy 825 nickel-based alloy
CHEN Li-jia1, WANG Liang-liang1, WANG Bao-sen2
(1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China; 2. Institute for Welding and Surface Technology, Baoshan Iron & Steel Co. Ltd., Research Institute, Shanghai 201900, China)
In order to investigate the cyclic stress response behavior and low-cycle fatigue behavior of Incoloy 825 nickel-based alloy, the applied total strain amplitude controlled fatigue tests at both room temperature and 760 ℃ were carried out, and the strain fatigue parameters of the alloy at different temperatures were determined. The dislocation substructures and morphologies of fracture surfaces for the alloy after low-cycle fatigue deformation were analyzed with the transmission electron microscope (TEM) and scanning electron microscope (SEM). The results show that at room temperature, the alloy exhibits the characteristics of cyclic hardening followed by the cyclic softening, while the alloy exhibits the characteristics of cyclic hardening followed by either cyclic softening or cyclic stability at 760 ℃. The relationship between both plastic and elastic strain amplitudes as well as reversals to failure at different temperatures for the alloy shows a single slope linear behavior, which can be described by the Coffin-Manson and Basquin equations, respectively. At both room temperature and 760 ℃, the low-cycle fatigue deformation mechanism for the alloy is mainly the planar slip. In addition, the fatigue cracks initiate and propagate in the transgranular mode.
Incoloy 825 nickel-based alloy; low-cycle fatigue; cyclic stress response; fatigue life; dislocation substructure; planar slip; fatigue crack; transgranular fracture
2016-11-14.
國家自然科學基金資助項目(51134010).
陳立佳(1963-),男,河北樂亭人,教授,博士生導師,主要從事工程結構材料的疲勞與斷裂行為等方面的研究.
10.7688/j.issn.1000-1646.2017.04.03
TG 146
A
1000-1646(2017)04-0371-07
*本文已于2017-06-21 21∶19在中國知網優先數字出版. 網絡出版地址: http:∥www.cnki.net/kcms/detail/21.1189.T.20170621.2119.004.html