999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有限制條件的部分線性模型的經驗似然推斷(英文)

2017-08-28 08:14:25劉常勝李永獻
湖南師范大學學報·自然科學版 2017年4期
關鍵詞:經驗模型

劉常勝+李永獻

摘 要 本文將經驗似然方法應用到具有限制假設條件的部分線性模型中. 為了檢驗假設條件, 構造基于零假設和對立假設條件下的極大經驗對數似然比估計值的差值統計量. 而且在零假設下證明該統計量的極限分布為標準的χ2分布. 數值模擬表明所提出的檢驗統計量的優勢.

關鍵詞 經驗似然; 限制條件; 部分線性模型; 假設檢驗; χ2分布

It is well known that there are some striking advantages with the empirical likelihood (EL) method proposed by Owen[1-2] in the construction of confidence intervals for unknown parameter, e.g., it turns out that by using the empirical likelihood method, one does not have to explicitly estimate the asymptotic variance of the quantity. The EL method only uses the data to determine the shape and orientation of confidence regions. Note that using empirical likelihood for confidence interval is a well known procedure in nonparametric statistics. The EL method has been applied to partially linear regression model by Shi and Lau[3], Wang and Jing[4-5].

For a long time, however, its main theory was about the parametric regressions. The aforementioned articles mainly discussed the estimation of the parametric component rather than testing. In practice, after solving the problems of identification and fitting of the model (1), one of the further inference issues is to evaluate if certain explanatory variables in the parametric components influence the response significantly. The study of this issue is also one of the important aspects in regression analysis because it is not only useful in variable selection but also in explanatory power.

Motivated by the above, we shall apply EL method to the partially linear model with restricted condition. More generally, we consider the following linear hypothesis:

The rest of this paper is organized as follows. In Section 2, applying the profile empirical likelihood procedure, we construct the empirical likelihood estimator on parameter with linear restriction and without any restriction. In Section 3, we construct the test statistic and study its asymptotic distribution. In Section 4, simulations are conducted to examine the performance of the proposed approaches. The proofs of the main results are given in Section 5.

1 Empirical likelihood estimation on parameter

For the need of constructing the test statistic, we first develop estimating approach for model (1) under the null hypothesis in this section. That is, we estimate the unknown quantities in model (1) with the restricted condition Aβ=b. Then model (1) can be written as

We summarize our findings as follows. When the null hypothesis is true (that is, c=0), the rejection frequencies (estimated sizes) of both our proposed test based Tn and the restricted least-squares approach test based Wn are quite good and close to their nominal levels 0.05 under different error distributions. Under the alternative hypothesis, the rejection rate seems very robust to the variation of the type of error distribution. With the increasing of c, the test power of our proposed test is slightly better than the test based on the residual sum of squares.

References:

[1] OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika,1988,75(2):237-249.

[2] OWEN A B. Empirical likelihood ratio confidence regions[J]. Ann Stat, 1990,18(1):90-120.

[3] SHI J, LAU T S. Empirical likelihood for partially linear models[J]. J Multiv Anal, 2000,72(1):132-148.

[4] WANG Q H, JING B Y. Empirical likelihood for partial linear models with fixed designs[J]. Stat Prob Lett, 1999,41(4):425-433.

[5] WANG Q H, JING B Y. Empirical likelihood for partially linear models[J]. Ann Inst Stat Math, 2003,55(3):585-595.

[6] FAN J. Local linear regression smoothers and their minimax efficiencies[J]. Ann Stat, 1993,21(1):196-216.

[7] FAN J, GIJBELS I. Local polynomial modelling and its applications[M]. New Tork: Chapman & Hall Press, 1996.

[8] WEI C, WANG Q. Statistical inference on restricted partially linear additive errors-in-variables models[J]. Test, 2012,21(4):757-774.

[9] LIANG H, HRDLE W, CARROLL R J. Estimation in a semiparametric partially linear errors-in-variables model[J]. Ann Stat, 1999,27(5):1519-1535.

[10] LIANG H, THURSTON S W, RUPPERT D, et al. Additive partial linear models with measurement errors[J].Biometrika, 2008,95(3):667-678.

[11] LIANG H Y, JING B Y. Asymptotic normality in partial linear models based on dependent errors[J].J Stat Plan Infer, 2009,139(4):1357-1371.

[12] 洪圣巖. 一類半參數回歸模型的估計理論[J]. 中國科學:A 輯, 1991,34(12):1258-1272.

[13] 孫耀東. 分歧泊松自回歸模型的馬爾可夫性[J]. 湖南師范大學自然科學學報, 2011,34(4):18-20.

[14] WU C. Some algorithmic aspects of the empirical likelihood method in survey sampling[J]. Stat Sin, 2004,14(4):1057-1068.

[15] XUE L G, ZHU L X. Empirical likelihood for a varying coefficient model with longitudinal data[J]. J Am Stat Assoc, 2007,102(478):642-654.

[16] ZHU L, XUE L. Empirical likelihood confidence regions in a partially linear single-index model[J].J Royal Stat Soc: Ser B, 2006,68(3):549-570.


登錄APP查看全文

猜你喜歡
經驗模型
一半模型
2021年第20期“最值得推廣的經驗”評選
黨課參考(2021年20期)2021-11-04 09:39:46
重尾非線性自回歸模型自加權M-估計的漸近分布
經驗
2018年第20期“最值得推廣的經驗”評選
黨課參考(2018年20期)2018-11-09 08:52:36
小經驗試試看
中國蜂業(2018年6期)2018-08-01 08:51:14
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
當你遇見了“零經驗”的他
都市麗人(2015年4期)2015-03-20 13:33:22
一個相似模型的應用
主站蜘蛛池模板: 成人小视频在线观看免费| 99热国产这里只有精品无卡顿"| 噜噜噜久久| 不卡无码h在线观看| 婷婷午夜影院| 久久成人国产精品免费软件 | 日韩在线永久免费播放| 嫩草在线视频| 亚洲av无码久久无遮挡| 久久伊人色| 91麻豆国产在线| 国产成人高清精品免费| 老司机精品99在线播放| 波多野结衣第一页| 欧美国产日韩在线观看| 国产成人精品优优av| 色婷婷在线影院| 成人午夜免费观看| 狼友视频一区二区三区| 综合五月天网| 91在线一9|永久视频在线| 国产精品极品美女自在线网站| 永久毛片在线播| 美女扒开下面流白浆在线试听 | 欧美不卡视频一区发布| 婷婷色狠狠干| 91精品免费高清在线| 成人国产精品一级毛片天堂| 亚洲精品无码久久毛片波多野吉| h视频在线播放| 伊人久久精品无码麻豆精品 | 日韩精品一区二区三区中文无码| 亚洲国产欧美国产综合久久 | 国产精品网址在线观看你懂的| 国产91精选在线观看| 亚洲第一天堂无码专区| 在线a网站| 亚洲一区二区成人| 黄色国产在线| 亚洲中文无码av永久伊人| 免费在线色| 91麻豆精品视频| 在线观看免费人成视频色快速| 波多野结衣二区| 国产a网站| 2020国产精品视频| 日本三级黄在线观看| 在线欧美一区| 亚洲一区二区三区在线视频| 亚洲天堂成人| 无码综合天天久久综合网| 成人年鲁鲁在线观看视频| 伊人色综合久久天天| 国产无码性爱一区二区三区| 激情综合激情| 久久国语对白| 岛国精品一区免费视频在线观看| 国产视频一二三区| 日韩欧美亚洲国产成人综合| 亚洲人成网站色7799在线播放| 久久久91人妻无码精品蜜桃HD | 秋霞国产在线| 无码精品国产VA在线观看DVD| 国产9191精品免费观看| 国产xxxxx免费视频| 国产91小视频在线观看| 久久成人国产精品免费软件| 欧美色图久久| 国产精品片在线观看手机版| 色偷偷av男人的天堂不卡| 久久青草免费91线频观看不卡| 国产精品毛片一区视频播| 欧美色图久久| 欧美午夜视频在线| 在线观看国产精品第一区免费| h视频在线播放| 国产欧美精品一区二区| 亚洲天堂成人| 制服丝袜亚洲| 东京热一区二区三区无码视频| 免费看a级毛片| 91小视频在线播放|