郭正兵,韓柏明,郭 強
(1.江蘇農林職業技術學院,江蘇 句容212400; 2.句容虎耳山無花果專業合作社,江蘇 句容212400)
SSR熒光標記毛細管電泳法分析30份無花果品種的遺傳多樣性
郭正兵1,韓柏明1,郭 強2
(1.江蘇農林職業技術學院,江蘇 句容212400; 2.句容虎耳山無花果專業合作社,江蘇 句容212400)
為了分析從國內外搜集的無花果品種的遺傳多樣性,利用SSR熒光標記毛細管電泳檢測法構建了30份無花果品種的指紋鑒定平臺。以15對SSR熒光引物對30份無花果品種資源進行分析,結果共檢測到79個等位變異。15個位點的PIC值在0.332 8~0.875 7,平均為0.530 3;各位點的 Shannon 信息指數(I) 為0.604 9~2.127 3,平均為 1.136 0。30份品種資源的遺傳距離在0.025 4~1.123 4。其中引物FCUP038-6的雜合度、PIC 值分別高達0.846 8、0.861 1,可考慮作為以后區試雜交種純度鑒定的核心標記。30份無花果品種資源表現出比較豐富的遺傳多樣性,聚類分析結果顯示,30份資源被分為兩組,來源不同的品種被分散聚類。同時,無花果品種的親緣關系與其來源和表型特征并不存在明顯的相關性。
無花果;遺傳多樣性;SSR
無花果(FicuscaricaL.)屬于???Moraceae),亞熱帶落葉果樹,多數為小喬木,也有灌木和大喬木,是人類馴化最早的經濟作物[1]。我國無花果栽培歷史悠久,但一直以來發展緩慢,只有零星栽培,直到最近20年來才得到迅速發展,已經成為一種新興特色水果。無花果適應性強,栽培容易,投資少、見效快、病蟲害少,并具有很高的保健和藥用價值,是小雜果中極具開發前途的果樹,截至2014年底,據不完全統計,我國無花果種植面積約為5 000 hm2[2]。因此,我國無花果產業具有較大的發展潛力。除了新疆、山東栽培較為集中外,江蘇、北京、遼寧等地紛紛開展無花果的引種和試驗栽培,并開展了無花果設施栽培試驗。我國無花果栽培品種除了早期引進的新疆早黃、新疆晚黃、青皮、布蘭瑞克及紫果等品種外,自20世紀80年代以來從美國、日本等國相繼引入了一些果大、品質優、產量高的新品種,極大地豐富了我國無花果的品種資源,并開展了育種研究,陸續培育了十幾個新品種。國外已經開展了較多的關于無花果品種資源方面的研究[3-7],但目前我國對無花果種質資源遺傳多樣性和系譜關系方面的研究還極其缺乏,相關報道較少[8-10]。目前在我國無花果生產上,許多栽培品種名稱混淆、來源不清、品種分類工作基礎較弱,使得我國無花果栽培品種無法與世界栽培體系相銜接,不利于國內無花果種質資源保護與開發利用,從而造成該樹種在新品種選育等方面存在諸多困難[11-12]。種質資源遺傳多樣性、親緣關系和系譜關系的研究是無花果資源的搜集保存和利用的理論基礎,開展這方面的研究是非常必要和迫切的。
DNA分子標記是DNA水平上遺傳變異的直接反應,它們是能穩定遺傳的,而且信息量大,許多多態性標記在非編碼區,表現選擇 “中性”,不受環境因素的影響,且與基因表達無關,檢測迅速方便快捷,其在果樹分類、品種鑒定、遺傳圖譜構建和分子輔助選擇育種等方面應用廣泛,極大地推動了果樹遺傳研究[13]。因此,本文運用熒光SSR技術,對近年來江蘇農林職業技術學院在國內搜集的無花果種質資源進行了遺傳多樣性方面的初步研究,旨在為無花果產業的發展提供一些有益參考。
1.1 材料
本試驗所用30份無花果資源由江蘇農林職業技術學院近年來從國內外搜集,品種名稱及其來源見表1。
1.2方法
表1試驗材料的來源
Table1Sources of test materials

編號No.品種Cultivar果實顏色Fruitcolor來源Origin編號No.品種Cultivar果實顏色Fruitcolor來源Origin1華麗Hali黃綠色Yellowgreen美國America16B110 B110黃綠色Yellowgreen日本Japan2布蘭瑞克Branrki黃綠色Yellowgreen法國France17哈代Hadai棕褐色Sepia來源不祥Ominousorigin3白熱那亞WhiteGenoa黃色Yellow日本Japan18以色列Isreal黃綠色Yellowgreen以色列Isreal4香蕉Banana黃綠色Yellowgreen日本Japan19羅伊爾Lonie黃色Yellow日本Japan5中國紫果Chinesepurplefruit棕紫色Brownishpurple中國China20新疆早黃Xinjiangearlyyellow黃色Yellow中國China6B1011 B1011黃色Yellow美國America21金傲芬Jinaofen黃色Yellow美國America7白馬賽Barmas黃綠色Yellowgreen法國France22美麗亞Maliya黃色Yellow日本Japan8青皮Qingpi綠色Green中國China23A1213 A1213黃色Yellow美國America9格萊斯Glace紅黃色Reddishyellow日本Japan24杜魯DUlu黃底紅暈Yellowblush日本Japan10日本紫果Japanesepurplefruit紫色Purple日本Japan25亞當Yadang粉紅色Rosehermosa日本Japan11豐產黃Fencahn黃色Yellow意大利Italy26白蜜Baimi黃綠色Yellowgreen中國China12波姬紅Bpjihon紫紅色Amaranth美國America27紫淘芬Zitafen紫色Purple美國America13加州黑Jazhehi棕褐色Sepia美國America28紫寶Zibao棕紫色Brownishpur-ple中國China14紫色波爾多ViolettedeBordeaux紫色Purple西班牙Spain29麗莎Lisa粉紅色Rosehermosa新西蘭NewZealand15果王Fruitking綠色Green美國America30瑪斯義陶芬Mristf紫紅色Amaranth美國America
1.2.1 DNA提取
2015年春季取無花果幼嫩葉片作為材料,進行DNA提取,利用改進的植物DNA抽提液(添加多種針對植物特點的多糖、多酚去除成分)迅速裂解細胞和滅活細胞內核酸酶,氯仿抽提后通過離心清除多糖、多酚和蛋白質(根據需要,上清中還加入異丙醇離心沉淀基因組 DNA,進一步去除其他各種雜質),然后在高離子鹽狀態下基因組 DNA通過選擇性吸附于離心柱內硅基質膜中,經過一系列的快速漂洗、離心等步驟,進一步去除蛋白、多糖、多酚和細胞代謝物等雜質,最后用低濃度鹽的洗脫緩沖液從硅基質膜上將純凈基因組 DNA洗脫干凈(CTAB法植物基因組DNA快速提取試劑盒,南京鐘鼎生物技術有限公司)。提取的DNA用于SSR熒光標記分析。
1.2.2 SSR引物
篩選的15對無花果引物來源于前人研究,本研究所用熒光引物均由上海生工生物技術有限公司合成,正向引物加注FAM(藍) 的熒光染料。
1.2.3 PCR擴增
SSR 熒光引物體系(共 25 μL):ddH2O 14.8 μL,dNTP 0.4 μL,Buffer 2 μL,上游引物 0.3 μL(20 μmol·L-1),下游引物 0.3 μL(20 μmol·L-1),DNA 模板2 μL,Taq0.2 μL。94 ℃預變性5 min;94 ℃變性30 s,54 ℃(退火溫度在54 ℃上下波動)復性35 s,72 ℃延伸40 s,共35個循環;最終72 ℃延伸3 min。
表2十五對引物序列
Table2Sequence of 15 primers

引物名稱Primersname序列Sequence(5'-3')片段大小Fragmentsize/bpM13FAM-CTGTAAAACGACGGCCAGTFCUP038-6F:CTGTAAAACGACGGCCAGTCAATGTATCATTTCATCTCACGAAR:*AGTTCCCATGTTTGGTTACTGA169-193FCUP044-6F:CTGTAAAACGACGGCCAGTGCTCGCCTTTCTAACATGGAR:AACTTTCATTCATTGCGGAAA208-218FCUP045-6F:CTGTAAAACGACGGCCAGTTTCCAAGGCATATTATGTTGAAAR:*GTCCAAGGCAAATGATGAA133-143FCUP066-7F:CTGTAAAACGACGGCCAGTCCCTCTCGAAGAAGAAGCAR:CTACAGGAAATGGGCCTCAA161-183FCUP069-6F:CTGTAAAACGACGGCCAGTCCGGAAACACACAAATTCAAR:CAAAGCGTCGACTCACTGAA192-202MFC2F:CTGTAAAACGACGGCCAGTGCTTCCGATGCTGCTCTTAR:TCGGAGACTTTTGTTCAAT173-187MFC7F:CTGTAAAACGACGGCCAGTCACAATCAAAATAGTTACCGR:AGCGAAGACAGTTACAAAGC161-175MFC8F:CTGTAAAACGACGGCCAGTGTGGCGTCGTCTCTAATAATR:TATTCTATGCTGTCTTATGTCA190-194LMFC17F:CTGTAAAACGACGGCCAGTTTAAGAATACGTCCTTGGTATR:GAGATTTCGTTGACTTCATT202-210LMFC19F:CTGTAAAACGACGGCCAGTCTTATGAAAACTCGGTAGAAGR:AATGAATGGAAATGATCTTG314-326LMFC27F:CTGTAAAACGACGGCCAGTATTTCTTCAACTTTTGTAATGAR:CCTTTTGTCTACATATACCTTT202-214LMFC28F:CTGTAAAACGACGGCCAGTTGATTCCTTTTACTTGTAGATTR:AAGACATTGAGACATACCAG209-221LMFC30F:CTGTAAAACGACGGCCAGTTTGTCCGTTTCTTATACAATR:TCTTTTTAGGCAGATGTTAG249-279LMFC37F:CTGTAAAACGACGGCCAGTAAGTACATCTTCACCATTGAR:ATTAAACTCTTCATTCATCAGT223-229LMFC38F:CTGTAAAACGACGGCCAGTCTCAACGTCCGTACTAACTAR:CTAAGGAATAAAAGGAGAAAA230-240
1.2.4 毛細管電泳方法
將甲酰胺與分子量內標按100∶1的體積比混勻后,取9 μL加入上樣板中,再加入1 μL稀釋10倍的PCR產物。然后使用3730XL測序儀進行毛細管電泳,利用Genemarker 中的Fragment(Plant)片段分析軟件對測序儀得到的原始數據進行分析,將各泳道內分子量內標的位置與各樣品峰值的位置做比較分析,得到片段大小。
1.3 數據處理
一個引物為一個等位基因位點。按照Convert 1.31軟件要求的格式錄入到EXCEL中,然后用Convert 1.31軟件轉化成POPGENE軟件所要求格式。使用POPGENE1.32軟件進行統計分析。計算等位基因數(A)、觀測雜合度(Ho) 、期望雜合度(He)和Shannon信息指數(I) ,采用UPGMA法進行聚類分析。
2.1 SSR標記的多態性分析
從60對無花果SSR引物中 選出15對譜帶清晰、多態性高的引物。利用選出的15對無花果引物對30個無花果品種材料進行擴增,擴增產物經過毛細管電泳檢測。PIC還是用來衡量某個基因位點等位變異程度高低的指標。試驗中15對SSR引物的擴增帶型均清晰穩定,多態性較高且明顯,適合用于無花果SSR 分析。如圖1所示,在30份材料中共檢測出79個等位變異,每對引物檢測出2~10個等位變異,平均每個位點等位基因數為5.27個,最高為10(FCUP038-6和 LMFC30),最低為2(MFC8)。15對引物PIC值變化范圍在各位點0.332 8~0.875 7,平均為0.5303。其中最高的為0.846 8(FCUP038-6),最低的為0.310 3 (LMFC37)。所有引物中PIC含量高于0.5的SSR占到60%。15個位點擴增的片段長度在133~326 bp。觀測雜合度(Ho) 0.166 7~0.866 7,平均為 0.476 8;期望雜合度(He) 0.332 8~0.875 7,平均為0.592 9;各位點的Shannon信息指數(I)0.604 9~2.127 3,平均為1.136 0。因此,引物FCUP038-6可作為最佳引物用于鑒定無花果的遺傳多樣性,而其他8條引物FCUP044-6、FCUP066-7、FCUP069-6、LMFC28、LMFC30、LMFC38、MFC2、MFC7同時具備較高的雜合率以及多態性,可考慮作為備選引物。以上結果表明所選取的引物多態性均較高,有很好的鑒別能力,SSR標記在參試無花果材料中可反映較豐富的遺傳多樣性信息。

圖1 華麗(A)和布蘭瑞克(B)品種在位點FCUP069-6的電泳圖譜Fig.1 The electrophoretic patterns of FCUP069-6 in the gorgeous (A) and Blin Rick (B) cultivars
2.2 遺傳相似性和聚類分析
經過聚類分析30份無花果品種資源在遺傳相似系數0.77處,可以分別兩個類群,類群Ⅰ和類群Ⅱ,在類群Ⅰ中,只有3個無花果品種,分別是華麗、以色列和新疆早黃;其他27個無花果品種聚為類群Ⅱ。
在類群Ⅱ中,在遺傳相似系數0.82處又可分為A、B、C三個亞類,其中A亞類包括布蘭瑞克、白熱那亞、香蕉、紫色波爾多等19個無花果品種,其中布蘭瑞克和白熱那亞被聚在一起;香蕉、紫色波爾多、加州黑、瑪斯義陶芬、亞當、羅伊爾、杜魯等品種被聚在一起,其中香蕉和紫色波爾多,加州黑和瑪斯義陶芬,羅伊爾和杜魯,分別被聚在一起,表現出更緊密的親緣關系;B1011、波姬紅、白馬賽、D110、美麗亞、金傲芬、A1213、豐產黃、國王、麗莎等品種被聚在一起,其中B1011和波姬紅,D110和美麗亞,國王和麗莎,分別被聚在一起,表現出更緊密的親緣關系。在B亞類中只有哈代一個品種。在C亞類中,包括中國紫果、青皮、紫淘芬、格萊斯、日本紫果、白蜜、紫寶等品種,其中青皮和紫淘芬,格萊斯和日本紫果,分別被聚在一起,表現出更緊密的親緣關系。
表3無花果品種十五對引物的擴增產物及多態性分析
Table3Polymorphism analysis of the amplified products of 15 primers

SSR引物SSRprimer等位基因數Allelenumber多態位點比率Polymorphiclociratio有效雜合度Effectiveheterozygosity觀察雜合度Observedheterozygosity期望雜合度ExpectedheterozygosityShannon信息指數ShannoninformationindexPICFCUP038-6100.86117.20000.16670.87572.12730.8468FCUP044-640.72393.62170.33330.73621.33040.6726FCUP045-630.51282.05250.36670.52150.76280.3974FCUP066-770.60222.51400.33330.61241.20300.5436FCUP069-640.61942.62770.36670.62991.12210.5611LMFC1740.34281.52160.73330.34860.69230.3206LMFC1980.32721.48640.86670.33280.81490.3195LMFC2730.51172.04780.56670.52030.79530.4105LMFC2860.68223.14690.36670.69381.29480.6230LMFC30100.78114.56850.46670.79441.81860.7565LMFC3740.35221.54370.66670.35820.63880.3103LMFC3850.75284.04490.40000.76551.48510.7125MFC240.66282.96540.33330.67401.23010.6145MFC750.59832.48960.63330.60851.11930.5368MFC820.41441.70760.55170.42170.60490.3285平均5.270.58302.90260.47680.59291.13600.5303
表4遺傳距離與遺傳相似系數
Table4Genetic distance and genetic similarity coefficient

1234567891011121314151617181920212223242526272829301**0.330.350.440.440.560.310.470.670.580.540.400.520.440.460.590.400.600.680.530.620.620.540.480.570.490.510.670.580.4821.12**0.820.830.350.570.700.650.390.410.680.750.880.630.730.550.480.410.560.160.490.490.540.560.480.360.440.620.490.6731.050.20**0.850.480.600.780.650.520.460.650.630.820.700.730.800.590.360.590.230.620.650.650.700.580.340.520.590.630.7040.820.190.16**0.540.640.800.700.590.580.910.780.940.930.700.670.640.630.650.360.670.640.720.750.880.530.590.700.650.8650.821.050.740.61**0.540.390.780.780.730.670.450.580.470.670.620.540.480.480.680.480.460.640.580.490.630.540.720.560.6460.570.560.520.440.62**0.640.590.560.490.720.860.880.720.690.700.440.490.450.500.750.780.720.530.670.550.310.610.750.7271.170.360.250.220.950.44**0.780.460.450.700.800.850.830.810.830.520.300.650.270.780.830.830.800.570.460.480.720.630.6780.760.430.430.360.250.530.25**0.860.800.720.700.760.670.930.800.540.380.650.440.640.640.750.780.470.700.640.970.610.7290.400.940.660.530.250.590.790.15**0.910.670.570.570.560.660.640.510.470.600.580.560.530.640.600.510.750.780.890.580.67100.550.890.780.550.320.710.800.220.10**0.700.650.500.530.790.600.520.600.630.520.520.490.650.590.500.850.620.810.660.62110.610.390.430.100.400.320.360.320.400.36**0.780.850.750.840.720.710.600.650.460.800.800.830.750.700.740.510.750.800.78120.920.290.460.250.800.160.220.360.560.430.25**0.790.780.840.680.460.510.610.380.730.730.700.700.630.700.440.700.770.73130.660.130.190.060.550.130.160.270.570.690.160.23**0.910.820.760.690.560.660.430.760.720.910.770.880.520.540.750.660.94140.820.470.360.070.760.320.190.400.570.640.290.250.09**0.700.670.640.530.700.290.700.700.780.820.850.510.510.640.650.86150.770.310.310.360.400.370.210.070.410.240.170.170.200.36**0.810.740.450.680.460.750.750.840.820.520.760.540.880.930.75160.520.600.220.400.480.360.190.220.440.510.320.390.270.400.21**0.570.380.680.390.940.960.880.750.540.490.510.720.780.64170.920.740.520.450.610.820.660.610.670.650.350.790.370.450.300.57**0.410.620.400.540.490.710.730.540.460.340.530.600.76180.510.891.010.470.740.711.200.980.760.500.510.680.580.640.800.980.89**0.520.490.440.390.520.420.730.470.390.460.590.52190.390.570.530.420.720.790.420.420.510.460.420.490.420.350.380.390.480.66**0.300.700.680.700.910.560.480.530.730.550.73200.631.811.451.010.390.691.320.830.550.660.780.980.851.230.770.950.920.711.22**0.400.380.500.340.560.500.430.550.520.45210.480.710.470.400.730.290.250.440.590.660.220.320.280.360.280.060.620.820.350.91**1.110.940.780.640.510.390.610.750.67220.480.710.430.440.790.250.190.440.640.710.220.320.320.360.280.040.720.940.390.980.05**0.890.730.590.510.390.640.750.61230.620.610.430.320.440.330.190.290.450.430.190.360.090.250.170.120.350.660.350.690.060.12**0.800.700.650.530.750.700.81240.720.570.350.290.540.640.220.250.510.530.290.350.260.190.200.290.320.860.101.080.250.320.22**0.650.570.450.650.640.90250.560.740.550.130.710.400.560.760.670.690.360.470.130.160.650.610.610.320.580.580.440.530.360.42**0.490.480.500.650.75260.721.021.090.630.470.590.770.360.290.160.300.360.660.670.280.720.770.750.740.690.680.680.430.570.72**0.510.800.670.60270.670.820.660.530.621.190.730.440.250.470.670.820.620.670.610.671.070.940.640.850.940.940.640.790.730.68**0.840.400.44280.400.480.520.360.320.500.320.030.110.210.280.360.280.450.130.320.630.780.310.600.500.450.290.430.690.220.18**0.650.66290.540.710.460.420.580.280.460.500.550.420.220.260.420.420.080.250.520.530.610.650.280.280.350.450.420.390.910.43**0.55300.730.390.360.150.440.330.400.320.410.470.250.320.060.150.280.440.280.660.320.790.410.490.220.100.290.510.810.410.59**
左上角是遺傳相似系數,右下角是遺傳距離。
The upper left is the genetic similarity coefficient, and the lower right is the genetic distance.
SSR遺傳標記具有試驗操作簡單、結果穩定、重復性好、共顯性穩等特點,成為研究植物遺傳資源多樣性的重要工具[13]。研究從60多對無花果SSR引物中篩選出15對穩定性好、多態性高的引物,采用引物熒光標記技術和毛細管電泳檢測技術,對近年來搜集的30份無花果品種資源開展了遺傳多樣性分析。試驗結果表明,所搜集的無花果品種資源具有比較豐富的遺傳多樣性,這可能與我國無花果品種來源廣泛,是經過長期從不同國家不斷引進的結果有關。此外,無花果品種資源在果實顏色、果實大小、成熟期、開花結果習性以及抗逆性等形態學和生物學方面表現出非常豐富的多樣性,這與本試驗中SSR標記的豐富多樣性是一致的。

圖2 基于SSR標記的30份無花果品種聚類圖Fig.2 Cluster diagram of 30 Ficus species based on SSR markers
我國不是無花果的原產地,目前我國栽培的無花果品種資源多數是從國外引進的,少數是近年自主培育的新品種。無花果在長期的實生繁殖和無性繁殖過程中,會積累多種多樣的表型突變,這給品種的分類鑒定帶來更大的困難。我國多依據無花果的葉片形狀和果皮顏色、果形大小等表型進行分類,經常會發生品種資源的混淆和混亂,導致同物異名或同名異物。通過單純依靠形態學進行品種鑒定和分類很可能是不可靠的,例如,我國生產上廣泛栽培的瑪斯義陶芬和波姬紅,葉型和果實形狀都非常相似,常常在生產上被混淆[14-16];本研究的結果證實了這兩個品種親緣關系并不十分密切。在本研究中,通過SSR聚類分析的結果顯示,青皮和紫淘芬被緊密地聚在一起,表現出非常近的親緣關系。但兩者果實顏色、大小等形態學差異較大,青皮果實大小中等,為綠色,而紫淘芬果實紫色、較大。而中國紫果、日本紫果和紫色波爾多等紫色品種以及新疆早黃和豐產黃之間并未顯示很近的親緣關系。無花果品種紫淘芬和青皮之間的分化很可能是同一品種由于發生一系列芽變積累的結果,關于兩者之間的親緣演化關系還有待進一步研究證實[17-18],而某些形態學相近的品種其親緣關系可能很遠。在本試驗中,來源不同的無花果品種的聚類是混雜的,說明無花果品種資源在各國的長期相互引種和選種過程,導致品種系譜關系十分混亂。本研究初步解析了部分無花果資源間的親緣關系,為無花果育種工作提供了初步的理論依據,對于選育適用于水果市場的鮮食品種,可優先選擇果皮同為紫色、紅色、黑棕色的基因型相似度較高的品種作為親本;對于選育適用于深加工的品種,可優先選擇22號一族的品種作為親本。今后還需進一步利用分子標記技術并結合形態學和生物學特性來厘清無花果品種資源的系譜關系。
[1] KISLEV M E, HARTMANN A, BAR-YOSEF O. Early domesticated fig in the Jordan valley[J].Science, 2006, 312(5778): 1372-1374.
[2] STOVER E, ARADHYA M, FERGUSON L, et al. The fig: Overview of an ancient fruit[J].Hortscience, 2007, 42(5):1083-1087.
[3] 孫銳, 賈明, 孫蕾.世界無花果資源發展現狀及應用研究[J].世界林業研究, 2010,28(3): 31-36. SUN R, JIA M, SUN L. World figs resources development and applied research[J].WorldForestryResearch, 2010,28(3): 31-36. (in Chinese with English abstract)
[4] 王業遴, 姜衛兵, 馬凱, 等.江蘇海涂地區鹽地無花果栽培體制初探[J].江蘇農業科學,1992 (3): 54-56. WANG Y L, JIANG W B, MA K, et al. Study on fig cultivation system in coastal salt area of Jiangsu[J].JiangsuAgriculturalSciences, 1992 (3): 54-56. (in Chinese)
[5] 豆玉娟, 李曉陽, 孫洪強, 等.遼西地區無花果引種試驗[J].現代農業科技, 2017 (2): 54-56. DOU Y J, LI X Y, SUN H Q, et al. Study on introduction ofFicuscaricaLinn in western Liaoning province[J].ModernAgriculturalScienceandTechnology, 2017 (2): 54-56. (in Chinese)
[6] 孟艷玲, 李春麗, 秦嶺, 等.北京地區日光溫室無花果引種初步觀測[J].園藝學報,2011,38(增刊): 2488. MENG Y L, LI C L, QIN L, et al. Preliminary observation of fig in solar geenhouse in Beijing area[J].ActaHorticulturaeSinica, 2011,38(Suppl.): 2488. (in Chinese)
[7] 商宏莉, 郭英, 梁國魯.6個無花果品種的染色體組型研究[J].西南農業大學學報(自然科學版), 2004, 26(3): 264-269. SHANG H L, GUO Y, LIANG G L. Karyotypes of six cultivars of fig (FicuscaricaL.)[J].JournalofSouthwestAgriculturalUniversity(NaturalScience), 2004, 26(3): 264-269. (in Chinese with English abstract)
[8] 張力飛. 無花果“野麥司依陶芬”日光溫室栽培新技術[J]. 北方園藝,2014(12):43-44. ZHANG L F. New cultivation technology of fig cultivar ‘Masui Violette’in greenhouse[J].NorthernHorticulture, 2014(12):43-44. (in Chinese)
[9] 陳世軍, 袁桂紅, 陳洪江.設施無花果栽培技術[J].落葉果樹,2013,45(5):49. CHEN S J, YUAN G H, CHEN H J. Cultivation techniques of protected fig[J].DeciduousFruits, 2013,45(5):49. (in Chinese)
[10] 王敬斌, 蔣錦標, 王國東, 等.無花果設施栽培試驗初報[J].遼寧農業職業技術學院學報, 2000,2(1):55-58. WANG J B, JIANG J B, WANG G D, et al. Preliminary report on facility cultivation experiment of fig[J].JournalofLiaoningAgriculturalVocation-TechnicalCollege, 2000, 2(1):55-58. (in Chinese)
[11] 孫銳, 賈明, 陳蕾.世界無花果資源發展現狀及應用研究[J].世界林業研究, 2015(3):31-36. SUN R, JIA M, CHEN L. World figs resources development and applied research[J].WorldForestryResearch, 2015(3):31-36. (in Chinese with English abstract)
[12] 王亮, 王彩虹, 田義軻,等.山東省無花果種質資源多樣性的 RAPD分析[J].植物遺傳資源學報 2007, 8(3): 303-307. WANG L, WANG C H, TIAN Y K, et al. Genetic diversity analysis of figs (FicuscaricaL.) in Shandong province by RAPD technique[J].JournalofPlantGeneticResources, 2007, 8(3): 303-307. (in Chinese with English abstract)
[13] 王亮, 王彩虹, 田義軻,等.無花果品種的RAPD及SSR指紋分析[J].青島農業大學學報(自然科學版),2009,26(4) :297-301. WANG L, WANG C H, TIAN Y K, et al. DNA fingerprints for figs (FicuscaricaL.) varieties identification by RAPD and SSR anlysis[J].JournalofQingdaoAgriculturalUniversity(NaturalScience), 2009, 26(4) :297-301. (in Chinese with English abstract)
[14] 孫蕾, 荀守華, 王洪斌, 等.山東省無花果品種資源調查[J].山東林業科技,1995(5):16-18. SUN L, XUN S H, WANG H B, et al. Investigation of fig germplasm resources in Shandong[J].ShandongForestryTechnology, 1995(5):16-18.(in Chinese)
[15] BALAS F, OSUNA M, DOMNGUEZ G. Ex situ conservation of underutilised fruit tree species: establishment of a core collection forFicuscaricaL. using microsatellite markers (SSRs)[J].TreeGenetics&Genomes,2014, 10(3) : 703-710.
[16] GALDERISI U. Identification of the edible fig “Bianco del cilento”by RAPD analysis[J].HortScience, 1999, 34(7):1263-1 265.
[17] ARADHYA M K,STOVER E,VELASCO D,et al. Genetic structure and differentiation in cultivated fig (FicuscaricaL.)[J].Genetica,2010,138(6) : 681-694.
[18] ALMAJALI D,ABDEL-GHANI AH,MIGDADI H. Evaluation of genetic diversity among Jordanian fig germplasm accessions by morphological traits and ISSR markers[J].ScientiaHorticulturae, 2012, 147(4): 8-19.
(責任編輯張 韻)
Geneticdiversityanalysisof30figvarietiesusingcapillaryelectrophoresisdetectionwithfluorescentSSRmarkers
GUO Zhengbing1, HAN Baiming1, GUO Qiang2
(1.JiangsuPolytechnicalCollegeofAgricultureandForestry,Jurong212400,China; 2.JurongTigerhillFigProfessionalCooperatives,Jurong212400,China)
In order to analyze the genetic diversity of the fig species collected from home and abroad, the capillary electrophoresis detection with fluorescent SSR markers method was used to establish the fingerprint identification platform of 30 fig varieties. Analysis of 30 fig varieties was performed by using 15 pairs of SSR primers. The results showed that a total of 79 alleles were detected, the PIC value of 15 loci was between 0.332 8 and 0.875 7 with an average of 0.530 3 and the Shannon information index (I) of each point was between 0.604 9 to 2.127 3 with an average of 1.136 0. The genetic distance between the 30 varieties was 0.025 4-1.123 4. Among them, the heterozygosity and PIC value of primer FCUP038-6 were up to 0.846 8 and 0.861 1, respectively, which could be considered as the core marker of the purity of the hybrid test. Thirty fig varieties were rich in genetic diversity and were divided into two groups with different origins. There was no significant correlation between the genetic relationships and the origins of the varieties, as well as the phenotype feature.
FicuscaricaL; genetic diversity; SSR
S663.3
:A
:1004-1524(2017)09-1482-07
郭正兵,韓柏明,郭強. SSR熒光標記毛細管電泳法分析30份無花果品種的遺傳多樣性[J].浙江農業學報,2017,29(9): 1482-1488.
10.3969/j.issn.1004-1524.2017.09.09
2017-04-20
江蘇農林職業技術學院院級項目(2015KJ030);江蘇高校品牌專業建設工程資助項目(PPZY2015B173)
郭正兵(1976—),男,江蘇高郵人,碩士,副教授,主要從事葡萄、草莓、無花果等果樹栽培生理、品源親緣鑒定等研究。E-mail: 260626813@qq.com