999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The rough representation and measurement of quotient structure in algebraic quotient space model①

2017-09-25 13:01:54ChenLinshu陳林書WangJiayang
High Technology Letters 2017年3期

Chen Linshu (陳林書), Wang Jiayang

(*School of Computer Science and Technology, Hunan University of Science and Technology, Xiangtan 411201, P.R. China)(**School of Information Science and Engineering, Central South University, Changsha 410083, P.R. China)

The rough representation and measurement of quotient structure in algebraic quotient space model①

Chen Linshu (陳林書)②*, Wang Jiayang**

(*School of Computer Science and Technology, Hunan University of Science and Technology, Xiangtan 411201, P.R. China)
(**School of Information Science and Engineering, Central South University, Changsha 410083, P.R. China)

Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed, where the quotient structure could not be deduced if the granulation was based on an equivalence relation. In this paper, definitions were given and formulas of the lower quotient congruence and upper quotient congruence were calculated to roughly represent the quotient structure. Then the accuracy and roughness were defined to measure the quotient structure in quantification. Finally, a numerical example was given to demonstrate that the rough representation and measuring methods are efficient and applicable. The work has greatly enriched the algebraic quotient space model and granular computing theory.

granular computing, algebraic quotient space model, quotient structure, upper ( lower) congruence relation

0 Introduction

Granular computing, which was first introduced in 1997 by Lin[1,2], is an emerging computing paradigm of information processing, and is now viewed as a superset of models including rough set, topology quotient space[3], fuzzy set[4], word theory, etc. Granular computing has been widely applied in image processing, data mining, complex problem solving, pattern recognition, intelligent control, artificial neural network, knowledge acquisition, and so on[5-8].

Being a widely applied structure in data coding, formal language and electronic circuit design, algebra is used broadly to describe the granule structure[9-10]. Based on the topology quotient space model (U,F,T) proposed in Ref. [11], and supposing the granule structure T as an algebraic operator °, in Refs [12,13] of our previous work, algebraic quotient space model (U,F,°) was proposed.

In the algebraic quotient space theory, given equivalence relation R on granularity (U,F,°), one can only get the quotient universe [U] and quotient attribute [F] according to Refs [3,11], but can not get the quotient structure [°] by the conclusion of Refs [12,13]. Thus, is there a method of roughly representing the quotient structure? If yes, how to measure the new method?

In this paper, an equivalence relation R is given as a granulation rule in the algebraic quotient space model. Inspired by the lower approximation and upper approximation to approximately represent a rough set, a rough representation method of quotient structure is shown in algebraic quotient space model. Rough set theory and algebraic quotient space model in Refs [12,13] are simply introduced in Section 1.in Section 2, the lower quotient structure and upper quotient structure are defined to roughly represent the quotient structure. Section 3 gives the measurement of the above rough representation method. Section 4 presents a numeral example which shows that the rough representation and measuring methods are feasible and applicable.

1 Research basis

In this section, simple introductions are given to the rough set theory and the algebraic quotient space model in our previous work in Refs[12,13].

The rough set theory, first proposed by Polish scientist Pawlak[14,15]in 1982, is an effective mathematical tool for the characterization of incomplete and uncertain problems. The rough set is defined as follows.

(1)

(2)

The algebraic quotient space model (U,F,°) in Refs [12,13] was proposed as follows.

Definition 2[12,13]Given congruence relation R on granularity (U,F,°), where U is the universe, F:U→Y is the attribute function, and ° is the granule structure on U. It defines: the quotient universe [U] as p:U→U/R, the quotient attribute [F] as [F]:[U]→2Y, where

?x∈[U],[F](x)=F(p-1(x)) ={F(y)|y∈p-1(x)}

(3)

the quotient structure [°] as

?x,y∈U,p(x°y)=p(x)[°]p(y)

(4)

then ([U],[F],[°]) is defined as an algebraic quotient space of (U,F,°).

In Definition 2, it gives the mapping functions of the quotient universe [U], the quotient attribute [F] and the quotient structure [°]. The quotient universe is a natural mapping, and the quotient attribute provides a general solution, because [F]:[U]→2Ymust satisfy some optimization principle specified as a certain value such as a statistic number, the average, the maximum, the sum, the intersection or the union, etc.[13]. The quotient structure is a homomorphic mapping between the original structure and quotient structure.

In Definition 2, the sufficient condition of having the algebraic quotient space ([U],[F],[°]) is that R is a congruence relation, which is proved in theorem in Refs [12,13]. From the view point of the algebraic theory, in order to keep the original structure ° and quotient structure [°] being homomorphic, the granulation rule must be a congruence relation, i.e., only if congruence relation R is given on granularity (U,F,°), one can get the quotient space [°].

2 Rough representation of quotient structure

Given equivalence relation R on granularity (U,F,°), by Definition 2 the quotient structure [°] does not exist, and the key of getting an approximate quotient structure is to find an approximate congruence relation. Hence, the properties of congruence relation and equivalence relation are first discussed.

On universe U, by Refs [3,11] all the equivalence relations form a complete semi-order lattice, and by Refs [12,13] all the congruence relations form a complete semi-order lattice. Meanwhile, it is known that the congruence relation is a special case of the equivalence relation, i.e., a congruence relation must be an equivalence relation, but an equivalence relation may not be a congruence relation.

On granularity (U,F,°), let R be all the equivalence relations, Ω be all the congruence relations, and R∈R. Then, under the containment order of equivalence relation, (R,?) is a complete semi-order lattice, and (Ω,?) is a complete semi-order lattice. The lattice Hasse graphic is shown in Fig.1, where the hollow point is an equivalence relation, and the solid point is a congruence relation.

Fig. 1 The lattice Hasse graph of R and Ω

(5)

(6)

Firstly, ?(x,y)∈∩Rα∈Ω,Rα?RRα, so ?R0∈{Rα|Rα∈Ω,Rα?R}α, (x,y)∈R0, thus, ?z∈U, (x°z,y°z),(z°x,z°y)∈R0∈∩Rα∈Ω,Rα?RRα, therefore, ∩Rα∈Ω,Rα?RRαis a congruence relation.

Firstly, it is proved that t(∪R?Rβ∈ΩRβ) is a congruence relation. For ?(x,y)∈t(∪R?Rβ∈ΩRβ), it has two cases: On the one hand,(x,y)∈∪R?Rβ∈ΩRβ. Then ?R0∈{Rβ|R?Rβ∈Ω}, where (x,y)∈R0, so ?z∈U,(x°z,y°z),(z°x,z°y)∈R0?∪R?Rβ∈ΩRβ. On the other hand, (x,y)?∪R?Rβ∈ΩRβ, then, ?(x=p1),p2,…,(pm=y), where (pi,pi+1)∈R0∈{Rβ|R?Rβ∈Ω}, so ?z∈U, (pi°z,pi+1°z),(z°pi,z°pi+1)∈R0?t(∪R?Rβ∈ΩRβ). Therefore, t(∪R?Rβ∈ΩRβ) is a congruence relation.

Thus, the lower quotient structure or upper quotient structure can be used to roughly represent the quotient structure which are not actually exist.

3 Rough measurement of quotient structure

In the front section, just the rough representing method of quotient structure is discussed,i.e., the concepts of lower congruence relation and upper congruence relation are defined and their calculating formulas are given. In the following, the rough measuring method of quotient structure is discussed in detail by defining the accuracy and roughness of quotient structure.

In order to describe the quotient structure in quantification more exactly, accuracy αR[°] and roughness ρR[°] are defined as follows from the reverse side.

(7)

ρR[°]=1-αR[°]

(8)

Clearly, accuracy 0<αR[°]≤1, and the larger the accuracy αR[°] is, the smaller the roughness ρR[°] is.

4 Numerical example

In this section, a numerical example is demonstrated which shows that the rough representation and measuring methods above are feasible and applicable.

Supposing R is an equivalence relation on granularity (U,F,°), where X={0,1,2,3,4,5,6,7}, X/R={{0,2},{1,5},{3,7},{4,6}} and the algebraic operation ° is shown in Table 1.

Seeing from Table 1, the binary algebraic operation x°y means (x×y) mod8. It can be proved that R is only an equivalence relation but not a congruence relation, then by Definition 2 there does not exist the quotient structure.

Table 1 Algebraic operation ° on U

Table 3 On after isomorphic mapping

Table 4 Algebraic operation on

Table 5 on after isomorphic mapping

According to Eq. (7) of Definition 4, the accuracy αR[°] of quotient structure is

ρR[°]=1-αR[°]=1-50%=50%.

5 Conclusion

In Refs [12,13] of the previous work, it is granulated by a congruence relation in the algebraic quotient space model. In this paper, granulated by an equivalence relation, one can only get the quotient universe and quotient attribute but can’t get the quotient structure according to Refs [3,11] in the algebraic quotient space model.

Inspired by the definitions of lower approximation and upper approximation in the rough set theory, this paper gives the definitions and calculating formulas of the lower quotient congruence relation and upper quotient congruence relation, based on which one can easily get the lower quotient structure and upper quotient structure, which can be used to roughly represent the quotient structure.

Then the accuracy and roughness are defined to measure the quotient structure in quantification. Finally, a numerical example is given to demonstrate that the rough representation and measuring methods are efficient and applicable.

This work enriches the algebraic quotient space model and granular computing models greatly.

[ 1] Lin T Y. Granular computing: structures, representations, and applications. In: Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Chongqing, China, 2003. 16-24

[ 2] Lin T Y. Granular computing: a problem solving paradigm. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Reno, USA , 2005. 132-137

[ 3] Zhang L, Zhang B. The Quotient space theory of problem solving. Fundamenta Informaticae, 2004, 59(2):11-15

[ 4] Zadeh L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 1997, 90(90): 111-127

[ 5] Zhao L, Xue Z. Generalized dominance-based set approach to security evaluation with imprecise information. High Technology Letters, 2010, 16(3): 254-262

[ 6] Zeng Y, Liang X W, Li Y. A distributed routing algorithm based-on simplified topology in LEO satellite networks. High Technology Letters, 2010, 16(2): 117-123

[ 7] Ren B, Zhang S Y, Shi Y D. The partition and regeneration of multi-granularity transplantable structures for structural variant design. Chinese High Technology Letters, 2012, 22(1): 100-105 (In Chinese)

[ 8] Meng Z Q, Shi Z Z. Self-adaptive image semantic classification based on tolerance granular space model. Chinese High Technology Letters, 2012, 22(7): 697-705 (In Chinese)

[ 9] Wang Y X, Zadeh L A, Yao Y. On the system algebra foundations for granular computing. International Journal of Software Science and Computational Intelligence, 2009, 1(1) : 64-86

[10] Wang Y X. Granular algebra for modeling granular systems and granular computing. In: Proceedings of IEEE International Conference on Cognitive Informatics, Hong Kong, China, 2009. 145-154

[11] Zhang L, Zhang B. Theory and Applications of Problem Solving. 2ndEdition. Beijing: Tsinghua University Press, 2007. (In Chinese)

[12] Chen L S, Wang J Y, Li L, et al. Quotient space model based on algebraic structure. High Technology Letters, 2016, 22(2): 160-169

[13] Chen L S, Wang J Y, Li L. The models of granular system and algebraic quotient space in granular computing. Chinese Journal of Electronics, 2016, 25(6): 1109-1113

[14] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982, 11: 341-356

[15] Pawlak Z. Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of IEEE International Conference on Fuzzy Systems, San Antonio, USA, 1998. 106-110

his Ph.D and M.E. degrees in School of Information Science and Engineering, Central South University. His research interest is granular computing and intelligent information processing.

10.3772/j.issn.1006-6748.2017.03.010

Supported by the National Natural Science Foundation of China (No. 61772031) and the Special Energy Saving Foundation of Changsha, Hunan Province in 2017.

To whom correspondence should be addressed. E-mail: chen-lin-shu@163.com

on July 7, 2016

主站蜘蛛池模板: 成人福利视频网| 日韩激情成人| 亚洲一区二区在线无码| 欧美色99| 91久久天天躁狠狠躁夜夜| 国产欧美视频在线| 色哟哟精品无码网站在线播放视频| 国产精品视频999| 亚洲av片在线免费观看| 久久无码高潮喷水| 久久视精品| 欧美视频在线观看第一页| 国产va在线观看免费| 日日摸夜夜爽无码| 在线播放国产99re| 91精品久久久久久无码人妻| 天天综合色网| 99精品视频九九精品| 一本大道视频精品人妻 | 日韩一级二级三级| 婷婷六月在线| 日韩无码黄色| 亚洲男人天堂网址| 国产亚洲精品91| 久久久久久尹人网香蕉| 亚洲手机在线| 国产手机在线ΑⅤ片无码观看| 亚洲另类色| 午夜啪啪福利| 国产免费a级片| 亚洲Va中文字幕久久一区| 久青草免费在线视频| 亚洲精品在线影院| 人妻无码中文字幕第一区| 精品国产www| 中文字幕 91| 色老头综合网| 精品一区二区三区无码视频无码| 国产无码性爱一区二区三区| 欧美伊人色综合久久天天| 777午夜精品电影免费看| 欧美国产日产一区二区| 国产第四页| 亚洲人成亚洲精品| 精品人妻系列无码专区久久| 黄色一级视频欧美| 日韩久久精品无码aV| www.日韩三级| 日本午夜精品一本在线观看 | 国产熟睡乱子伦视频网站| 99热亚洲精品6码| 女人18一级毛片免费观看 | 久久香蕉欧美精品| 亚洲色图综合在线| 亚洲AV无码久久天堂| 欧美成人A视频| 免费99精品国产自在现线| 成人综合网址| 国产成人精品亚洲77美色| 国产精品3p视频| 伊大人香蕉久久网欧美| 日本三级黄在线观看| 久久国产高清视频| 国产一区亚洲一区| 天天操天天噜| 国产午夜无码片在线观看网站| 精品一区二区三区水蜜桃| 在线色综合| 欧美成人综合视频| 色成人亚洲| 无码高潮喷水专区久久| 国产精品毛片一区| 性色在线视频精品| 一本色道久久88综合日韩精品| 九九热精品视频在线| 狼友视频一区二区三区| 不卡色老大久久综合网| 久久国产乱子| 日韩无码视频专区| 国产精品播放| av在线手机播放| 亚洲天堂精品视频|