花可可王道中?郭志彬李叢叢
(1 安徽省農業科學院土壤肥料研究所,合肥 230031)
(2 安徽省農業科學院機關黨委,合肥 230031)
施肥方式對砂姜黑土鉀素利用及盈虧的影響*
花可可1王道中1?郭志彬1李叢叢2
(1 安徽省農業科學院土壤肥料研究所,合肥 230031)
(2 安徽省農業科學院機關黨委,合肥 230031)
以砂姜黑土長期施肥試驗為平臺,研究砂姜黑土冬小麥—夏大豆輪作系統下作物鉀素吸收量、鉀素回收率、土壤鉀素盈虧量和速效鉀含量的演變特征,探明土壤速效鉀與外源鉀投入、土壤累積鉀盈虧的響應關系,分析不施肥(CK)、常規化肥(CF)、化肥+麥稈(SCF)、化肥+豬糞(PCF)、化肥+牛糞(CCF)等施肥方式對土壤鉀素利用及盈虧的影響,以期探尋砂姜黑土地區高產高效的施鉀方式。結果表明:29 a作物鉀素平均回收率在55.1%~66.1%,高低順序為CCF > PCF> SCF > CF。土壤累積鉀盈虧與土壤速效鉀增量呈顯著線性關系(p<0.05),土壤中鉀素每盈余100 kg hm-2,CF、SCF、PCF和CCF處理土壤速效鉀含量分別增加1.4、1.8、2.3和15.8 mg kg-1;土壤鉀素投入量與速效鉀含量呈顯著線性關系(p<0.05),CF處理每投入鉀100 kg hm-2,土壤速效鉀含量增加0.4 mg kg-1,而SCF、PCF和CCF處理每投入鉀100 kg hm-2,土壤速效鉀含量分別增加0.5、0.6和4.3 mg kg-1,這說明適當增施有機肥可提升土壤鉀素的供應能力。綜上所述,投入有機物料是影響土壤鉀素利用的重要調控措施,長期增施有機肥可提高作物鉀素回收率以及土壤中盈余的鉀素向速效鉀的轉化能力,本試驗條件下以增施牛糞效果最好,豬糞和秸稈次之。因此,砂姜黑土小麥—大豆輪作系統下秸稈養畜過腹還田是實現作物高產高效的一種推薦施鉀方式。
長期施肥;有機物料;鉀素利用;鉀素盈虧;土壤速效鉀
鉀是土壤肥力的重要物質基礎,是作物生長所必需的營養元素之一,其對保障作物的高產穩產有重要作用[1-4]。但是,耕地缺鉀依然是制約農業可持續生產的重要因素[5-6]。近幾十年來,由于作物產量的提高及土壤鉀素產出與投入不平衡的加劇,農田土壤缺鉀面積有不斷擴大的趨勢。因此,加強農田土壤鉀素利用及其調控因素的研究對實現鉀肥的高效利用有重要的理論和現實意義。
影響農田土壤鉀素利用的因素諸多,如氣候、土壤類型和管理措施等[7-9]。施肥作為重要的農田管理措施之一,是影響土壤鉀素利用的重要因素。目前,國內外學者對農田土壤鉀素的研究較為全面,在不同施肥方式下作物鉀素利用率、土壤鉀形態和有效性等方面均開展了系列研究,并取得了豐碩的學術成果[10-11]。相關研究認為,土壤鉀素含量隨著外源鉀素投入量的增加而增加,外源鉀素的形態可直接影響土壤中不同形態鉀素含量的增幅,因此,有機肥可有效提升土壤鉀庫和速效鉀含量[12-13]。例如,張水清等[14]發現有機肥可顯著提高土壤速效鉀含量和鉀肥的有效性。當前,針對施肥方式對作物鉀素利用及土壤鉀有效性的影響開展了較為系統的研究,但不同施肥方式下土壤速效鉀與外源鉀投入、土壤累積鉀盈虧的定量關系及其差異尚不清楚。
砂姜黑土區是我國黃淮海平原主要的糧食產區,全國面積約400萬hm2,其中安徽省面積最大,約165萬hm2,占安徽省旱地總面積的40%以上,也是本省主要的中低產田之一[15]。在該地區,較多研究主要集中在施肥方式對土壤有機質、磷素利用和微生物性狀的影響等[16-18],而關于長期不同施肥方式下土壤鉀素利用與演變特征的研究極少,特別是對土壤鉀素累積與土壤速效鉀的定量關系并不清楚。
本文以砂姜黑土長期施肥試驗為平臺,分析砂姜黑土冬小麥—夏大豆輪作系統下作物鉀素吸收量、鉀素回收率、土壤鉀盈虧量和速效鉀含量的年際變化特征,探究土壤速效鉀與外源鉀投入、土壤累積鉀盈虧的響應關系,闡明施肥方式對土壤鉀素利用及盈虧的影響,為確定砂姜黑土區高產高效的施鉀方式奠定基礎。
1.1 試驗區概況
試驗點位于農業部蒙城砂姜黑土生態環境重點野外觀測站內(33°13′N,116°37′E),地處黃淮海平原南部的淮北平原,屬暖溫帶半濕潤季風氣候,多年平均氣溫16.5 ℃,年平均降水量872 mm。土壤類型為砂姜黑土(鈣積濕潤變性土),成土母質為河湖相沉積物,多呈堿性。
1.2 試驗設計
試驗始于1982年,試驗區初始土壤的基本理化性質為:有機質10.1 g kg-1,全氮0.96 g kg-1,全磷0.28 g kg-1,全鉀17 g kg-1,pH 7.4。種植制度為冬小麥—夏大豆輪作,共設置5種施肥處理:不施肥(CK)、常規化肥(CF)、化肥+麥稈(SCF)、化肥+豬糞(PCF)和化肥+牛糞(CCF)。每個小區面積為70 m2,隨機分布,4次重復。全年施氮肥總量180 kg hm-2(以純氮計)、磷肥39.3 kg hm-2(以純磷計)、鉀肥112 kg hm-2(以純鉀計)。氮磷鉀肥中氮肥為尿素,磷肥為過磷酸鈣,鉀肥為氯化鉀。施肥的方式采用基肥一次性于小麥播種前人工施入,大豆不施肥。耕作和施肥同步,耕作方式為人工鋤耕,深度為20 cm。冬小麥采取條播的方式,夏大豆為穴播。冬小麥播種時間為每年11月初,夏大豆播種時間為每年6月初。各處理施肥設計方案見表1。
1.3 樣品采集與測定方法
每年土壤樣品的采集均在大豆收獲后,用土鉆進行“S”形多點取樣,采集0~20 cm 耕層土壤。土樣自然風干后,人工除去肉眼可見的根茬及秸稈碎屑,過2 mm篩,混勻后備用。原土磨細后分別過20目和100目篩,以供不同指標分析。土壤樣品采集的年份為1983年、1991年、1999年、2001年、2003年、2005年、2007年、2009年和2011年,共9個年份。植株樣品的采集為小區內“S”形隨機采樣。土壤及植株樣品分析均參照魯如坤[20]的方法,其中,土壤有機質測定采用重鉻酸鉀外加熱法;土壤全氮采用凱氏定氮法;堿解氮采用堿解擴散法;全磷采用酸溶鉬銻抗比色法;有效磷采用NaHCO3提取—鉬銻抗比色法;土壤全鉀采用氫氧化鈉熔融―火焰光度計法;緩效鉀采用硝酸溶液煮沸提取―火焰光度計法;速效鉀采用乙酸銨浸提―火焰光度計法測定;pH測定采用電位法;植株鉀采用H2SO4-H2O2氧化―火焰光度計法測定。

表1 不同施肥處理施肥量Table 1 Application rates of chemical fertilizers and organic manure relative to treatment
1.4 數據分析
作物產量采用小區實打實收法,產量測定的年份與土壤采集的年份相同。小麥和大豆的草谷比分別按1.2和1.1[17]計算,風干測產含水率,按0.14計算[17],作物地上部分鉀素吸收量Ku與作物鉀素回收率Re參照Qiu等[13]所提供方法。
土壤鉀素年盈虧和累積盈虧量:

式中,Ks為某一年份土壤鉀素年盈虧量,kg hm-2a-1;Kt為相應年份鉀素投入量,kg hm-2a-1;Ku為相應年份作物地上部分吸鉀量,kg hm-2a-1;Kb為某一年份土壤鉀素累積盈虧量,kg hm-2;i為施肥年數。
土壤速效鉀變化量ΔAK:

式中,Ka為某一年份土壤速效鉀含量,mg kg-1;Ki為1982年土壤速效鉀含量。
土壤鉀累積投入量Kc、累積鉀盈虧與土壤速效鉀的定量關系:

式中,x代表Kc或Kb,kg hm-2;y代表ΔAK或AK,mg kg-1。
所有的測定結果用Excel 2010進行數據的初步整理和匯總,用SPSS 19.0進行統計分析,多重比較采用最小顯著差異法(LSD)檢驗,顯著水平p<0.05;用SigmaPlot 10.0進行繪圖。
2.1 施肥方式對土壤肥力的影響
長期施肥可顯著影響土壤肥力狀況(表2),與CK處理相比,CF處理土壤有機質、全氮、全磷、全鉀、堿解氮、有效磷和速效鉀含量分別增加44.1%、25%、31.3%、13.7%、29.5%、254.8%和13.9%,差異均達到顯著水平(p<0.05)。與CF處理相比,長期增施有機肥(SCF、PCF和CCF處理)土壤全量養分(有機質、全氮、全磷)及有效養分(土壤堿解氮、有效磷、速效鉀和緩效鉀)含量均有顯著提高,提升的幅度因有機物料類型的不同有所差別,而對土壤全鉀含量無顯著影響。SCF、PCF和CCF處理土壤有機質提升的幅度分別為30.6%、44.2%和109.5%,CCF處理顯著高于SCF和PCF處理(p<0.05),SCF和PCF處理間無顯著差異(p>0.05)。與CK處理相比,長期施用化肥(CF)和增施秸稈(SCF)處理土壤pH分別降低10.1%和14.5%,差異顯著(p<0.05),而增施豬糞和牛糞處理(PCF和CCF)對土壤pH無顯著影響。
2.2 施肥方式對植株鉀含量及鉀素動態吸收的影響
各施肥處理小麥籽粒和秸稈鉀含量分別在3.2~4.4和5.5~14.4 g kg-1之間(表3)。與CK處理相比,CF處理可顯著(p<0.05)增加小麥秸稈中鉀含量,而對籽粒鉀含量無顯著影響(p>0.05);增施有機物料(SCF、PCF和CCF處理)可顯著增加小麥籽粒和秸稈中鉀素含量(p<0.05),其中CCF處理增幅最大。施肥方式對大豆籽粒和秸稈中鉀素含量的影響與小麥相似;小麥和大豆地上部分吸鉀量動態變化如圖1所示。CK處理作物吸鉀量逐年下降,而各施肥處理作物吸鉀量均隨產量的增加呈穩步上升的態勢。整個試驗期,CK、CF、SCF、PCF和CCF處理小麥和大豆地上部分多年平均吸鉀量在8.3~104.4和13.8~59.6 kg-1hm-2a-1之間,作物吸鉀量(小麥與大豆之和)分別為22.0、83.7、117.6、121.7和164.0 kg-1hm-2a-1。與CK處理相比,CF處理作物年均吸鉀量增加了280.5%,SCF、PCF和CCF處理分別較CF處理提升40.5%、45.4%和95.9%,差異顯著(p<0.05),其中SCF與PCF處理間無顯著差異,CCF處理顯著高于SCF與PCF處理(p<0.05)。

表2 不同施肥處理表層土壤(0~20 cm)理化性質Table 2 Physicochemical properties of the soil in the 0~20 cm soil layer relative to treatment

表3 不同施肥處理作物籽粒和秸稈鉀含量Table 3 Content of crop K in grain and straw relative to treatment(g kg-1)

圖1 不同施肥處理小麥和大豆吸鉀量動態變化Fig. 1 Dynamics of crop K uptake for wheat and soybean relative to treatment
2.3 施肥方式對作物鉀素回收率的影響

圖2 不同施肥處理小麥和大豆鉀素回收率動態變化Fig. 2 Dynamics of crop K recovery rate for wheat and soybean relative to treatment
根據施肥處理每年作物地上部分的吸鉀量,并以CK處理為對照,計算出不同施肥方式下作物鉀肥回收率(圖2)??傮w而言,各施肥處理作物鉀回收率隨施肥年限的增加而逐漸升高,大豆回收率的增長幅度高于小麥。CF、SCF、PCF和 CCF處理小麥和大豆鉀素回收率多年平均值分別在19.8%~23.0%和34.4%~44.8%,4種施肥處理鉀素總回收率(小麥與大豆回收率之和)分別為55.1%、58.2%、62.2%和66.1%,以CCF處理最高,CF處理最低,呈現突出的CCF > PCF > SCF~CF,說明,長期增施豬糞或牛糞等農家廄肥可顯著提升作物鉀素回收率。
2.4 土壤速效鉀演變及其對鉀素投入的響應
除CK處理土壤速效鉀含量逐年下降外,其余各施肥處理均有增加的趨勢(圖3),土壤速效鉀含量變化范圍為70.1~397.3 mg kg-1,其中CCF處理土壤速效鉀含量增加速率最大,CF處理最小。CK、CF、SCF、PCF和CCF此5種施肥處理土壤速效鉀含量多年平均值分別為72.3、82.4、128.4、133.0和289.5 mg kg-1。與CK處理相比,CF處理土壤速效鉀含量顯著增加(p<0.05),增加比例為13.9%,SCF、PCF和CCF處理土壤速效鉀含量分別較CF處理增加55.8%、61.4%和251.3%,差異顯著(p<0.05),而SCF與PCF處理間無顯著差異(p>0.05)。土壤速效鉀與外源鉀累積投入之間的線性回歸分析表明,4種施肥處理(CF、SCF、PCF和CCF)土壤速效鉀含量均隨著外源鉀素投入量的增加而增大,但增長幅度有一定差異(圖4)。即每投入外源鉀100 kg hm-2,CF、SCF、PCF和CCF處理土壤速效鉀含量分別增加0.37、0.54、0.62和4.27 mg kg-1,增加幅度的順序為CCF> PCF > SCF > CF,其中,增施秸稈和豬糞處理(SCF和PCF)分別較CF處理增加45%和67%,而增施牛糞處理(CCF)增長幅度約為CF處理的10倍。

圖3 不同施肥處理土壤速效鉀含量的動態變化Fig. 3 Dynamics of content of soil readily available K relative to treatment
2.5 土壤鉀累積盈虧量與速效鉀增量的關系
土壤速效鉀的變化量與土壤鉀素累積盈虧量的響應關系如圖5所示,各處理土壤速效鉀增量與土壤鉀素累積盈虧均呈極顯著的直線正相關性,這表明土壤速效鉀的消長與鉀盈虧呈正相關。CK處理,土壤中鉀素每耗竭100 kg hm-2,土壤速效鉀含量減少0.64 mg kg-1;而其余4種施肥處理,土壤鉀素每盈余100 kg hm-2,CF、SCF、PCF和CCF處理土壤速效鉀含量分別增加1.4、1.8、2.3和15.8 mg kg-1,增加幅度為CCF>PCF>SCF>CF,其中,增施秸稈和豬糞處理(SCF和PCF)分別較常規CF處理增加31%和63.8%,而增施牛糞處理(CCF)增長幅度約為CF處理的10倍,這與土壤速效鉀含量和外源鉀累積投入量的響應關系相似。

圖4 土壤速效鉀含量與累積外源鉀投入量的響應關系Fig. 4 Relationship between content of soil readily available K and cumulative K input
3.1 施肥方式影響作物鉀素回收率的機理
砂姜黑土29 a長期定位試驗研究表明,小麥—大豆輪作制度下長期施肥處理作物鉀素回收率多年平均值為55%~66%,高于全國鉀肥平均利用率35%~50%[21],這主要與本試驗點大豆生長期不施用鉀肥有關。由于本試驗年限較長和人員更替頻繁等因素,無法獲取每一年度植株鉀及有機物料(麥稈、豬糞和牛糞)鉀的含量。為估算不同施肥方式下作物鉀素吸收量和外源鉀素投入量,本文用某一年所測定的植株鉀或有機肥養分提供的有機物料鉀含量進行計算,會對年度土壤鉀素收支平衡及作物鉀素回收率的計算產生一定誤差;肥料的施用對作物鉀素利用率的影響會因肥料的總類、施肥量的不同而差異顯著,因施肥方式會直接影響養分的輸入量,從而影響作物產量和養分吸收量。本研究中,長期增施有機肥(秸稈、豬糞和牛糞)對作物鉀素回收率有顯著的提升作用,這與前人的研究結果基本一致[22],主要因長期增施秸稈、豬糞和牛糞等物料增加了土壤外源氮磷鉀養分的投入,尤其是氮素投入量的增加顯著提高了作物產量和土壤肥力,因而,長期增施有機肥處理作物鉀素吸收量和鉀素回收率高于常規化肥處理。此外,增施牛糞、豬糞和麥稈處理間作物鉀素回收率也有一定差異,且牛糞的效果優于豬糞和麥稈,這主要與牛糞處理外源鉀素投入量及作物產量較高有關。施肥方式還可通過影響土壤有機質含量,影響肥料利用效率[23-24],魯艷紅等[25]研究表明,土壤有機質利于作物產量和養分吸收量的提升,降低作物對肥料的依賴,提高肥料利用效率,主要因有機質可加強土壤對養分的固持固定能力,提高其緩沖性能和持久性[26-27]。有機質可通過酸化、配位交換及還原作用溶解和轉化一些難溶性礦物,促進水溶性鉀和交換性鉀的形成,促進土壤鉀素活化和增強鉀素的有效性[28-29]。因此,長期增施有機肥提高土壤有機質含量,進而增加作物對鉀素的吸收,可能是本研究作物鉀素回收率顯著高于常規化肥處理的另一重要原因。本研究僅從有機質對土壤鉀素活化和增強鉀素保持能力的角度闡釋增施有機肥對作物鉀肥回收率的影響,具有一定的局限性,今后應加強不同施肥方式下土壤供鉀特性(如容量、強度、形態)與作物鉀素回收率的定量耦合關系研究,進而明確外源有機物料對作物鉀肥利用率的作用機制。

圖5 土壤速效鉀含量與土壤鉀累積盈虧量的響應關系Fig. 5 Relationship between content of soil readily available K and soil K budgeting
3.2 施肥方式影響鉀素盈虧及速效鉀變化的機理
施肥方式通過影響外源鉀的輸入狀況(數量和質量)和土壤—作物系統鉀素的收支平衡,進而影響土壤鉀素的盈虧狀況與有效性[30-31],本研究各施肥處理外源鉀累積投入量、鉀素累積盈虧量與土壤速效鉀含量的線性關系進一步例證了這一現象。常規化肥處理每投入外源鉀100 kg hm-2,土壤速效鉀含量增加0.4 mg kg-1(圖4);土壤累積鉀素每盈余100 kg hm-2,土壤速效鉀增量為1.4 mg kg-1,而增施麥稈、豬糞和牛糞處理土壤速效鉀含量的變化幅度均顯著高于常規化肥處理(圖5),這說明增施有機肥(麥稈、豬糞和牛糞)在提升土壤速效鉀的供應能力方面較常規化肥更有優勢,其原因可能是長期增施有機物料增加了外源鉀素的投入量,同時增強了土壤中鉀素的有效性,使得土壤中其他形態的鉀更易向土壤速效鉀轉化[32]。相關研究表明,長期施用有機肥可提高土壤礦物各吸附點位鉀的含量與有效性,增加土壤中有機復合體中的交換性鉀、非交換性鉀含量及非交換性鉀的釋放能力,促進鉀素的釋放和其他形態的鉀素向土壤速效鉀的轉化[33-34]。長期施用有機肥還可通過提高作物吸鉀量促進土壤非交換性鉀向速效鉀的釋放[35]。進一步分析表明,長期增施牛糞、豬糞和麥稈處理土壤盈余的鉀素向速效鉀的轉化能力有顯著差異,且增施牛糞的效果顯著優于豬糞和麥稈,這與投入有機物料中鉀素含量和作物吸鉀量有關,還與投入外源有機物料的數量和有機物料本身的特性有關。本試驗點前期研究表明,增施牛糞處理外源有機物料養分投入量較高,使其土壤肥力水平相對較高(表2),同時微生物性狀(酶活性、微生物群落結構多樣性)均得以大幅提升[18],從而促進土壤鉀等營養物質的循環過程。
總之,施肥方式能顯著改變土壤中盈余的鉀素向速效鉀轉化,長期增施有機肥可提高這種轉化能力,利于土壤鉀素養分的保持和利用。在本試驗條件下,增施牛糞效果最好,豬糞和秸稈次之,說明投入有機物料是影響砂姜黑土農田土壤鉀素高效利用的重要措施,在外源鉀素投入量和土壤鉀累積盈虧量相同的情況下,適量增施牛糞、豬糞和秸稈等有機物料可提高土壤速效鉀含量并實現鉀肥的高效利用,其中以秸稈過腹還田的牛糞效果最好,是砂姜黑土區小麥—大豆輪作體系下實現土壤鉀素高效利用的一種優化施鉀方式。
投入有機物料是影響土壤鉀素利用及盈虧的重要調控措施,在外源鉀素投入量和土壤鉀累積盈虧量相同的情況下,長期增施有機物料可提高土壤速效鉀含量的增幅,促進土壤鉀素向速效鉀的轉化。本試驗條件下,增施牛糞效果最好,豬糞和秸稈次之。因此,砂姜黑土冬小麥—夏大豆輪作系統下秸稈養畜過腹還田是實現作物高產高效的一種推薦施鉀方式。
[1] Pettigrew W T. Potassium influences on yield and quality production for maize,wheat,soybean and cotton. Physiologia Plantarum,2008,133( 4 ):670—681
[2] Cong R H,Li H,Zhang Z,et al. Evaluate regional potassium fertilization strategy of winter oilseed rape under intensive cropping systems:Large-scale field experiment analysis. Field Crops Research,2016,193:34—42
[3] Dong H Z,Kong X Q,Li W J,et al. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Research,2010,119(1):106—113
[4] Moterle D F,Kaminski J,dos Santos Rheinheimer D,et al. Impact of potassium fertilization and potassium uptake by plants on soil clay mineral assemblage in South Brazil. Plant and Soil,2016,406(1/2):157—172
[5] 范欽楨,謝建昌. 長期肥料定位試驗中土壤鉀素肥力的演變. 土壤學報,2005,42(4):591—599
Fan Q Z,Xie J C. Variation of potassium fertility in soil in the long-term fertilizer experiment(In Chinese). Acta Pedologica Sinica,2005,42(4):591—599
[6] 葛瑋健,常艷麗,劉俊梅. 塿土區長期施肥對小麥–玉米輪作體系鉀素平衡與鉀庫容量的影響. 植物營養與肥料學報,2012,18(3):629—636
Ge W J,Chang Y L,Liu J M. Potassium balance and pool as influenced by long-term fertilization under continuous winter wheat summer maize cropping system in a manual loess soil(In Chinese). Plant Nutrition and Fertilizer Science,2012,18(3):629—636
[7] 徐曉燕,馬毅杰,張瑞平. 土壤中鉀的轉化及其與外源鉀的相互關系的研究進展. 土壤通報,2003,34(5):489—492
Xu X Y,Ma Y J,Zhang R P. Research progress in transformation of soil potassium in relation to potash application(In Chinese). Chinese Journal of Soil Science,2003,34(5):489—492
[8] Cox A E,Joern B C,Brouder S M,et al. Plantavailable potassium assessment with a modified sodium tetraphenylboron method. Soil Science Society of America Journal,1999,63(4):902—911
[9] Bhattacharyya R,Prakash V,Kundu S,et al. Potassium balance as influenced by farmyard manure application under continuous soybean–wheat cropping system in a typic Haplaquept. Geoderma,2006,137(1/2):155—160
[10] He C,Ouyang Z,Tian Z,et al. Yield and potassium balance in a wheat-maize cropping system of the North China Plain. Agronomy Journal,2012,104(4):1016—1022
[11] Mallarino A P,Higashi S L. Assessment of potassium supply for corn by analysis of plant parts. Soil Science Society of America Journal,2009,73(6):2177—2183
[12] Simonsson M,Hillier S,?born I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma,2009,151(3):109—120
[13] Qiu S J,Xie J G,Zhao S C,et al. Long–term effects of potassium fertilization on yield,efficiency,and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research,2014,163:1—9
[14] 張水清,楊莉,黃紹敏,等. 長期施肥下潮土速效鉀含量與鉀素投入水平關系. 植物營養與肥料學報,2014,20(3):773—777
Zhang S Q,Yang L,Huang S M,et al. Relationship between available K content and K input levels in fluvoaquic soil under long term fertilization(In Chinese). Journal of Plant Nutrition and Fertilizer,2014,20(3):773—777
[15] 王道中,花可可,郭志彬,等. 長期施肥對砂姜黑土作物產量及土壤物理性質的影響. 中國農業科學,2015,48(23):4781—4789
Wang D Z,Hua K K,Guo Z B,et al. Effects of long-term fertilization on crop yield and soil physical properties in lime concretion black soil(In Chinese). Scientia Agricultura Sinica,2015,48(23):4781—4789
[16] Hua K K,Wang D Z,Guo X S,et al. Carbon sequestration efficiency of organic amendments in a long-term experiment on a Vertisol in Huang-Huai-Hai Plain,China. PLoS One,2014,9(9):e108594
[17] Hua K K,Zhang W J,Guo Z B,et al. Evaluating crop response and environmental impact of the accumulation of phosphorus due to long-term manuring of vertisol soil in northern China.Agriculture,Ecosystems and Environment,2016,109:101—110
[18] Sun R B,Zhang X X,Guo X S,et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology & Biochemistry,2015,88:9—18
[19] 全國農業技術推廣服務中心. 中國有機肥料養分志. 北京:中國農業科技出版社,1994
National Center for Agricultural Technology Service. Chinese organic fertilizer handbook(In Chinese). Beijing:China Agricultural Science and Technology Press,1994
[20] 魯如坤. 土壤農業化學分析方法. 北京:中國農業科技出版社,2000
Lu R K. Analytical methods for soil and agro-chemistry(In Chinese). Beijing:China Agricultural Science and Technology Press,2000
[21] 張福鎖,王激清,張衛峰,等. 中國主要糧食作物肥料利用率現狀與提高途徑. 土壤學報,2008,45(5):915—924
Zhang F S,Wang J Q,Zhang W F,et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement(In Chinese). Acta Pedologica Sinica,2008,45(5):915—924
[22] Zhang H M,Yang X Y,He X H,et al. Effect of long-term potassium fertilization on crop yield and K efficiency and balance under wheat-maize rotation in China. Pedosphere,2011,21(2):154—163
[23] Niu J F,Zhang W F,Ru S H,et al. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Field Crops Research,2013,140:69—76
[24] Scanlan C A,Bell R W,Brennan R F. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertilizer. Field Crops Research,2015,178:125—134
[25] 魯艷紅,廖育林,周興,等. 長期不同施肥對紅壤性水稻土產量及基礎地力的影響. 土壤學報,2015,52(3):597—606
Lu Y H,Liao Y L,Zhou X,et al. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system(In Chinese). Acta Pedologica Sinica,2015,52(3):597—606
[26] Garcia R A,Crusciol C A,Calonego J C,et al. Potassium cycling in a corn-brachiaria cropping system. European Journal of Agronomy,2008,28(4):579—585
[27] Heckman J R,Kamprath E J. Potassium accumulation and corn yield related to potassium fertilizer rate and placement. Soil Science Society of America Journal,1992,56(1):141—148
[28] Guo T R,Zhang G P,Zhou M X,et al. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere,2007,17(4):505—512
[29] Tan K H. The release of silicon,aluminum,and potassium during decomposition of soil minerals by humic acid. Soil Science,1980,129(1):5—10
[30] 王西和,呂金嶺,劉 驊. 灰漠土小麥-玉米-棉花輪作體系鉀平衡與鉀肥利用率. 土壤學報,2016,53(1):214—223
Wang X H,Lü J L,Liu H. Potassium balance and use efficiency in grey desert soil under continuous wheatmaize-cotton crop rotation system(In Chinese). Acta Pedologica Sinica,2016,53(1):214—223
[31] 胡敏,任濤,廖世鵬,等. 不同含鉀物料對土壤鉀素含量動態變化影響. 土壤,2016,48(1):48—52
Hu M,Ren T,Liao S P,et al. Effects of K-bearing materials on dynamic changes of soil K contents(In Chinese). Soils,2016,48(1):48—52
[32] 何冰,薛剛,張小全,等. 有機酸對土壤鉀素活化過程的化學分析. 土壤,2015,47(1):74—79
He B,Xue G,Zhang X Q,et al. Analysis on chemical mechanism of potassium release process from soil as influenced by organic acid(In Chinese). Soils,2015,47(1):74—79
[33] 李娜,韓曉日,楊勁峰,等. 長期施肥對棕壤礦物吸附點位鉀有效性及其剖面分布的影響. 植物營養與肥料學報,2012,18(6):1412—1417
Li N,Han X R,Yang J F,et al. Effects of longterm fertilization on the availability of K adsorbed by clay minerals and profile distribution in brown soil(In Chinese).Plant Nutrition and Fertilizer Science,2012,18(6):1412—1417
[34] 岳龍凱,蔡澤江,徐明崗,等. 長期施肥紅壤鉀有效性研究. 植物營養與肥料學報,2015,21(6):1543—1550
Yue L K,Cai Z J,Xu M G,et al. Potassium availability in red soil under long-term fertilization(In Chinese). Plant Nutrition and Fertilizer Science,2015,21(6):1543—1550
[35] Benbi D K,Biswas C R. Nutrient budgeting for phosphorus and potassium in a long-term fertilizer trial. Nutrient Cycling in Agroecosystems,1999,54(2):125—132
Effects of Long-term Fertilization on Soil Potassium Utilization and Budgeting in Vertisol Relative to Application Method
HUA Keke1WANG Daozhong1?GUO Zhibin1LI Congcong2
(1 Soil and Fertilizer Research Institute,Anhui Academy of Agricultural Sciences,Hefei 230031,China)
(2 Party Committee for the Organs,Anhui Academy of Agricultural Sciences,Hefei 230031,China)
【Objective】 Soil potassium is an essential macronutrient for crop growth and plays a key role in maintaining high crop yield. However,so far it is still unclear as to dynamics of soil potassium utilization,especially quantitative relationships of content of soil readily available K with input of extraneous and budgeting of cumulative soil potassium relative to fertilization method. Therefore,this study was oriented to analyze dynamics of crop K uptake,crop K recovery rate,soil K budgeting and content of soil readily available K and to explore quantitatively relationships of soil readily available K with input of extraneous K and budgeting of cumulative soil K relative to fertilization practice based on a long-term fertilization field experiment in a field of vertisol in North China.【Method】The long-term experiment,located at the Mengchen Agro-Ecological-Station in the Huang-Huai-Hai Plain,North China,was initiated in 1982 and designed to have five treatments,i.e.,CK(no fertilizer),CF(mineral fertilizers),SCF(mineral fertilizers plus wheat straw),PCF(mineral fertilizers plus pig manure),and CCF(mineral fertilizers plus cattle manure),and four replicates for each. Plots,70 m2each in area,of the treatments and replicates were laid out in a randomized block design and separated from each other with cement boards embedded 50 cm deep. Soil samples were collected randomly from the top 20 cm soil layer of each plot along a S-shaped line,after the crop of soybean was harvested in October each year,with a soil core sampler(inner diameter 7 cm). Chemical N,P and K fertilizer was applied in the form of urea,calcium superphosphate and potassium chloride,respectively,at a rate the same as the local farmers did,i.e.,180 kg N,39.3 kg P,and 112 kg K hm-2yr-1. Soil total K was measured with the sodium hydroxide melting-flame photometry,soil slowly available K with the nitric acid boiling-flame photometry,soil readily available K with the ammonium acetate extraction-flame photometry and crop K with the vitriol peroxide/hydroxidation-flame photometry. 【Result】 It was found that the mean crop K recovery rate varied in the range of 55.1%~66.1%,relative to treatment and displaying an order of CCF > PCF > SCF > CF. The content of soil readily available K increased somewhat in all the treatments except in CK,where the content declined steadily over time. The over-year mean content of soil readily available K exhibited an order of CCF(289.5 mg kg-1)> PCF(133.0 mg kg-1)> SCF(128.4 mg kg-1)> CF(82.4 mg kg-1)> CK(72.3 mg kg-1). On the whole,a significant(p<0.05)positive linear relationship was observed between soil K budgeting and content of soil readily available K. Thegain of each 100 kg hm-2in soil K budgeting raised the content of soil readily available K in Treatment CF,SCF,PCF,and CCF by 1.4 mg kg-1,1.8 mg kg-1,2.3 mg kg-1and 15.8 mg kg-1,respectively. Besides,a significant(p<0.05)positive linear relationships between input of soil K and content of soil readily available K was also observed in all the fertilization treatments. The input of each 100 kg hm-2increased the content of soil readily available K by 0.4 mg kg-1,0.5 mg kg-1,0.6 mg kg-1and 4.3 mg kg-1in Treatment CF,SCF,PCF,and CCF,respectively. Compared to the increase in Treatment CF,that in the treatment amended with organic material(wheat straw,pig manure or cattle manure),that is,Treatment SCF,PCF and CCF was 25%,50% and 975% higher,respectively,which indicates that application of a proper rate of organic material may improve soil K supply capacity in soils the same in input of extraneous K and soil K budgeting.【Conclusion】To sum up,application of organic material is an important practice regulating soil potassium utilization. Long term application of organic manure,especially cattle manure in the study,may increase crop potassium recovery rate and transformation rate of surplus soil K into readily available K. Therefore,the application of animal-digested crop straw is a recommended practice to achieve stable and high crop yields in fields of vertical under wheat-soybean cropping system in North China.
Long-term fertilization;Organic amendments;Potassium recovery rate;Soil potassium budget;Soil available potassium
S153
A
(責任編輯:陳榮府)
10.11766/trxb201610240426
* 國家自然科學基金項目(41401331)、安徽省農業科學院學科建設項目(15A1013)和安徽省養分循環重點實驗室項目(1606c08231)資助 Supported by the National Natural Science Foundation of China(No. 41401331),Programs of the Anhui Academy of Agricultural Science(No. 15A1013),and Project of the Key Laboratory of Nutrient Recycling,Resources and Environment Performance Evaluation of Anhui Province(No. 1606c08231)
? 通訊作者 Corresponding author,E-mail:wdzhong-3@163.com
花可可(1983—),男,博士,助理研究員,主要從事長期施肥下土壤肥力與養分循環研究。E-mail:huakeke1220@126.com
2016-10-24;
2017-02-15;優先數字出版日期(www.cnki.net):2017-03-24