汪靜麗劉洋 鐘凱
1)(南京郵電大學光電工程學院,南京 210023)
2)(天津大學,光電信息技術科學教育部重點實驗室,天津 300072)
基于領結型多孔光纖的雙芯太赫茲偏振分束器?
汪靜麗1)?劉洋1)鐘凱2)
1)(南京郵電大學光電工程學院,南京 210023)
2)(天津大學,光電信息技術科學教育部重點實驗室,天津 300072)
(2016年8月1日收到;2016年10月18日收到修改稿)
領結型多孔光纖具有高雙折射的特性,本文基于此設計了一種新型的雙芯太赫茲(THz)偏振分束器,采用調整結構法實現了折射率反轉匹配耦合,達到偏振分離.仿真結果表明:該偏振分束器在0.5-2.5 THz頻率范圍內均可實現偏振分離,最小分離長度僅為0.428 cm,且在整個頻率范圍內分離長度不超過2.5 cm.在2.3 THz,x,y兩偏振模的吸收損耗均小于0.35 dB;消光比高達22.9和19.2 dB.此外,與填充法實現折射率反轉匹配耦合的雙芯THz偏振分束器進行比較,本文設計的偏振分束器實現簡單,運行的頻率范圍更寬,分離長度更短,吸收損耗更低.
偏振分束器,太赫茲,調整結構,多孔光纖
偏振分束器是光學系統中一種重要器件,可將光信號分離成兩個相互正交的偏振光,并沿著不同路徑傳輸[1,2].近年來,科研工作者對光學波段的偏振分束器已進行了深入研究[3-8],而對THz波段偏振分束器的研究仍處于起步階段[9-12].THz波在電磁波譜中介于微波和紅外波之間,具有其他波段電磁波不具有的獨特優異性能.設計性能優良的THz偏振分束器對于THz器件的研究具有重要的意義[13,14].
目前,基于雙芯光纖設計THz偏振分束器是THz領域的研究熱點之一,通常有兩種實現方式:第一種利用雙折射效應,通過調整光纖結構參數使x,y偏振模同時在雙芯間進行耦合,傳輸一定距離后實現偏振分離[3-6];第二種利用諧振效應,令某一偏振模滿足諧振條件在雙芯間來回耦合,而另一偏振模不滿足該條件固定在某纖芯內傳輸,當滿足諧振條件的偏振模完全耦合至另一纖芯時,實現偏振分離[7,8].
基于雙芯光纖的THz偏振分束器已有相關報道,2012年,白晉軍等[9]提出一種低損耗、寬頻段THz雙芯光子帶隙光纖定向耦合器用于偏振分離,可實現0.14 THz范圍內的定向耦合且耦合長度小于15 cm.2013年,姜子偉等[10]設計了一種低損耗THz雙芯光子帶隙光纖定向耦合器,這種光纖定向耦合器在1.55-1.80 THz范圍內耦合長度小于1.8 cm.2014年,Li等[11]提出了一種基于填充式多孔光纖的寬帶雙芯THz偏振分束器,在0.8-2.5 THz頻率范圍內實現了偏振分離,分離長度為0.4-33.56 cm.同年,祝遠峰[12]提出兩種THz偏振分束器,一種基于懸浮芯光纖,另一種基于十字架型纖芯光纖,前者在1 THz的分離長度為3.36 cm,后者在1 THz的分離長度為11.4 cm.然而,上述設計的器件分離長度隨頻率增長較快,應用的帶寬相對較窄.
為解決該問題,本文提出一種基于領結型多孔光纖[15]的雙芯THz偏振分束器,通過調整雙芯中某一纖芯結構實現折射率匹配耦合,達到偏振分離的目的.研究表明:該類THz偏振分束器能夠在較寬的頻率范圍(0.5-2.5 THz)內實現偏振分離,且分離長度短,均不超過2.5 cm.此外,我們還將本文所設計的THz偏振分束器與目前較為流行的使用填充法實現折射率匹配耦合的偏振分束器進行了比較,結果表明:我們設計的結構制作方便,操作簡單,且運行的頻率范圍更寬,分離長度更短,吸收損耗更低.
本文設計的基于領結型多孔光纖的雙芯THz偏振分束器,采用諧振效應實現偏振分離.要實現諧振條件,可采用文獻[10]所提出的折射率反轉匹配耦合(ICMC)法,該方法的思路:首先需要光纖具有高雙折射特性,即實現x,y兩個偏振模的分裂;其次,為實現分離操作,兩根光纖纖芯結構應具有正交關系(一般可將另一根完全相同的光纖旋轉90°),再通過調整填充液的有效折射率實現x或者y偏振模式的匹配.然而,采用填充法需要給器件填充液體,操作較為復雜;且在THz波段中尋找到損耗低且折射率滿足要求的液體,非常困難.基于此,本文提出一種在雙芯THz偏振分束器中實現偏振分離的新方法:對某一纖芯進行隔行調整結構,從而實現折射率匹配耦合.
本文對所設計的THz偏振分束器特性的分析與討論均是基于全矢量有限元法(finite element method,FEM)計算而來,FEM是以變分原理和剖分插值為基礎的一種數值計算方法[16].提出的THz偏振分束器如圖1所示,它由兩根多孔光纖(纖芯為多孔結構,包層為空氣,導光機理為全內反射)構成,光纖A為高雙折射領結型多孔光纖;光纖B是依據ICMC法,由光纖A旋轉90°并隔行調整結構為橢圓所成.多孔光纖的基底為聚合物材料TOPAS,它在THz波段具有相對恒定的折射率,且損耗較低.光纖A和B的纖芯直徑均為Dcore=490μm,光纖A中領結型結構的兩個大空氣孔半徑為r2=13μm,小空氣孔半徑為r1=8μm,孔間距Λ=70μm,光纖B中橢圓長軸r3=15μm,短軸r4=13μm;當纖芯A與B相切(L=490μm)時,耦合現象最明顯.

圖1 基于領結型多孔光纖的雙芯THz偏振分束器的截面圖Fig.1.Cross section of dual-core THz polarization splitter based on porous fibers with near-tie units.
如果光纖B僅僅是將光纖A旋轉90°,那么由于nAx=nBy>nAy=nBx(其中nAx和nAy分別為光纖A中x和y偏振模的有效折射率;nBx和nBy分別為光纖B中x和y偏振模的有效折射率),無法實現偏振模匹配.因此,嘗試對光纖B的結構進行改變,通過隔行調整領結型結構為橢圓,以實現A,B光纖中x偏振模的匹配.仿真表明:當橢圓參數設置為r3=15μm,r4=13μm 時,A和B光纖中兩個偏振模式的有效折射率分別滿足nBy>nBx(如圖2(a)所示)和nAx>nAy(如圖2(b)所示),且此時nBx和nAx幾乎完全相等(如圖2(c)所示).因此,在0.5-2.5 THz頻率范圍內,x偏振模將會在兩個纖芯間強烈耦合,同時由于兩個纖芯中y偏振模的有效折射率相差較大,模式不匹配故不發生耦合.
圖3給出了工作頻率為0.5,1.0,1.5,2.0,2.5 THz時,x,y偏振奇模和偶模的穩態模場分布,下標o,e分別表示奇模和偶模.如圖3所示,在0.5-2.5 THz的頻率范圍內,A和B光纖中的x偏振模因滿足模式匹配條件,在兩芯之間始終發生耦合,穩態模場同時分布于雙芯中;而對于y偏振模而言,由于模式不匹配,始終不會發生耦合,穩態模場只存在于某一纖芯中.

圖2 光纖中x和y偏振模的有效折射率隨頻率的變化 (a)光纖B;(b)光纖A;(c)光纖A與BFig.2.Effective refractive index of x and y polarization modes versus frequency:(a)Fiber B;(b)fiber A;(c)fiber A and B.

圖3 (網刊彩色)x,y偏振奇模和偶模在不同工作頻率時穩態模場分布Fig.3.(color online)Modal distributions in steady state of even and odd modes for x and y polarization modes at different frequencies.
偏振分束器的分離長度是衡量該類器件性能的一個重要指標,定義如下:

式中Lc表示分離長度,nxe和nxo分別是x偏振偶模和奇模的有效折射率,λ是入射波長.由圖4(b)可見:采用調整結構法的THz偏振分束器,其分離長度先隨著頻率的增加而增加,在f=1.5 THz的時候達到峰值(Lc=2.5 cm),之后隨著頻率的增加而減小,并且在整個頻率范圍內,分離長度變化較為緩慢,控制在一個較小的范圍內(0.428-2.5 cm).為了便于比較,我們還對基于領結型多孔光纖的雙芯THz偏振分束器進行了填充(如圖4(a)所示,仿真計算表明對B芯進行隔行填充折射率為1.28的液體時,也可達到偏振分離),填充法是目前實現折射率匹配耦合的常用方法.如圖4(b)所示,采用填充法的THz偏振分束器,其分離長度的變化趨勢和調整結構法的THz偏振分束器相似,但在高頻處(f>1.7 THz),本文所設計的偏振分束器的分離長度明顯優于用填充法設計的偏振分束器.

圖4 (a)采用填充法的THz偏振分束器結構;(b)填充法和調整結構法所設計的THz偏振分束器的分離長度隨頻率的變化Fig.4.(a)The structure of THz polarization splitter with filling methods;(b)splitting length of polarization splitter with two methods versus frequency.
損耗是衡量偏振分束器性能的另一重要指標.圖5(a)首先給出了器件的吸收損耗系數隨頻率的變化,該參數定義如下:

式中αeff是器件的損耗系數;αm(r)是是光纖基底材料的體吸收系數;Abackground和A∞分別是表示光纖橫截面區域和整個平面的面積;n(r)是基底材料的有效折射率;E和H分別是電場強度和磁場強度.由圖5(a)可見:不管填充法還是調整結構法設計的THz偏振分束器,其吸收損耗系數均隨著頻率的增加而單調增加;在0.5 THz處,對于x,y偏振模而言,兩器件的吸收損耗系數都小于0.1 dB/cm.
圖5(b)給出了器件的吸收損耗隨頻率的變化,該參數定義如下:

其中Mloss是器件的吸收損耗,Lc器件的分離長度.如圖5(b)所示:在整個頻率范圍內,兩種方法所設計的THz偏振分束器的吸收損耗變化趨勢一致,在低頻處均隨著頻率的增加而增加,到達峰值后逐漸減小.且正如圖4(b)和圖5(a)所示,由于低頻處兩種方法所設計的THz偏振分束器,其分離長度和器件吸收損耗系數差別很小,所以器件的吸收損耗也相差不大.但是,隨著頻率的增加,兩者的器件長度均縮短,從而吸收損耗也隨之減少.其中,當頻率大于1.7 THz后,調整結構法設計的THz偏振分束器的吸收損耗明顯小于填充法設計的偏振分束器,且在2.3 THz頻率處,x,y兩個偏振的吸收損耗均小于0.35 dB.

圖5 采用填充法和調整結構法設計的THz偏振分束器的損耗特性 (a)器件的吸收損耗系數隨頻率的變化;(b)器件的吸收損耗隨頻率的變化Fig.5. Loss characteristics of THz polarization splitter with filling method and adjusting structure method:(a)Absorption loss coefficient versus frequency;(b)absorption loss of the device versus frequency.
圖6給出了兩種方法設計的THz偏振分束器的x,y偏振模的消光比隨頻率的變化曲線.偏振模的分離程度可用消光比來衡量,其公式為

式中ER表示消光比,px和py分別表示x,y偏振模的輸出功率.由圖6可知,采用填充法的THz偏振分束器,其x,y偏振模的消光比隨著頻率的增加而增加(即:隨頻率的增加,偏振模分離越徹底);當f=2.3 THz,x,y偏振模的消光比最大,分別為25.15和24.92 dB.采用調整結構法的THz偏振分束器,x偏振模的消光比隨著頻率的增加而增加,最大為22.94 dB(f=2.3 THz);而y偏振模的消光比先隨著頻率的增加而增加,在f=2.1 THz達到峰值20.51 dB,隨后變小.其中,在2.3 THz處,x,y偏振模的消光比均較好,分別達到22.94和19.2 dB.在整個頻率范圍內,填充法的THz偏振分束器的消光比要比調整結構法的優越.

圖6 (網刊彩色)基于填充法和調整結構法的THz偏振分束器中,x,y偏振模的消光比隨頻率的變化Fig.6.(color online)THz polarization splitter withfilling method and adjusting structure method,extinction ratios for x,y polarization modes versus frequency.
本文基于領結型多孔光纖設計雙芯THz偏振分束器,采用調整結構法實現折射率反轉匹配耦合.分別討論了分離長度、損耗及消光比隨頻率的變化,研究表明:其分離長度和損耗的變化趨勢一致,均先隨頻率的增加而增加,達到峰值后減小;并且在整個頻率范圍內,分離長度變化較為緩慢,控制在一個較小的范圍內(0.428-2.5 cm);x,y偏振模的吸收損耗較小(10-1數量級),最小值分別為0.0327和0.0334 dB(f=0.5 THz);x,y偏振模消光比大致是隨頻率的增加而增加,在2.3 THz處分別達到22.94和19.2 dB.此外,與采用填充法的THz偏振分束器進行比較,除去操作方便,制作簡單外,在高頻處的性能指標(分離長度和損耗)更具優勢.而且所設計的THz偏振分束器由兩根聚合物光纖構成,目前制作聚合物多孔光纖的方法較多,常用的有:堆積法,擠壓法,打孔法[17]等,故而加工方便,較易實現.
[1]Galan J V,Sanchis P,Garcia J,Blasco J,Martinez A,Martí J 2009Appl.Opt.48 2693
[2]Yong L,Han K,Lee B,Jung J 2003Opt.Express11 3359
[3]Florous N,Saitoh K,Koshiba M 2005Opt.Express13 7365
[4]Zhang S,Zhang W,Geng P,Li X,Ruan J 2011Appl.Opt.50 6576
[5]Jiang H,Wang E,Zhang J,Hu L,Mao Q,Li Q 2014Opt.Express22 30461
[6]Mao D,Guan C,Yuan L 2010App.Opt.49 3748
[7]Saitoh K,Sato Y,Koshiba M 2004Opt.Express12 3940
[8]Wen K,Wang R,Wang J Y,Li J H 2008Chinese Journal of Lasers35 1962(in Chinese)[文科,王榮,汪井源,李建華2008中國激光35 1962]
[9]Bai J J,Wang C H,Hou Y,Fan F,Chang S J 2012Acta Phys.Sin.61 108701(in Chinese)[白晉軍,王昌輝,侯宇,范飛,常勝江2012物理學報61 108701]
[10]Jiang Z W,Bai J J,Hou Y,Bai X H,Chang S J 2013Acta Phys.Sin.62 028702(in Chinese)[姜子偉,白晉軍,侯宇,王湘暉,常勝江2013物理學報62 028702]
[11]Li S S,Zhang H,Bai J,Liu W 2014IEEE Photonics Technol.Lett.26 1399
[12]Zhu Y F 2014Ph.D.Dissertation(ZhenJiang:Jiangsu University)(in Chinese)[祝遠鋒 2014博士學位論文 (鎮江:江蘇大學)]
[13]Hou Y 2013Ph.D.Dissertation(Tianjin:Nankai University)(in Chinese)[侯宇 2013博士學位論文 (天津:南開大學)]
[14]Wang C H 2013Ph.D.Dissertation(Tianjin:Nankai University)(in Chinese)[王昌輝 2013博士學位論文 (天津:南開大學)]
[15]Wang J L,Yao J,Chen H,Zhong K,Li Z 2011J.Opt.13 994
[16]Wang J L 2011Ph.D.Dissertation(Tianjin:Tianjin University)(in Chinese)[汪靜麗 2011博士學位論文 (天津:天津大學)]
[17]Ma J R 2007M.S.Thesis(Hebei:Yanshan University)(in Chinese)[馬景瑞 2007碩士學位論文 (河北:燕山大學)]
PACS:42.81.Gs,87.50.U-,42.81.Qb DOI:10.7498/aps.66.024209
Dual-core terahertz polarization splitter based on porous fibers with near-tie units?
Wang Jing-Li1)?Liu Yang1)Zhong Kai2)
1)(Department of Opto-Electronic Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
2)(Key Laboratory of Optoelectronic Information Science and Technology(Ministry of Education),Tianjin University,Tianjin 300072,China)
1 August 2016;revised manuscript
18 October 2016)
Terahertz(THz)radiation,which is defined as the electromagnetic wave with a frequency ranging from 0.1 THz to 10 THz,has attracted widespread attention in recent years because of its unique possibilities in many fields.Highperformance THz polarization splitter,a key device in THz manipulation,is of great significance for studying the THz devices.In the present paper,a novel dual-core THz polarization splitter is proposed,which is based on porous fiber with near-tie units.The introduction of near-tie units into the fiber core can enhance asymmetry to realize high mode birefringence.And the results show that the porous THz fiber exhibits high birefringence at a level of 10-2over a wide frequency range.An index converse matching coupling(ICMC)method,which exhibits several advantages(such as short splitting length,high extinction ratio,low loss,and broad operation bandwidth),is used to allow for the coupling of one polarization mode within a broad operation band,while the coupling of the other polarization component is effectively inhibited.The splitting length is equal to one coupling length of x-or y-polarization component for which inter-core coupling occurs,and short splitting length means low transmission loss.Unlike the reported filling method,an adjusting structure method is proposed in the paper to satisfy the condition of index converse matching coupling.The full vectorfinite element method(FEM),which is based on the variational principle and the subdivision interpolation,is used to analyze the guiding properties of the proposed THz polarization splitter.The FEM is a widely used numerical method in physical modeling and simulation.Simulation results show that the THz polarization splitter operates within a wide frequency range of 0.5-2.5 THz.The splitting length does not exceed 2.5 cm in the whole frequency range and the minimum is only 0.428 cm.At 2.3 THz,the material absorption losses of x-and y-polarization are both less than 0.35 dB,and the extinction ratios for x-and y-polarization are 2.9 and 19.2 dB,respectively.Moreover,by comparing with a THz polarization splitter with filling method,the proposed THz polarization with adjusting structure method is easier to realize,the operating frequency range is wider,the splitting length is shorter,and the material absorption loss is lower.Finally,we note that the fabrication of such THz porous fiber designs could be realized by several methods,such as a capillary stacking technique,a polymer casting technique,a hole drilling technique,etc.
polarization splitter,terahertz,adjusting structure,porous fiber
:42.81.Gs,87.50.U-,42.81.Qb
10.7498/aps.66.024209
?光電信息技術教育重點實驗室(天津大學)開放基金(批準號:2014KFKT003)、國家自然科學基金(批準號:61571237)、國家自然科學基金青年科學基金(批準號:61405096)、區域光纖通信網與新型光通信系統國家重點實驗室開放基金資助項目(批準號:2015GZKF03006)和江蘇省光通信工程技術研究中心資助項目(批準號:ZSF0201)資助的課題.
?通信作者.E-mail:jlwang@njupt.edu.cn
*Project supported by the Key laboratory of Opto-electronic Information Technology,Ministry of Education(Tianjin University),China(Grant No.2014KFKT003),the National Natural Science Foundation of China(Grant No.61571237),the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61405096),the Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks,Shanghai Jiao Tong University,China(Grant No.2015GZKF03006),and the Research Center of Optical Communications Engineering&Technology,Jiangsu Province,China(Grant No.ZSF0201).
?Corresponding author.E-mail:jlwang@njupt.edu.cn