潘亞男 王婭靜 曹文超
摘 要:氧化亞氮(N2O)是第三大溫室氣體,也是21世紀內平流層臭氧(O3)的首要分解者。在過去約150年間,大氣中N2O的濃度持續增加,其主要原因在于化肥和有機肥料刺激下土壤中N2O的大量排放。因此,理解土壤中N2O的排放機制與影響因素,已經成為估算N2O排放清單和制定N2O減排政策的關鍵科學問題。土壤pH是影響N2O排放的重要環境因子之一,但目前對其相對重要性和影響機制尚不明確。該文基于已有文獻的梳理,總結了原位觀測和室內培養研究中土壤pH與N2O排放之間的統計結果,發現多數研究中N2O排放與土壤pH呈顯著負相關關系;并且從生物硝化、生物反硝化和非生物過程3個方面探討了土壤pH影響N2O排放的微觀機制。在此基礎上,本文對今后的研究工作提出展望,以期為后續的研究提供參考和依據。
關鍵詞:氧化亞氮;土壤pH;反硝化;硝化;非生物轉化
中圖分類號 S154.1 文獻標識碼 A 文章編號 1007-7731(2017)15-0019-7
Abstract:Nitrous oxide(N2O)is the third most important anthropogenic greenhouse gas,with a global warming potential 298 times that of CO2 over a 100-y time period. It is also the largest anthropogenic contributor to stratospheric ozone decomposition for the remainder of this century. Redox processes involving nitrogen(N)in soils contribute more than half of the global anthropogenic N2O emission,primarily fueled by reactive N from synthetic fertilizers and animal manure,added to agricultural lands. Understanding on the mechanisms of soil N2O emission have,therefore,become an important perquisite to construct sound N2O emission inventory and to make scientific N2O mitigation policy. Though soil pH has been found as the important environmental factor influencing N2O emission,its relative importance and operation mechanisms are not understood well. Based on the analysis of previous literatures,this review summarized the statistic relationship between N2O emission and soil pH in field and laboratory researches. Most studies showed that N2O emissions were negatively correlated with soil pH. In addition,this review probed the influencing mechanisms of soil pH and N2O emission,involving biological nitrification,biological denitrification and abiotic mechanism. Some prospects were also proposed and highlighted for the future related works. In future studies,more attentions should be paid to the influencing mechanisms of soil pH on N2O emission,considering both magnitude and gas product stoichiometry.
Key words:Nitrous oxide;Soil pH;Denitrification;Nitrification;Abiotic transformation
氧化亞氮(N2O)是大氣中的痕量組分,其對地球環境具有重要的影響[1],是僅次于二氧化碳(CO2)和甲烷(CH4)的第三大溫室氣體,其增溫潛勢是CO2的298倍[2,3]。在氟里昂排放得到有效控制后,N2O已成為消耗平流層臭氧的最主要物質[4-7]。大氣中N2O的來源包括自然源和人為源,其中自然源包括海洋、湖泊、草地、森林等,人為源包括農田土壤、工業排放等[8]。工業革命以后,大氣中N2O的濃度已經從0.27μL/L上升至0.319μL/L[5,10-11]。其中,化學氮肥和有機肥的施用是土壤N2O排放的主要原因[8-9,12-14]。因此,在深入理解排放機制的基礎上,實現土壤N2O科學減排,對緩解全球氣候變化具有重要的現實和科學意義。
影響土壤中N2O排放的因素眾多,概括起來可分為環境因子和人為因子2類,環境因子包括溫度、降水量等氣候條件和pH、有機質含量、土壤含水量、質地等土壤物理化學屬性[5,15-16,18];人為因子包括氮肥輸入量、氮肥類型、施肥方式、農作物類型、土地耕作及灌溉方式等[5,19-24]。相對于人為因子,環境因子具有明顯的地帶性規律,控制著土壤N2O排放的區域性差異。作為重要的環境因子,土壤pH在區域尺度和實驗室規模下均對N2O的排放具有顯著影響[25-28]。但目前相關研究較為零散,對土壤pH的影響機制和相對重要性尚缺乏系統性的認識。為此,本文基于對已有研究結果的梳理與歸納,總結了原位觀測和室內培養研究中土壤pH與N2O排放之間的表觀統計學關系,探討了土壤pH影響N2O排放的可能微觀機制,并提出對今后研究工作的展望。
1 土壤pH影響N2O排放的統計學分析
1.1 原位觀測研究 基于眾多的原位觀測結果,研究者可以從空間差異的角度分析各種因素對土壤N2O的影響。類似研究表明,土壤pH是影響N2O排放的最重要的因素之一,土壤N2O的排放量隨pH增加而顯著降低[21,25,29-32]。在流域尺度上,Weslien等[30]發現瑞典森林土壤中N2O排放通量與土壤pH之間的關系最為顯著。在德國南部的森林地區,Borken和Brumme[29]發現長期施用石灰的土壤所排放的N2O比對照土壤低9%~62%。韓琳等[25]分析了全球38個森林野外原位觀測結果,發現土壤pH是影響土壤N2O排放的最主要因子,其重要性大于氮沉降強度和氣候因子。Bouwman等[31]整理分析了全球846個農田土壤的N2O排放量數據,結果表明土壤pH是顯著影響N2O排放的主要因素之一,但該研究未能比較各因素之間的相對重要性。類似,Stehfest等[21]整合了全球1215個農田和自然土壤N2O排放數據,也發現土壤中N2O排放量隨土壤pH顯著下降。
1.2 室內培養研究 在實驗室條件下,通過比較各處理間N2O排放的差異同樣可以發現土壤pH的顯著影響。多數研究結果表明,向酸性/酸化土壤中添加石灰、白云石或生物質炭等物質在提升pH的同時能夠顯著降低N2O排放[33-36]。Shaaban等[34]發現,向酸性土壤中添加白云石可以顯著降低硝化過程中N2O的排放。Obia等[35]的研究發現,向酸性土壤中添加生物質炭可以有效抑制反硝化過程中N2O的凈產量,主要原因在于生物質炭提高了土壤pH。Quin等[36]發現桉樹生物質炭的添加可以增加土壤pH,進而抑制了反硝化過程中N2O的產生。但另外一些研究發現,土壤pH的增加也可能會促進N2O的產生。Feng等[33]研究發現,向酸性礦質土壤中加入石灰后反硝化過程中的N2O排放量隨土壤pH升高而顯著增加。因此,土壤pH對N2O排放的影響可能因土壤屬性、培養條件等因素而有所不同。在實驗室條件下還可以進一步探究氣體產物比N2O/(N2O+N2)與土壤pH之間的關系,從而有助于理解土壤pH影響N2O的微觀機制。Raut等[37]發現,集約化種植模式導致的土壤酸化增加了反硝化產物中N2O/(N2O+N2)比值。Sun等[38]研究結果表明,在中國東北部地區的草地和森林土壤中,土壤pH是影響反硝化速率和產物N2/N2O比值最主要的控制因素。Qu等[39]研究發現,土壤酸化能夠提高反硝化的氣體產物比,從而促進土壤N2O排放。
2 土壤中N2O產生的主要途徑
如圖1所示,土壤中N2O可以通過多種途徑產生。一般認為,硝化反應第一步中(表1,式1)好氧自養細菌利用銨(NH4+)作為電子供體、氧氣(O2)作為電子受體,產生的中間產物羥胺(NH2OH)通過自身分解或與亞硝酸鹽(NO2-)等其他化合物反應生成N2O[40](式2~3);反應第二步由一類特定的自養細菌將NO2-氧化成硝酸鹽(NO3-)(式4)。體系中的NO3-隨后通過異養細菌和真菌的反硝化作用,依次被還原為一氧化氮(NO)、N2O和氮氣(N2),該過程含氮化合物作為電子受體、有機碳作為電子供體,在氧氣含量很低或厭氧條件下進行[41]。硝化反應第一步中的氨氧化細菌可以把電子轉移給硝化作用或其它過程生成的NO2-,并生成N2O(式5),這一過程分別被稱為硝化細菌的反硝化作用(Nitrifier denitrificiation)[41]和厭氧氨氧化過程(Anammox)[42]。此外,土壤中鐵錳等金屬的離子和氧化物可以在氮素轉化過程中作為電子供體或受體,并產生N2O。在特定微生物的參與下,Fe3+或氧化鐵在厭氧條件下可以將NH4+氧化成N2O和N2,該過程稱為FEAMMOX[43](式6~7)。某些微生物還可以通過催化Fe2+與NO3-/NO2-之間的電子轉移獲取能量,同時伴有NO、N2O、N2等氣體產生,這個過程通常被稱為硝酸鹽依賴型鐵氧化(NDFO)[44](式8~11)。
研究發現,在沒有微生物參與的情況下N2O也可以通過一系列化學過程直接產生。化學硝化是指土壤中的氨或銨被三價鐵等氧化生成高價氮的過程,其產物可以包括N2、N2O、NO和NO2[45-46](如,式6~7)。化學反硝化是指NO3-或NO2-被低價態金屬離子(如,Fe2+、Mn2+)還原的過程,其氣體產物中同樣包含N2O等多種氣體[45-46](式8~13)。作為土壤氮循環過程的活性中間產物,NH2OH和NO2?可以通過一系列化學過程向N2O轉化。例如,NH2OH可以通過快速化學分解生成N2O和N2[32],也可以被鐵(Fe)或錳(Mn)等金屬氧化產生N2O[48-49](式15~16)。在酸性環境中(pH<5.5),NO2?容易通過自分解過程產生NO、N2O和HONO等含氮氣體[40,47](式14)。此外,土壤中的腐植酸等有機物也可以通過化學過程將NO2-進一步還原成NO、N2O等氣態化合物[40,47]。
3 土壤pH影響N2O排放的可能機制
由于N2O的產生途徑眾多,土壤pH的影響機制也十分復雜。目前,相關研究主要集中在生物反硝化、生物硝化和非生物過程3個方面。
3.1 反硝化作用 反硝化作用過程是土壤產生N2O的主要途徑之一,而pH是其主要影響因素之一。大多數反硝化微生物生長的最適pH范圍在6~8的中性環境中,在pH較低時(≤5)反硝化作用會進行的較為緩慢[50]但N2O的排放增加。研究表明,土壤pH可以通過改變反硝化微生物的群落多樣性和豐度影響N2O產生量[50-54]。Fierer等[51]研究發現,反硝化細菌在中性土壤中多樣性最高,酸性土壤中較低。Philippot等[52]發現土壤pH是影響反硝化細菌群落組成的重要因素。相比反硝化細菌群落本身的大小,總細菌群落內反硝化細菌所占的比例對反硝化速率的影響更重要[53]。同時,Chen等[55]研究發現,酸性土壤中產N2O的真菌群落更豐富,也具有較大的產N2O潛力。
從整個反硝化作用過程產生的酶來看,其反應需要硝酸鹽還原酶(Nar & Nap)、亞硝酸鹽還原酶(Nir)、一氧化氮還原酶(Nor)以及一氧化二氮還原酶(Nos)的催化,相應編碼基因分別為narG和napA、nirK/S、norB以及nosZ[56]。多數研究認為,土壤pH是通過影響反硝化酶活性,尤其是N2O還原酶的活性來調控N2O的排放[13,37,57-59]。?imek等[59]研究發現,在等于或接近自然土壤的pH時反硝化酶活性最高,如果pH被人為改變,反硝化酶活性會下降。朱永官等[13]總結發現,當pH>7時N2O還原酶活性增強,而在pH<7時其活性逐漸減小[57]。Shaaban等[58]研究發現,通過添加白云石提高土壤pH后,可以增加土壤N2O還原酶的活性。從基因角度來說,相應編碼基因的表達更易受到土壤pH的影響[60]。低pH會直接影響生物體產生功能性N2O還原酶的能力[39]。Liu等[60]研究表明,功能基因nirS、nirK和nosZ的豐度與pH呈顯著正相關關系,但nosZ基因及其轉錄本的相對數量并未受土壤pH的直接影響。Bergaust等[61]以脫氮副球菌(Paracoccus denitrificans)為研究對象,發現pH為6時對N2O還原速率有很大的影響,但通過定量基因轉錄產物并不能解釋這種現象。研究結果顯示,nosZ基因轉錄產物的相對數量未受到影響(nosZ/norB比值),在低pH下(對比pH為6和7)甚至有些增加。也有研究發現,低pH對N2O還原酶的抑制作用是通過干擾蛋白質的合成或裝配,進而影響了酶的活性[60-61]。此外,低pH也會降低土壤礦質氮和有機碳的可利用性[62]進而影響反硝化作用過程的進行。
3.2 硝化作用 氨氧化細菌(AOB)或氨氧化古菌(AOA)在氨單加氧酶和羥胺氧化還原酶的催化下將NH3氧化成NO2-,是硝化作用的關鍵步驟[63-64]。一般認為,由于AOB和AOA在土壤環境中占據的生態位不同[65-68],其對不同土壤pH的響應也不一致。如AOB在中性、堿性和高氮素投入的條件下是驅動硝化過程進行的主體,而AOA在酸性的自然生態系統中更能發揮作用[69]。即土壤pH會通過調控AOA和AOB的群落結構進而影響生物硝化作用中N2O產生量[63,72]。Yao等[72]研究發現強酸性土壤中AOA的豐度與潛在的硝化率直接相關,AOA是酸性土壤主要氨氧化菌,而AOB在低pH環境無法進行正常生長代謝。毛新偉等[63]研究發現微酸性土壤不利于AOA發揮作用,土壤pH下降至酸性時AOA的作用得到發揮。多數研究表明,土壤pH也會影響氨氧化菌基因和轉錄體的豐度從而影響硝化作用N2O的排放 [70-71]。Nicol等[70]研究發現古菌amoA基因和轉錄體的豐度隨土壤pH升高而下降,而細菌amoA基因的豐度普遍較低,轉錄體隨pH升高而增加。Gubry-Rangin等[71]研究發現古菌amoA基因的豐度和多樣性隨土壤pH升高而增加。此外,低pH條件不利于硝化作用底物NH3在土壤中的存留,因此土壤硝化潛勢與pH呈顯著正相關[70,73]。
3.3 非生物機制 土壤pH同樣是影響N2O非生物產生過程的重要因子。在化學反硝化中(如,式8-13)質子(H+)是產物,因此高pH有利于化學反硝化過程的進行[76]。Van Cleemput等[75]推斷,化學反硝化是堿性土壤(尤其是下層土壤)中N2O產生的重要途徑。劉晶[46]對北京東靈山土壤進行滅菌后培養發現,N2O產生量隨土壤pH升高而增加。然而基于熱力學計算,徐香云[76]發現化學反硝化過程的氣體產物比(如,NO/N2O、N2O/N2)隨體系pH升高而下降。盧晉晶[74]、劉晶[46]的實驗發現,不同土壤中,氮素化學轉化的氣體產物NO/N2O摩爾比值都隨體系pH升高而下降。已有實驗研究表明,化學反硝化的氣體產物在酸性條件下以NO為主[40,77],中性條件下以N2O為主[78-79],堿性條件下則以N2或NH4+為主[80-81]。這意味著,盡管高pH有利于NO3-/NO2-的化學還原,但對N2O產生的貢獻還不確定。理論上,化學硝化作用同樣也可以產生N2O(如,式7、8),但目前對其研究很少。李良謨等[82]的實驗發現,化學硝化過程中的氣體產物可包括NO、N2O和N2等[45]。徐香云[76]通過熱力學計算提出,化學硝化中NH4+的氧化速率及N2O/N2摩爾比值可能隨環境pH的降低而增加。
作為氮素轉化的活性中間產物,NO2-和NH2OH向N2O的化學轉化同樣受到土壤pH的影響[39,48,83-86]。在酸性條件下(pH<5.5),NO2-不穩定易發生自分解生成NO(式17),而后者可以通過化學過程被還原成N2O[40]。此外,NO2-還可以作為電子受體與土壤中還原性物質發生化學反應[47],土壤pH在其中的影響與前文中的化學反硝化類似。研究表明,硝化作用生成的NH2OH被高價態金屬或NO2-(式15、16、3)氧化分解生成N2O[48]。在這些反應中H+作為產物,因此從熱力學意義上降低pH更有利于反應發生。但是,Heil等[85]研究發現NH2OH非生物過程產生的N2O在pH較高時較多。類似地,馬蘭等[86]研究表明NH2OH非生物過程對N2O排放的貢獻與土壤pH呈正相關。究其原因,可能是低pH加速了NH2OH的質子化從而減緩了氧化分解速率[48,83]。
4 研究展望
理解土壤N2O排放的驅動機制與影響因子是編制N2O排放清單和制定N2O減排策略的科學基礎。土壤pH作為主要的環境因子之一,其對N2O排放的影響已經引起廣泛的重視。由于土壤氮素轉化過程的復雜性,對其影響的機制和程度一直沒有系統的認識。在今后的工作中,如下方面可能需要關注。
(1)土壤中生成N2O的過程眾多,而且不同條件下具有不同的相對重要性。目前的相關研究主要集中在生物學反硝化過程,對土壤pH在其他過程中的影響(如厭氧氨氧化、NDFO等)還知之甚少,需要在今后的研究中予以關注。此外,人們目前更多地關注N2O產生的生物學機制,對土壤pH在氮素非生物轉化過程中的影響尚有待澄清。
(2)作為氮素轉化過程的中間產物,N2O與其他氮素形態之間存在相互轉化的關系。目前的研究往往僅關注N2O一種氣體,忽略了不同pH下底物轉化和氣體產物間轉化的差異性。在今后的研究中,應將N2O置于土壤氮素轉化的整體框架下,同時關注土壤pH對底物轉化速率和氣體產物比的影響。
(3)目前,我國的農田、森林和草原土壤均出現區域性的酸化趨勢[89-91]。在理解影響機制的基礎上評價土壤酸化背景下N2O的排放規律對于建立科學的N2O排放清單、因地制宜制定N2O減排政策具有重要的科學與現實意義。
參考文獻
[1]Mcswiney C P,Robertson G P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize(Zea mays L.)cropping system[J].Global Change Biology,2005,11(10):1712-1719.
[2]Solomon S,Qin D,Manning M,et al. Climate change 2007:the Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge[C].New York:Cambridge University Press,2007:18-19.
[3]Skiba U M,Rees R M. Nitrous oxide,Climate Change and Agriculture[J].CAB Reviews,2014,9(10):1-7.
[4]封克,王子波,王小治,等. 土壤pH對硝酸根還原過程中N2O產生的影響[J].土壤學報,2004,41(1):81-86.
[5]蔡延江,丁維新,項劍. 農田土壤N2O和NO排放的影響因素及其作用機制[J].土壤,2012,44(6):881-887.
[6]Ravishankara A R,Daniel J S,Portmann R W. Nitrous oxide(N2O):The dominant ozone-depleting substance emitted in the 21st century[J].Science,2009,326(5949):123-125.
[7]Davidson E A,Kanter D. Inventories and scenarios of nitrous oxide emissions[J].Environmental Research Letters,2014,9(10),doi:10.1088/1748-9326/9/10/105012.
[8]陳衛洪,漆雁斌.農業生產中氧化亞氮排放源的影響因素分析[J].四川農業大學學報,2011,29(2):280-285.
[9]Liu X J,Zhang Y,Han W X,et al. Enhanced nitrogen deposition over China[J].Nature,2013,494(7438):459-462.
[10]Hartmann D L,Klein Tank A M G,Rusticucci M,et al. Observations:Atmosphere and Surface:Climate Change 2013:the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[C].STOCKER T F,QIN D,PLATTNER G K. Cambridge,New York:Cambridge University Press,2013:159-254.
[11]Ciais P,Sabine C,Bala G,et al. Carbon and Other Biogeochemical Cycles:Climate Change 2013:The Physical Science Basis[C].STOCKER T,QIN D,PLATNER G K. New York:Cambridge University Press,2013:465-570.
[12]Park S,Croteau P,Boering K A,et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940[J].Nature Geoscience,2012,5(4):261-265.
[13]朱永官,王曉輝,楊小茹,等. 農田土壤N2O產生的關鍵微生物過程及減排措施[J].環境科學,2014,35(2):792-800.
[14]Berdanier A B,Conant R T. Regionally differentiated estimates of cropland N2O emissions reduce uncertainty in global calculations[J].Global Change Biology,2012,18(3):928-935.
[15]鄭循華,王明星,王躍思,等. 稻麥輪作生態系統中土壤濕度對N2O產生與排放的影響[J].應用生態學報,1996,7(3):273-279.
[16]蔡祖聰,Mosier A R.土壤水分狀況對CH4氧化,N2O和CO2排放的影響[J].土壤,1999(6):289-294.
[17]焦燕,黃耀. 影響農田氧化亞氮排放過程的土壤因素[J].氣候與環境研究,2003,8(4):457-466.
[18]Rochette P,Angers D A,Chantigny M H,et al. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures[J].Canadian Journal of Soil Science,2008,88(2):175-187.
[19]Cayuela M L,Aguilera E,Sanz-Cobena A,et al. Direct nitrous oxide emissions in Mediterranean climate cropping systems:Emission factors based on a meta-analysis of available measurement data[J].Agriculture,Ecosystems & Environment,2017,238:25-35.
[20]李鑫,巨曉棠,張麗娟,等. 不同施肥方式對土壤氨揮發和氧化亞氮排放的影響[J].應用生態學報,2008,19(1):99-104.
[21]Stehfest E,Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation:summarizing available measurement data and modeling of global annual emissions[J].Nutrient Cycling in Agroecosystems,2006,74(3):207-228.
[22]Bouwman A F,Boumans L,Batjes N H. Emissions of N2O and NO from fertilized fields:Summary of available measurement data[J].Global Biogeochemical Cycles,2002,16(4),doi:10.1029/2001GB001811.
[23]Chatskikh D,Olesen J E. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley[J].Soil & Tillage Research,2007,97(1):5-18.
[24]Nath C P,Das T K,Rana K S,et al. Greenhouse gases emission,soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices[J].Archives of Agronomy and Soil Science,2017,doi:0.1080 / 03650340. 2017.
1300657.
[25]韓琳,王鴿,王偉,等. 全球森林土壤N2O排放通量的影響因子[J].生態學雜志,2012,31(2):446-452.
[26]Hofstra N,Bouwman A F. Denitrification in agricultural soils:Summarizing published data and estimating global annual rates[J].Nutrient Cycling in Agroecosystems,2005,72(3):267-278.
[27]?imek M,Cooper J E. The influence of soil pH on denitrification:progress towards the understanding of this interaction over the last 50 years[J].European Journal of Soil Science,2002,53(3):345-354.
[28]Han B,Ye X H,Li W,et al. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J].Journal of Soils and Sediments,2017,doi:10.1007/s11368-017-1700-x.
[29]Borken W,Brumme R. Liming practice in temperate forest ecosystems and the effects on CO2,N2O and CH4 fluxes[J].Soil Use and Management,1997,13(s4):251-257.
[30]Weslien P,Klemedtsson ? K,B?rjesson G,et al. Strong pH influence on N2O and CH4 fluxes from forested organic soils[J].European Journal of Soil Science,2009,60(3):311-320.
[31]Bouwman A F,Boumans L,Batjes N H. Modeling global annual N2O and NO emissions from fertilized fields[J].Global Biogeochemical Cycles,2002,16(4),doi:10.1029/2001GB001812.
[32]He Y H,Zhou X H,Jiang L L,et al. Effects of biochar application on soil greenhouse gas fluxes:a meta-analysis[J].Global Change Biology Bioenergy,2017,9(4):743-755.
[33]Feng K,Yan,Hütsch B W,et al. Nitrous oxide emission as affected by liming an acidic mineral soil used for arable agriculture[J].Nutrient Cycling in Agroecosystems,2003,67(3):283-292.
[34]Shaaban M,Peng Q A,Hu R G,et al. Dolomite application to acidic soils:a promising option for mitigating N2O emissions[J].Environmental Science and Pollution Research,2015,22(24):19961-19970.
[35]Obia A,Cornelissen G,Mulder J,et al. Effect of soil pH Increase by biochar on NO,N2O and N2 production during denitrification in acid soils[J].Plos One,2015,10(9),doi:10.1371/journal.pone.0138781.
[36]Quin P,Joseph S,Husson O,et al. Lowering N2O emissions from soils using eucalypt biochar:the importance of redox reactions[J].Scientific Reports,2015,5,doi:10.1038/srep16773.
[37]Raut N,D?rsch P,Sitaula B K,et al. Soil acidification by intensified crop production in South Asia results in higher N2O/(N2+N2O)product ratios of denitrification[J].Soil Biology and Biochemistry,2012,55(6):104-112.
[38]Sun P P,Zhuge Y P,Zhang J B,et al. Soil pH was the main controlling factor of the denitrification rates and N2/N2O emission ratios in forest and grassland soils along the Northeast China Transect(NECT)[J].Soil Science and Plant Nutrition,2012,58(4):517-525.
[39]Qu Z,Wang J G,Alm?y T,et al. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2)product ratio of denitrification,primarily due to acidification of the soils[J].Global Change Biology,2014,20(5):1685-1698.
[40]Heil J,Vereecken H,Brüggemann N. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J].European Journal of Soil Science,2016,67(1):23-39.
[41]Venterea R T,Halvorson A D,Kitchen N,et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems[J].Frontiers in Ecology and the Environment,2012,10(10):562-570.
[42]賀紀正,張麗梅. 土壤氮素轉化的關鍵微生物過程及機制[J].微生物學通報,2013,40(1):98-108.
[43]Ding L J,An X L,Li S,et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J].Environmental Science & Technology,2014,48(18):10641-10647.
[44]Carlson H K,Clark I C,Blazewicz S J,et al. Fe(II)oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions[J].Journal of Bacteriology,2013,195(14):3260-3268.
[45]王婭靜,劉晶,郭景恒. 鐵作用下土壤氮素化學轉化過程的研究進展[J].中國農業大學學報. 2014,19(2):95-99.
[46]劉晶. 土壤pH值對氮素化學轉化過程的影響[D].北京:中國農業大學,2014.
[47]Wei J,Amelung W,Lehndorff E,et al. N2O and NOX emissions by reactions of nitrite with soil organic matter of a Norway spruce forest[J].Biogeochemistry,2017,132(3):325-342.
[48]Zhu-Barker X,Cavazos A R,Ostrom N E,et al. The importance of abiotic reactions for nitrous oxide production[J].Biogeochemistry,2015,126(3):251-267.
[49]Heil J,Wolf B,Brüggemann N,et al. Site-specific 15N isotopic signatures of abiotically produced N2O[J].Geochimica et Cosmochimica Acta,2014,139:72-82.
[50]Paul E A ,Clark F E. Reduction and transport of nitrate:Soil Microbiology and Biochemistry[M].New York:Academic Press,1989,9:81-85.
[51]Fierer N,Jackson R B. The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):626-631.
[52]Philippot L,Hallin S,Schloter M. Ecology of denitrifying prokaryotes in agricultural soil[M].USA:Elsevier Academic Press Inc,2007,96:249-305.
[53][C] uhel J,?imek M,Laughlin R J,et al. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity[J].Applied and Environmental Microbiology,2010,76(6):1870-1878.
[54]Bollag J M,Orcutt M L,Bollag B. Denitrification by isolated soil bacteria under various environmental conditions[J].Soil Science Society of America Proceedings,1970,34(6):875-879.
[55]Chen H H,Mothapo N V,Shi W. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production[J].Microbial Ecology,2015,69(1):180-191.
[56]Zumft W G. Cell biology and molecular basis of denitrification[J].Microbiology and Molecular Biology Rreviews,1997,61(4):533-616.
[57]Richardson D,Felgate H,Watmough N,et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle-could enzymic regulation hold the key?[J].Trends in Biotechnology,2009,27(7):388-397.
[58]Shaaban M,Peng Q,Lin S,et al. Nitrous oxide emission from two acidic soils as affected by dolomite application[J].Soil Research,2014,52(8):841-848.
[59]?imek M,Jí?ová L,Hopkins D W. What is the so-called optimum pH for denitrification in soil?[J].Soil Biology & Biochemistry,2002,34(9):1227-1234.
[60]Liu B B,M?rkved P T,Frosteg?rd ?,et al. Denitrification gene pools,transcription and kinetics of NO,N2O and N2 production as affected by soil pH[J].Fems Microbiology Ecology,2010,72(3):407-417.
[61]Bergaust L,Mao Y J,Bakken L R,et al. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in paracoccus denitrificans[J].Applied and Environmental Microbiology,2010,76(19):6387-6396.
[62]Baggs E M,Smales B C,Bateman E J. Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil[J].Biology and Fertility of Soils,2010,46(7):793-809.
[63]毛新偉,程敏,徐秋芳,等. 硝化抑制劑對毛竹林土壤N2O排放和氨氧化微生物的影響[J].土壤學報,2016,53(6):1528-1540.
[64]Frame C H,Casciotti K L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium[J].Biogeosciences,2010,7(9):2695-2709.
[65]Shen J P,Zhang L M,Di H J,et al. A review of ammonia-oxidizing bacteria and archaea in Chinese soils[J].Frontiers in Microbiology,2012,3(August):Article 296.
[66]Prosser J I,Nicol G W. Archaeal and bacterial ammonia-oxidisers in soil:the quest for niche specialisation and differentiation[J]. Trends in Microbiology,2012, 20(11),523-531.
[67]Schleper C. Ammonia oxidation:different niches for bacteria and archaea?[J]. The ISME Journal,2010,4(9),1092-1094.
[68]Martens-Habbena W,Berube P M,Urakawa H,et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J].Nature,2009,461(7266),976-U234.
[69]王敬國. 生物地球化學——物質循環與土壤過程[M].北京:中國農業大學出版社,2017:136-140.
[70]Nicol G W,Leininger S,Schleper C,et al. The influence of soil pH on the diversity,abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J].Environmental Microbiology,2008,10(11):2966-2978.
[71]Gubry-Rangin C,Hai B,Quince C,et al. Niche specialization of terrestrial archaeal ammonia oxidizers[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(52):21206-21211.
[72]Yao H Y,Campbell C D,Chapman S J,et al. Multi-factorial drivers of ammonia oxidizer communities:evidence from a national soil survey[J].Environmental Microbiology,2013,15(9SI):2545-2556.
[73]張苗苗,王伯仁,李冬初,等. 長期施加氮肥及氧化鈣調節對酸性土壤硝化作用及氨氧化微生物的影響[J].生態學報,2015,35(19):6362-6370.
[74]盧晉晶. 土壤pH對化學反硝化氣體產物及其組分比的影響[D].北京:中國農業大學,2012.
[75]Van Cleemput O. Subsoils:chemo- and biological denitrification,N2O and N2 emissions[J].Nutrient Cycling in Agroecosystems,1998,52(2-3):187-194.
[76]徐香云. 無機氮(NO3-、NH4+)非生物轉化過程的初步研究[D].北京:中國農業大學. 2011.
[77]Venterea R T,Rolston D E. Nitric and nitrous oxide emissions following fertilizer application to agricultural soil:Biotic and abiotic mechanisms and kinetics[J].Journal of Geophysical Research-Atmospheres,2000,105(D12):15117-15129.
[78]Kampschreur M J,Kleerebezem R,De Vet W W J M,et al. Reduced iron induced nitric oxide and nitrous oxide emission[J].Water Research,2011,45(18):5945-5952.
[79]Grabb K C,Buchwald C,Hansel C M,et al. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II)and its production of nitrous oxide[J].Geochimica et Cosmochimica Acta,2017,196:388-402.
[80]Ottley C J,Davison W,Edmunds W M. Chemical catalysis of nitrate reduction by iron(II)[J].Geochimica et Cosmochimica Acta,1997,61(9):1819-1828.
[81]Hansen H C B,Koch C B,Nancke-Krogh H,et al. Abiotic nitrate reduction to ammonium:Key role of green rust[J].Environmental Science & Technology,1996,30(6):2053-2056.
[82]李良謨,潘映華,伍期途,等. 無定形氧化鐵作為嫌氣下NH4+氧化時電子受體的研究[J].土壤學報,1988,25(2):184-190.
[83]Van Cleemput O,Baert L. Calculations of the nitrite decomposition reactions in soils:Environmental Biogeochemistry and Geomicrobiology[M].Germany:Wolfenbuettel,1978:591-600.
[84]Van Cleemput O,Samater A H. Nitrite in soils:Accumulation and role in the formation of gaseous N compounds[J].Fertilizer Research,1995,45(1):81-89.
[85]Heil J,Liu S R,Vereecken H,et al. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J].Soil Biology & Biochemistry,2015,84:107-115.
[86]馬蘭,李曉波,李博倫,等. 土壤中羥胺和亞硝態氮非生物過程對N2O排放的貢獻[J].土壤學報,2016,53(5):1181-1190.
[87]Guo J H,Liu X J,Zhang Y,et al. Significant Acidification in Major Chinese Croplands[J].Science,2010,327(5968):1008-1010.
[88]Yang Y H,Ji C J,Ma W H,et al. Significant soil acidification across northern China's grasslands during 1980s-2000s[J].Global Change Biology,2012,18(7):2292-2300.
[89]Yang Y H,Li P,He H L,et al. Long-term changes in soil pH across major forest ecosystems in China[J].Geophysical Research Letters,2015,42(3):933-940.
[90]Huang J,Zhang W,Mo J M,et al. Urbanization in China drives soil acidification of Pinus massoniana forests[J].Scientific Reports,2015,5,doi:10.1038/srep13512.
[91]Lu X K,Mao Q G,Gilliam F S,et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J].Global Change Biology,2014,20(12):3790-3801.
(責編:張宏民)